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Abstract 

This article discusses a discrete element method that employs the theory of non-linearly elastic 
Cosserat points. The method is applied to frictionless multi-body contact between ellipsoids. 
Time integration and the detection and treatment of contacts are discussed in connection with 
the computer implementation of the method.  
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Introduction 

Numerous problems of interest in science and engineering involve the dynamic interactions 
between large numbers of geometrically similar bodies, such as powders, grains, rocks, etc. 
Representative applications include hopper flows in the food and pharmaceutical industries, soil 
and rock stability in geomechanics, and planetesimal formation in astrophysics. In many cases, 
the motions of interacting particles cannot be accurately modeled as rigid. This is especially 
true when one is interested in long-term dynamics, where the presence of even small amounts of 
strain energy is sufficient to significantly alter the overall system response. On the other hand, 
owing to the complexity of the problem, it is often computationally intractable to treat each 
particle as a general deformable continuum. This paper employs the theory of Cosserat points, 
which constitutes a compromise between the extreme modeling choices of rigid and fully 
deformable continua. A three-dimensional Cosserat point consists of a point in three-
dimensional Euclidean space and a set of three-dimensional vectors called directors attached to 
that point. The directors “carry” information about the deformation of a three-dimensional 
continuum associated with the Cosserat point. The theory of Cosserat points was proposed by 
Rubin [1] and Green and Naghdi [2], who extended Rubin's original work from 3 to K  
directors. The Cosserat point theory is methodologically motivated by the director theories of 
rods and shells, see, e.g., [3,4]. However, it traces its conceptual origins in the discrete elasticity 
theory of Wo z′ niak [5,6] and the theory of homogeneously deforming continua by 
Slawianowski [7,8]. A similar theory, albeit approached from a somewhat different viewpoint, 
is advocated by Cohen and Muncaster under the “pseudo-rigid” body formalism, see [9] for a 
comprehensive review.  
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The Cosserat point theory has been already employed to model single bodies [10], small 
collections of disconnected bodies [11], and connected multi-bodies [12]. In this paper, this 
theory is put to use in modeling large-scale frictionless particle interactions in a dynamic 
setting. The paper places emphasis on modeling, as well as on the application of algorithms to 
detect and treat collisions in a mathematically consistent and computationally efficient manner. 
The main objective of the paper is to illustrate the applicability of the theory to particle 
simulations and lay the groundwork for its use in assessing the significance of particle 
deformation in the long-term dynamics of particulate flows.  

The organization of the paper is as follows: Section 2 includes a brief, self-contained 
introduction to the theory of a Cosserat point, and describes a simple elastic model used in the 
subsequent simulations. Contact between Cosserat points with ellipsoidal configurations is 
treated in Section 3, and is followed by a short description of the adaptive time-integration 
method in Section 4. Selected numerical simulations are presented in Section 5, followed by a 
short conclusion section.  

1. Theory of elastic Cosserat points 

1.1 General equations 

Consider a body B which, at a given time 0t , occupies a region 0ℜ  with smooth boundary 0∂ℜ  
in the Euclidean point space 3ε . The same body occupies at time t  a region ℜ  having smooth 
boundary ∂ℜ . The regions 0ℜ and ℜ constitute the reference and present configuration of the 
body, respectively. A material point X  in the body can be identified by convected coordinates 

iX  ( = 1,2,3i ). Without any loss of generality, these coordinates are assumed Cartesian in the 
reference configuration relative to a fixed orthonormal basis { }1 2 3, ,E E E . 

Let the position vector of a material point X  in the body be denoted in the present 
configuration by *r  and be written as  

 ( ) ( ) ( ) ( ), =i N i

N
X t t X tλ+r r d  (1) 

Here, r  is the position vector of the Cosserat point, while Nd and Nλ , = 1, ,N KK , are the 
directors and the associated weights, respectively. Note that the usual summation convention 
applies to repeated indices, unless stated otherwise. Equation (1) specifies the motion of the 
Cosserat continuum in terms of the motion of the Cosserat point and the change it magnitude 
and orientation of the directors. In direct analogy to (1), and upon denoting respectively by *

0r , 

0r  and ND , = 1, ,N KK , the position vector of the material point X , the position vector of the 
Cosserat point, and the directors in the reference configuration, write  

 ( ) ( )*
0 0=i N i

N
X Xλ+r r  (2) 

The velocity and director velocities of the Cosserat point are defined as  

 = , = , = 1, ,N N N Kw r w d&& K  (3) 

where a superposed dot denotes material time derivative.  
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Following the work of Rubin [1] and Green and Naghdi [2], define the total mass m  and 
the inertia coefficients Ny  and NMy , , = 1, ,N M KK  of the Cosserat point as  

 

0
0

0
0

0
0

,

,N N

NM N M

m dV

my dV

my dV

ρ

ρ λ

ρ λ λ

ℜ

ℜ

ℜ

=

=

=

∫

∫
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where ( )0 0ˆ= iXρ ρ  is the mass density in the reference configuration. In addition, define the 

total applied force f  and the total applied director forces NI , = 1, ,N KK , as  

 
0

0

0 0

0

0

,

N N N

dA dV

dA dV

ρ
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∂ℜ ℜ

∂ℜ ℜ

= +

= +

∫ ∫

∫ ∫

f p b

l p b
 (5) 

in terms of the body force b  per unit mass and the contact tractions p  per unit referential area. 

Taking into account (4), conservation of mass in a Cosserat point can be expressed as  

 = 0 , = 0 , = 0 , , = 1, ,N MNm y y N M K& & & K  (6) 

Likewise, with reference to (5), linear momentum balance and director momentum balance are 
written as  

 
( )
( )

,

 ,  1,....,

N
N

N NM N N
N

m y

m y y N К

+ =

+ = − =

v w f

v w l к

& &

& &
 (7) 

respectively, while angular momentum balance takes the form  

 = 0N
N ×d k  (8) 

In equations (7) and (8), Nk , = 1, ,N KK , are the intrinsic director forces which can be 
regarded as direct counterparts of the stress tensor in classical continuum mechanics.  

In the theory of a Cosserat point, the intrinsic director forces require constitutive 
prescription. Assuming that the Cosserat point is made of a Green-elastic material, the strain 
energy ψ  per unit mass should, in principle, depend on Nd  and ND , = 1, ,N KK . However, 
invariance requirements necessitate that the strain energy be expressed as a function  

 ( )ˆ= , , , = 1, ,N M N M N M Kψ ψ ⋅ ⋅d d D D K  (9) 

 see [13]. Furthermore, work-conjugacy between Nk  and Nd  implies that  

 
ˆ

=N

N

m ψ∂
∂

k
d

 (10) 

Note that, since 
ˆ

N

ψ∂
∂d

 is parallel to Nd  due to the form the strain energy function in (9), the 

angular momentum equation (8) is satisfied identically for any Green-elastic Cosserat point.  
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1.2 A simple Cosserat point model 

The purpose of this section is to describe in detail a specific Cosserat point model that is 
subsequently employed in the numerical simulation of deformable particles. To this end, let 
each Cosserat point be endowed with three directors ( = 3K ) and let the weighting functions in 
(1) and (2) be given by  

 = , = 1,2,3N NX Nλ  (11) 

Also, choose the origin of the fixed orthonormal basis { }1 2 3, ,E E E  to coincide with the mass 
center of the body in the reference configuration and take NE , = 1,2,3N  to be parallel to the 
body's principal axes of inertia. In addition, without loss of generality, let the directors in the 
reference configuration coincide with the basis vectors, namely  

 = , = 1,2,3N N ND E  (12) 

Under the preceding assumptions, equations (1) and (2) imply that the deformation gradient 
F , defined by the relation * *

0=d dr F r , takes the simple form  

 = N
N ⊗F d E  (13) 

where “ ⊗ ” denotes tensor product, and =N NM
MδE E , = 1,2,3N , with NMδ  being the 

Kronecker delta. Throughout this work, it is assumed that the three directors Nd  deform is such 
a manner that det > 0F . Upon further assuming that r  in (1) is the position vector of the mass 
center of the body under consideration, it follows from (1), (2) and (13) that  

 =π FΠ  (14) 

where *=π −r r  and *
0 0= −Π r r  are the relative position vectors of particle X  in the present 

and reference configurations, respectively. Equation (13) implies that the deformation in this 
Cosserat point model is spatially homogeneous ( i.e., it is the same for all particles). Taking into 

account (13) it is readily shown that the Lagrangian strain, defined by 1= ( )
2

T −E F F I , where 

I  is the second-order identity tensor, can be expressed as  

 ( )1=
2

N M
N M NMδ⋅ − ⊗E d d E E  (15) 

In this model, the Cosserat point is made of a homogeneous isotropic Kirchhoff-St. Venant 
material, which, for fully-deformable continua, is associated to the strain energy  

 ( ) ( )2* *

0

1= = 2
2

trψ ψ λ μ
ρ

⎡ ⎤+ ⋅⎣ ⎦E E E E(  (16) 

where λ  and μ  are material constants. Note that, in the Cosserat continuum, E  (hence also 
*ψ ) is a function of time only, which, with the aid of (15) and (16), implies that the total strain 

energy of the Cosserat point is given by  
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( )

( )( ){ }

2*
0= = 3

2 4

2 3
2

NM
N M

NK LM NM
N M K L N M

Vm V λψ ρ ψ δ

μ δ δ δ

⎡ ⋅ − +⎢⎣
⎤+ ⋅ ⋅ − ⋅ + ⎥⎦

d d

d d d d d d
 (17) 

where V  is the total volume of the body in the present configuration. Appealing to (10) and 
(17), the intrinsic director force now takes the form  

 ( ) ( ){ }= 3 2
2

N KM NL LM NK NM
K M L K L M

V λ δ δ μ δ δ δ⎡ ⎤⋅ − + ⋅ −⎣ ⎦k d d d d d d  (18) 

Recalling (11) and that the origin of { }NE  coincides with the mass center of the body, it 

follows readily that the inertia coefficients Ny  in (4) 2  vanish identically. Consequently, the 
equations of linear momentum balance in (7) 1  and director momentum balance in (7) 2  reduce 
to  

 
,

  ,  1,....,NM N N
N

m
my N К

=

= − =

v f
w l к

&

&
 (19) 

Furthermore, given (4) 3  and (11), the inertia coefficients NMy  in (19) 2  can be expressed as  

 0
0

= , , = 1, 2,3NM N Mmy X X dV N Mρ∫  (20) 

Since the basis vectors NE , = 1,2,3N  are chosen to lie along the principal axis of the inertia 
tensor, it trivially follows that = 0NNmy , = 1,2,3N , (no sum on N ).  

In the problem at hand, the applied forces are due to gravity (equal, by convention to −g  
per unit mass) and direct contact between the particles, while the applied director forces vanish 
identically. Neglecting, for now, the contact forces, this implies that  

 ( )= = , = 0N N N
N Nm mg− ⋅ −f g E E E l  (21) 

The effect of the contact forces is discussed in detail in Section 3.3.  

For the sake of clarity, write the components of r , Nd , Nw  and Nk  relative to the bases 

{ }NE  and { }NE  as  

 = , = , = , =N N
N N NM N M NM N M M Mr d w k⋅ ⋅ ⋅ ⋅r E d E w E k E  (22) 

where , = 1, 2,3N M . Now, introduce the vectors 1z , 2z , k  and q  containing the components 
of the generalized position, velocity, intrinsic force, and applied force, respectively, as  

 

[ ] [ ]
[ ] [ ]
[ ]

[ ]

1 1 2 3 11 12 13 21 22 23 31 32 33

2 1 2 3 11 12 13 21 22 23 31 32 33

1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3

1 2 3

= ,

= ,

= 0 0 0 ,

= 0 0 0 0 0 0 0 0 0 .

T

T

T

T

z r r r d d d d d d d d d

z v v v w w w w w w w w w

k k k k k k k k k k

q mg mg mg

⎡ ⎤⎣ ⎦

⎡ ⎤− − −⎣ ⎦

 (23) 

The momentum equations (19) can now be written compactly in first-order form as  
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( ) ( )

1 2

1
2 1 1

 ,

h−

=

= − + =⎡ ⎤⎣ ⎦

z z

z M k z q z

&

&
 (24) 

where the generalized inertia matrix M  is given by  

 [ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

11

22

33

0 0 0
0 0 0
0 0 0
0 0 0

m I
my I

M
my I

my I

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (25) 

In equation (25), [ ]I  and [ ]0  denote 3 3×  identity and zero submatrices, respectively.  

2. Contact between Cosserat points 

This section outlines an efficient and robust treatment of contact between elastic Cosserat points 
occupying ellipsoidal configurations. Specifically, it describes a method of contact detection, as 
well as a sorting technique for reducing the computational cost of tracking contact between such 
Cosserat points.  

Many solid objects can be accurately approximated as quadric-surface bodies, such as 
spheres, ellipsoids, elliptic cylinders, etc. This geometric approximation has been employed 
extensively in modeling granular systems [14-16], rocks [17], particle packing problems [18] 
and computer-aided design [19]. In this work, attention is focused specifically on (triaxial) 
ellipsoids, whose surface can be mathematically represented as  

 ( ) ( ) ( ) ( ) ( )1 2 3
1 2 3= cos cos cos sin sina u v a u v a u+ +ρ E E E  (26) 

Here, ρ  is the position vector of a surface point measured from the center of the ellipsoid, Na , 
= 1,2,3N , are the lengths of the principal semi-axes and NE , = 1, 2,3N , are the unit vectors 

parallel to the principal directions of the ellipsoid1. Also, the parameters [ ]/ 2, / 2u π π∈ −  and 

[ )0, 2v π∈  are curvilinear surface coordinates corresponding to the polar and azimuthal angle, 
respectively.  

The choice of ellipsoids is guided by the observation that they are geometrically invariant 
under the homogeneous deformation associated with the Cosserat point model. Said differently, 
ellipsoids are always mapped to ellipsoids by the action of a spatially homogeneous 
deformation gradient ( )tF , see [20, Section 27]. This result can be easily deduced by 
representing an ellipsoidal surface in the reference configuration as  

 = 1⋅Π KΠ  (27) 

where K  is, by assumption, positive-definite. Then, upon recalling (14), it follows that  

 ( )1 = 1Tπ π− −⋅ F KF  (28) 

                                                 
1 The principal directions of the ellipsoid coincide with the principal directions of the inertial tensor, assuming, as is 
done here, that the body is homogeneous 
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Noting that 1T− −F KF  is also positive-definite, equation (28) represents an ellipsoid in the 
current configuration with principal directions oriented along the eigenvectors of 1T− −F KF .  

2.1 Sorting of contact pairs 

Consider the problem of contact between two Cosserat points embedded in 3ε . Equation (27) 
implies that the boundary of each body in the reference configuration can be determined the 
position vectors ( )

0
αr  of the mass centers and by the tensors ( )αK , = 1, 2α . Then, the respective 

boundaries in the current configuration can be determined from the position vectors αr  and the 

directors ( )
N
αd . This section discusses a low-cost, two-stage sorting procedure intended to avoid 

a costly all-to-all contact detection check by substantially reducing the number of potential 
contact pairs. This procedure consists of a spatial sorting stage, followed by a spherical sorting 
stage. Generally, spatial sorting is more efficient than spherical sorting. However, spherical 
sorting can yield additional restrictions to the feasible set of contact pairs. Hence, the two 
methods are employed in sequence. Although the forthcoming analysis can be extended to 
contact between general convex regions in 3ε , the discussion focuses specifically on ellipsoids. 
An application to the case of contact between superquadric ellipsoids can be found in [21].  

Generally, the choice of an optimal sorting procedure is strongly dependent on the problem 
at hand. Several sorting algorithms are classified and discussed in [22] for different types of 
problems. Here, an efficient spatial sorting algorithm is adopted following earlier work by 
Munjiza and Andrews [14]. This is well-suited for dynamic problems including loose and/or 
dense packing of objects. Its principal limitation, which is of minor significance in this work, is 
that it applies to systems of similarly sized bodies. The algorithm is based on decomposition of 
the ambient three-dimensional space into identical cubic cells of size 0 0 02 2 2r r r× × , where 0r  is 
the maximum over the lengths of the semi-axes of all ellipsoidals in the reference configuration. 
Each ellipsoid is assigned an integer identification 1,2, , nK , where n  is the total number of 
ellipsoids. In a similar fashion, each cubic cell is assigned an integer triad identification 
( ), ,ix iy iz . 

A mapping between the set of all ellipsoids and the cubic cells is effected at any solution 
time by assigning each ellipsoid to one and only one cell. For instance, an ellipsoid whose mass 
center has coordinates ( ), ,x y z  relative to the orthonormal basis { }NE  is assigned to the cell 

( ), ,ix iy iz , such that 

 0 0 0

0 0 0

= , = , =
2 2 2

x x y y z z
ix Int iy Int iz Int

r r r
⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (29) 

where ( 0 0 0, ,x y z ) are the coordinates of the origin of a reference point (typically a vertex of the 
block comprised by the cubic cells), see also Section 4, while “Int” is the standard integer 
truncation operator. Once all ellipsoids are mapped to cells, detection of potential contact for 
any given ellipsoid only needs to involve ellipsoids mapped to immediately neighboring cells.  

Spherical sorting is performed at any solution time by comparing the Euclidean distance 
( ) ( ) ( )=R αβ β α−r r  between the current mass centers of two ellipsoids identified by α  and β  

(α β≠ ) to the sum of the lengths of their largest principal semi-axes ( )R α  and ( )R β , see Fig. 
(1). Clearly, the condition  
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 ( ) ( ) ( )>R R Rαβ α β+  (30) 

would eliminate the pair (α , β ) of ellipsoids from further contact consideration. 

 
Fig. 1. The detection of potential contact. 

2.2 Contact detection 

The second step in contact detection applies to all candidate pairs (α , β ) of ellipsoids obtained 

by the sorting processes. For such pairs, write the non-negative distance function ( )d αβ  between 
any two surface points with curvilinear surface coordinates ( ) ( )( ),u vα α  and ( ) ( )( ),u vβ β  as  

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )ˆ= , , , =d d u v u vαβ αβ α α β β β α−r r  (31) 

where ( )αr  denotes the position vector of the point on the boundary of body α  in the present 
configuration. The goal is to determine two points, labeled ( )P α  and ( )P β , on the two 
ellipsoidal surfaces for which ( )d αβ  attains a global minimum. Upon considering Fig. 2, it is 
immediately clear that it is not always possible to find a unique pair of such points when the 
bodies have already penetrated each other. Indeed, in this case all pairs of points on the 
intersection curve generated by the overlapping ellipsoids yield ( ) = 0d αβ . The discussion of 
this case is postponed until the end of this section.  

 
Fig. 2. The contact situations between two ellipsoidal bodies. 
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A simple algorithm is proposed here to determine a (unique) pair ( ) ( )( ),P Pα β  of points on 

the two ellipsoids that minimizes the distance function ( )d αβ  when there is no penetration. The 
algorithm starts by arbitrarily selecting a pair of points ( ) ( )( )1 1,P Pα β  on the respective surfaces, 

see Fig. (3). Then, keeping ( )
1P α  fixed, a new point ( )

2P β  is determined on ellipsoid β  which 

minimizes ( )d αβ  with respect to variables ( ) ( )( ),u vβ β . Subsequently, keeping ( )
2P β  fixed, a 

point ( )
1P α  is determined on ellipsoid α  which again minimizes ( )d αβ  with respect to variables 

( ) ( )( ),u vα α , and so forth. Note that each iteration yields a unique minimum corresponding to the 

distance of a point from a convex set, see, e.g., [23]. This multivariate cyclic descent method 
produces a sequence of points on the two surfaces that can be shown to converge to the pair 

( ) ( )( ),P Pα β , see, e.g., [24]. A standard variable metric method (BFGS) is employed to solve the 

local minimization problems, see [25]. Upon determining the pair ( )( ) ( ),P Pα β , the associated 

outward surface normal vectors ( )αn  and ( )βn  to the ellipsoids at these points must be equal and 
opposite, provided that the ellipsoids are not in contact with each other. Indeed, in such case the 
extremization of ( )d̂ αβ  in (31) leads to  

 
Fig. 3. From initial guesses 1K  and 1L , a sequence of points 2L , 2K , 3L , K  is calculated 

which minimizes the distance function d  defined in equation (31). 

 
( ) ( )

( ) ( )

( )

( )

( ) ( )

( ) ( )

( )

( )= 0 , = 0
u v

α β α α β α

α αα β α β

− ∂ − ∂
⋅ ⋅
∂ ∂− −

r r r r r r
r r r r

 (32) 

and  

 
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

( ) = 0 , = 0
u v

α β α β ββ

β βα β α β

− ∂ − ∂
⋅ ⋅
∂ ∂− −

r r r r r r
r r r r

 (33) 

Since the ellipsoids do not overlap, equations (32) and (33) imply that the vector ( ) ( )α β−r r  is 
perpendicular to the tangent planes of both ellipsoids at points ( )P α  and ( )P β . In addition, since 
the ellipsoidal surfaces are orientable, it follows that their outward unit normals at poins ( )P α  
and ( )P β  must necessarily be equal and opposite. In summary, denote the position vectors of 
points ( )P α  and ( )P β  by ( )αr  and ( )βr , and the corresponding outward unit normals by ( )αn  
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and ( )βn , respectively. Then, the criteria for ``no-contact'' between two ellipsoidals can be 
expressed as  

 ( ) ( )( ) ( ) ( ) ( )> 0 , = 1α β α α β− ⋅ ⋅ −r r n n n  (34) 

If the criteria in (34) are not met, the ellipsoids are either contacting or penetrating each other. 
The latter case may occur when the constraint of impenetrability is relaxed by means of a 
penalty method, as in Section 3.3. When there is penetration, it is essential to identify a unique 
pair of “contact points” out of the whole set of points that lie on the intersection curve where the 
constraint forces that ultimately enforce impenetrability are to be applied. A simple, efficient 
and geometrically unbiased procedure to determine such points is proposed here. To this end, 
consider two interpenetrating ellipsoids α  and β , as in Fig. 4. One may uniformly scale 
ellipsoid β  to obtain a series of ficticious ellipsoids, each having the same orientation as β  
and principal semi-axes whose lengths are multiplied by a positive scalar τ  ( 1≤ ). As seen 
from  

 
Fig. 4. Unique contact point determination. 

Fig. 4, there exists a unique τ , such that the ficticious ellipsoid β̂  intersects with ellipsoid α  

at a single point ( )P α  with position vector ( )αr  and outward unit normal ( )αn . This point is now 
taken to be the unique contact point on the surface of ellipsoid α  and is determined by solving 
the system  

 ( ) ( ) ( ) ( )ˆ ˆ
= , = 1β βα α ⋅ −r r n n  (35) 

Note that there are five linearly independent equations in (35) and five unknowns, namely 
( )u α , ( )v α , ( )ˆ

u β , ( )ˆ
v β , and τ . This system is solved by Newton's method with an initial guess 

corresponding to any point on the intersection curve of the two ellipsoids. Upon interchanging 
the roles of α , β  and applying the same procedure, one may determine a unique contact point 

( )P β  on β , which completes the process.  

2.3 Contact constraints and contact forces 

When two Cosserat points are in contact, their position vectors and directors are jointly subject 
by the impenetrability constraint. Here, this constraint is treated in a dual (rather than primal) 
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manner, namely by introducing Lagrange multipliers under the normality assumption advocated 
by Casey for the treatment of general constrained continua, [26,27].  

To identify a mathematical representation of impenetrability, consider again the points 
( )P α  and ( )P β  at which the ellipsoids α  and β  are closest to each other, as depicted in Fig. 5. 

Recalling the discussion in Section 3.2, the distance function ( )d αβ  satisfies  

 
Fig. 5. Schematic depiction of the kinematic quantities involved in describing the contact 

between two bodies. 

 

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( )1 1 1,

N N
N N

d

X X

αβ β α

β α α

β β β α α α α

α βφ

= −

= − ⋅

= + − − ⋅

=

r r

r r n

r d r d n

z z%

 (36) 

where use is made of (1), (11) and (23) 1 . Likewise, the rate of change of ( )d αβ  keeping the 

material point ( )P α  fixed can be expressed as  

 
( )

( )
( ) ( )

( ) ( ) ( ) ( )( )

*

2 1 1 2 2

=

        = , , ,

d
β

αβ α α

α β α βφ

⎛ ⎞
− ⋅⎜ ⎟

⎝ ⎠
r r n

z z z z

& &

%

 (37) 

Here, 
( )* β

r  denotes the rate of change of the position vector for a point on the surface of 
ellipsoid β  that remains in contact with the given material point ( )P α . Persistent contact 

between the material point ( )P α  and the boundary of body β  is characterized by the conditions  

 ( ) ( )= 0 , = 0d dαβ αβ&  (38) 

It has been shown elsewhere [28] that it is impossible for a homogeneously deforming elastic 
body (hence, also a Cosserat point of the type used here) to enter into a state of persistent 
contact while preserving its total energy. However, persistent contact can be assumed by 
approximation when a limited amount of penetration is allowed ( i.e., when ( ) 0d αβ ≤  and 
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( ) 0d αβ& ), as is the case when the contact constraints are enforced by a penalty method. In this 
case, the preceding constraint conditions yield (generalized) contact forces, such that the 
original equations of motion (24) for each of the two bodies become  

 
( ) ( ) ( )

( ) ( ) ( )( ) ( )

1 2 1
1

2 2

=

=

α α α

α α α α−

+

+

z z c

z h M c

&

&
 (39) 

The quantities ( )
1
αc  and ( )

2
αc , = 1, 2α  are (generalized) contact forces and are determined from 

(36) and (37) using the Lagrange multiplier method as  

 ( ) ( )
( )

( ) ( )
( )

1 2
1 1 2 2

1 2

= , =α α α α
α α

φ φ
γ γ

∂ ∂

∂ ∂
c c

z z

% %
 (40) 

Here, the scalars 1γ  and 2γ  are Lagrange multipliers associated with the constraints on 1φ%  and 

2φ% , respectively, and are determined numerically by a process described in Section 4.1. In 
general, a body may be in contact with more than one bodies at the same time. Naturally, the 
total constraint forces applied to a particular body are determined by accounting for all active 
contact pairs involving that body. 

3. Implementation of the Cosserat point model 

3.1 Time integration algorithm 

In this work, a simple explicit predictor-corrector integration scheme [29] is employed based on 
the forward Cauchy-Euler method. The proposed integration scheme for equations (39) is 
outlined here for the case of contact between a pair of Cosserat points. The corresponding 
schemes for the unconstrained equations (24), as well as for the case of multiple contacts can be 
easily deduced. Suppressing, for notational simplicity, the body index, the discrete counterpart 
of (39) is written as  
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 (41) 

where tΔ  is the stepsize and ( )k
 denotes the numerical approximations of ( )  at time = kt t . 

Equation (41) 1  uses the forward Cauchy-Euler method to compute a predictor 1, 1k +z%  to the 
generalized position 1, 1k +z . The detection of contact, the determination of contact points, the 
computation of contact forces 1c , 2c  and constraint functions 1φ , 2φ  are all based on this 
predictor value. Also, equations (41) 2,3  compute approximations to the Lagrange multipliers of 
equation (40) by penalizing the constraint functions 1φ  and 2φ , respectively. To limit 
penetration, the penalty parameter 1p  is chosen to depend on of the Young's moduli of the 
contacting Cosserat points. On the other hand, the parameter 2p  is deduced from the 
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requirement that the total system energy be conserved at each time step, see Section 4.2. 
Equations (41) 4,5  employ again the forward Cauchy-Euler integration method for (39). When a 
Cosserat point is not in contact, then clearly 1 2= = 0c c  and 1 2= = 0γ γ . The latter serve as 
initial conditions for (41) 2,3  whenever contact is initiated.  

A simple adaptive time-stepping scheme is implemented, such that the initial user-specified 
stepsize tΔ  is sharply reduced when the state 1, 1k +z%  predicts contact between Cosserat points. 
This is done to limit penetration and control the total system energy. However, the reduction in 
stepsize is capped by a user-specified lower-bond in order to safeguard against excessive 
computational cost. As long as contact persists, time integration continues with the fixed 
stepsize. Once contact is lost, the Lagrange multipliers 1γ  and 2γ  are reset to zero and the 
stepsize is gradually increased back to its initial value.  

3.2 Energy conservation 

The total energy E  of a Cosserat point, as modeled in Section 2.2, is comprised of the kinetic 
energy T , the strain energy S  and the gravitational potential energy U , namely  

 =E T S U+ +  (42) 

Recalling equations (16) and (23-25), the three energies take the form  

 2 2
1= ( )
2

T ⋅z Mz  (43) 

 ( )2= = 2
2
VS m trE E Eψ λ μ⎡ ⎤+ ⋅⎣ ⎦  (44) 

and  

 1=U − ⋅q z  (45) 

In this formulation, the effects of friction during dynamic contact between Cosserat points 
or between a Cosserat point and a fixed boundary are neglected. Assuming, further, that contact 
is ideally elastic, it follows that the total system energy sE  is a conserved quantity. Hence, in 
the discrete setting of Section 4.1, one needs to approximately enforce the condition  

 1 =s s
k kE E+  (46) 

where 1
s
kE +  and s

kE  denote the total system energy at time 1kt +  and kt , respectively. Recalling 
(42), it follows that equation (46) can be rewritten as  

 1 1 1 =s s s s
k k k kT S U E+ + ++ +  (47) 

where 1
s

kT + , 1
s
kS +  and 1

s
kU +  respectively denote the total kinetic energy, total strain energy and 

total gravitational potential energy of the system at time 1kt + . With reference to the time 
integration scheme (41), it is clear that, once the generalized position vector 1, 1k +  of each 
Cosserat point is determined using equations (41) 1,4 , the strain energy and the gravitational 
potential of each point at time 1kt +  can be computed directly from equations (44) and (45), 
respectively. Upon focusing only on a pair (α , β ) of contacting Cosserat points, equation (46) 
reduces to  
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 ( ) ( ) ( )( ) ( ) ( ) ( )
2, 1 2, 1 1 1

= , = ,

1 =
2

i i i i i i
k k k k k

i i
E S U

α β α β
+ + + +

⎡ ⎤⋅ − −⎣ ⎦∑ ∑z M z  (48) 

where all the terms on the right-hand side of the preceding equation are known. The generalized 
velocity 2z  is updated using (41) 5 , where the unknown quantities are the velocity constraint 
forces 2, 1k +c  computed from (40) 2  and (41) 3 . Since the relative normal velocity function 2φ  in 
(41) 3  is determined from given position vectors 1, 1k +z%  and 2,kz , the only unknown quantity is 
the parameter 2p , which is computed from (48). Given the explicit time integration, multiple 
simultaneous impacts of a Cosserat point are handled trivially. In all, equation (48) is enforced 
for all pairs of contacting Cosserat points, which leads to the conservation of the total system 
energy to within the deviations due to the truncation error of the discrete time integration 
scheme.  

4. Numerical simulations 

The numerical simulations contained in this section have been carried out to test the broad 
predictive capabilities of the Cosserat point model and the computational efficiency of the 
algorithmic implementation. The latter is achieved by employing object-oriented programming, 
see [30] for a complete description. In all simulations, the elastic material parameters of each 
body are λ  = 3.46[MPa], μ  = 2.31[MPa], and the mass density is ρ  = 7850[kg/m 3 ]. Also, 
the initial and maximal stepsize is 55.0 10−× [s], while the minimal stepsize is 51.0 10−× [s]. 
Finally, 4

1 = 2 10p ×  for contact between Cosserat points and 5
1 = 2 10p ×  for contact between a 

Cosserat point and the rigid hopper wall.  

4.1 A particle wave problem 

The purpose of this elementary example is to test the ability of the contact detection scheme to 
correctly determine the positions of contact points and directions of contact forces. Here, five 
Cosserat points are traveling on the same straight line in the absence of gravitational force. The 
first point has initial velocity of 1[m/s], while the remaining points have initial velocity of 
3[m/s]. The points are associated with identical ellipsoidal reference configurations with lengths 
of the principal semi-axes of 0.1[m] and 0.05[m] transversely to the motion and 0.06[m] in the 
direction of the motion. It is clear that the only external forces acting on each ellipsoid are due 
to dynamic contacts. The initial stages of the “chain reaction” of collisions triggered by the 
slower first point is depicted in Fig. 6. The locus of mass centers of each body versus time are 
plotted in Fig. 7. This figure shows that all five ellipsoids move along a straight path to within 
negligible numerical error, as expected.  

 
Fig. 6. Particle wave problem: Consecutive collisions in a chain reaction. 
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Fig. 7. Particle wave problem: Projections of the paths of the five Cosserat points in X-Y and 

X-Z plane. 

5.1 Particulate flow through a stationary hopper 

The flow of a large volume of particulate material through chutes [31], hoppers [32,33], and 
pipes [34,35] is of great interest in process engineering. In this simulation, 1008 stationary 
Cosserat points are placed in a 14 12 6× ×  cubic array on the top part of a cone-shaped hopper 
and subsequently are allowed to flow under gravity past the lower opening section of the 
hopper, as shown in Figures 8 -10. All particles are modeled as Cosserat points having a 
spherical reference configuration with radius 0.05[m]. The initial distance between the centers 
of neighboring spheres on layers parallel to the cubic phases is set to 0.13[m]. Also, the 
elevation of the spheres at the bottom layer of the cubic array is 1.2[m] above the lower opening 
section. The hopper is a conical section with rigid and fixed lateral surface. The height of the 
hopper is 2.5[m], and the diameters of the lower and upper opening circular holes are 1.2[m] 
and 3.7[m], respectively.  
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Fig. 8. Flow through a 
stationary hopper: Reference 
configuration at time t=0.0[s]. 

Fig. 9. Flow through a 
stationary hopper: 
Configuration at time 
t=0.66[s]. 

Fig. 10. Flow through a 
stationary hopper: Configuration 
at time t=1.2[s]. 

Figure 11 shows the number of contacts between Cosserat points as a function of time. 
Clearly, this number reaches a peak when most of the particles pass through the lower opening 
section of the hopper. The dependence of the run-time per step on the number of contacts is 
shown in Fig. 12. Note that the run-time per step is essentially independent of the number of 
contacts (on the other hand, the stepsize does depend on this number!). The total energy of the 
Cosserat points in the hopper flow simulation is plotted in Fig. 13 and is conserved with high 
accuracy. The degree of deviation from exact energy conservation can be appreciated in Fig. 14. 
Indeed, it is clear that energy is very accurately conserved during the time interval [0.15,0.7]  
where most contacts occurs. This is precisely the interval in which both the stepsize is reduced 
and the energy conservation scheme of Section 4.2 is massively employed. On the other hand, 
both at the very beginning (when contacts have not been initiated) and toward the end of the 
simulation (when the particles scatter) the energy shows small fluctuations due to the fact that 
the smooth time integration algorithm ( i.e., without contact) is not energy-conserving.  
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Fig. 11. Flow through a stationary hopper: Number of contact as a function of time. 

 
Fig. 12. Flow through a stationary hopper: Normalized run-time per step as a function of the 

number of contacts. 
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Fig. 13. Flow through a stationary hopper: Total system energy as a function of time. 

 
Fig. 14. Flow through a stationary hopper: Total system energy as a function of time (zoom on 

small energy fluctuations). 

A series of hopper flow simulations with varying number of particles is conducted to assess 
the scalability of the implementation. In addition to the preceding one involving 1,008 particles 
in a 14 12 6× ×  cubic array, simulations are also run with 2,016 particles (14 12 12× × ), 10,200 
particles ( 30 20 17× × ), 20,400 particles ( 30 20 34× × ), and 40,320 particles ( 28 40 36× × ). The 
geometric properties of the hopper are as described earlier, while the elevation of the bottom 
layer of particles is 1.13[m] above the lower opening of the hopper for the first four simulations 
and 1.44[m] for the last one. To render the scaling more meaningful, the spheres are taken to 
have radius 0.05[m] in the first two and 0.025[m] in the last three simulations. Correspondingly, 
the distances between the centers of the spheres on layers parallel to the faces of the cubic array 
are taken to be 0.13[m] for the first two and 0.065[m] for the last three simulations. Figures 15 
and 16 show the total run-time per time-step and the total memory allocation as a function of 
the number of particles, as obtained on a commodity-type personal computer (Pentium IV, 1.4 
GHz; 512 MB RAM) using the GNU C++ compiler. It is clear from these figures that the 
memory scales linearly with the number of particles, while the run-time scales super-linearly 
with scaling exponent approximately equal to 1.6.  
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Fig. 15. Flow through a stationary hopper: Run-time as a function of the number of particles. 

 
Fig. 16. Flow through a stationary hopper: Total memory allocation as a function of the number 

of particles. 

4.2 Particulate flow through a horizontally vibrating hopper 

This example is used to model the flow of a granular medium in a hopper that vibrates 
horizontally. Vibration is widely used in various industrial operations for smooth discharge of 
particles from a hopper [36]. In this simulation, a 14 6 6× ×  cubic array of 504 Cosserat points 
of spherical reference configuration flows under gravity through the vibrating hopper. All 
pertinent dimensions for the hopper and the spheres are identical to those of the initial problem 
in Section 5.2. In addition, the vibration of the hopper is sinusoidal and takes place in the 
direction of the ``long'' side of the cubic array with amplitude A = 0.2[m] and frequency f = 
0.5[Hz]. Figures 17 - 20 show a view of the system at different times, as projected on the plane 
of vibration.  
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Fig. 17. Flow through a vibrating hopper: 

Configuration at time t=0.0[s]. 
Fig. 18. Flow through a vibrating hopper: 

Configuration at time t=0.51[s]. 

 

 
Fig. 19. Flow through a vibrating hopper: 

Configuration at time t=0.63[s]. 
Fig. 20. Flow through a vibrating hopper: 

Configuration at time t=0.82[s]. 

Closure 

The theory of Cosserat points is employed to develop a simple model that can be used for 
frictionless dynamic contact involving large numbers of particulates of ellipsoidal shape. A 
simple, yet robust, algorithm is proposed to enforce the impenetrability constraint and conserve 
energy during the impact events. An object-oriented implementation allows for the effective 
management of the data and yields reasonable scalability results. Overall, the Cosserat point 
formalism permits the incorporation of limited deformability in the particles, which one seeks a 
balance between accuracy and computational tractability. 
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