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Abstract 

Nowadays, the finite element method has been widely applied in product calculation and design. 
One of the critical parameters in finite element modeling are the parameters in the material 
behavior model. In this study, an inverse procedure determines the values of parameters in the 
behavior model of anisotropic materials. First, optimization algorithms are used to evaluate the 
deviation between experimental data and numerical simulations. Based on that, the corresponding 
parameter values need to be determined. The accuracy of the parameter values determined by the 
proposed method is evaluated by comparing the numerical simulation results with the 
experimental results. This process can also be applied to many different mechanical behaviors of 
materials.  

Keywords: parameter identification, optimization algorithm plastic, finite element, simulation, 
corrugated. 

1. Introduction  

Material parameters are very important in finite element modeling (FEM). The accuracy of these 
parameters, such as elastic modulus, tensile strength, Poisson's ratio, work hardening properties, 
and several other coefficients, can significantly affect the numerical simulation results of the 
model. Many methods have been used to accurately determine these parameters, such as inverse 
methods, optimization algorithms, and experimental calibration. However, each study used a 
different approach, even though the same technique was used. Cooreman et al. (2007) developed 
an inverse method for determining material parameters in elastic-plastic materials. The study 
focused on studying the influence of the sensitivity matrix to changes in material parameters on 
the mechanical behavior of the material. Digital image correlation (DIC) was used to determine 
the exact parameters in real-time to improve the accuracy of material models when provided with 
experimental data. Inverse techniques were then used to estimate material parameters by 
minimizing the difference between experimental observations and model predictions in S. 
Cooreman's study (Cooreman et al. 2008). A recent study that combined experimental data from 
DIC and an advanced optimization method (ensemble-based 4DVar) in Stefan Hartmann's study 
(Stefan Hartmann 2021) allows for a more accurate simulation of material behavior, especially 
usable with highly noisy data. In another study, a hybrid inverse analysis method is proposed by 
Zhang et al. (2010) to determine the nonlinear material parameters in the mechanical behavior of 
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composite material. This method combines experimental and numerical methods with the inverse 
search method to determine the nonlinear material parameters of each component layer in a plate. 

The number of material parameters to be determined depends on the material type used and 
the study's behavior model. One behavioral model that frequently appears in research is the 
Johnson-Cook model ((D. Remache et al. 2019), Wangtian Yin and Yongbao Liu (2024), Titu et 
al. (2021), Jiang et al. (2024), Aghdami and Davoodi (2020), Özel and Karpat (2007)). In these 
studies, the way of determining the parameters in the material model is not the same. The 
Levenberg-Marquardt optimization algorithm used in the study of Shrot and Bäker (2012) 
improved the accuracy in determining the parameters of 6063-T5 aluminum alloy in the Johnson-
Cook behavior model. The Newton-Raphson method with the objective function determined 
based on the difference between the analytical and experimental tensile forces was used in the 
study of Ashkan Mahmoud Aghdami et al. (2020) to determine the values of the parameters in 
the Johnson-Cook behavioral model. In the study of Wang et al. (2023), the Johnson-Cook 
constitutive model was modified to more accurately predict the mechanical behavior of 6063-T5 
aluminum alloy under high temperature and dynamic conditions. On that basis, the accuracy of 
material parameter values was improved. 

In addition, in many other studies, determining material parameters in finite element models 
is also mentioned such as the studies of Abdullah, Kuntjoro, and Yamin (2017), Li et al. (2021), 
Dorogoy and Rittel (2009), Jebri et al. (2022), Hor et al. (2013), Murugesan and Jung (2019), and 
Laakso and Niemi (2016), Tien et al (2024), Tien et al (2023), Luong et al. (2023), and 
Mrówczyński et al (2022). However, most of these studies have not mentioned the use of multi-
objective methods to increase the determinism of the problem. In addition, published studies also 
show that the material parameter determination procedures are mainly limited to isotropic 
materials, the steps in the inverse identification method are unclear, and the possibility of 
extending the procedure to other materials is not mentioned. 

This study proposes an inverse method for determining the parameters of anisotropic 
materials. The accuracy of the obtained results is verified by comparing the experimental results 
and numerical simulations of carton compression tests. This process can be easily applied to 
various material behavior models. 

2. Research material and mechanical behavior model 

2.1. Material 

Anisotropic materials exhibit different mechanical behavior in various directions. The material 
used in this study is corrugated cardboard. It consists of three layers of paper: Liner and fluting 
(Fig.1). The manufacturing process gives three characteristic directions: the machine direction 
(MD), the cross direction (CD), and the thickness direction (ZD). Characteristics of each layer in 
corrugated cardboard are shown in Table 1 and Fig.2. 
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Fig. 1. Geometric structure and the directions of the corrugated cardboard panel  

 Grammage (g/mm2) Thickness (mm) 

Liner 140 0.18±0.004 

Fluting 113 0.15±0.008 

Table 1. Cardboard plate properties 

 
Fig. 2. Dimensional characteristics of corrugated cardboard plate (all dimensions are in mm) 

2.2. Paper material behavior model 

Due to the small thickness of the cardboard, the out-of-plane properties are difficult to determine. 
In the study of Stenberg (Niclas Stenberg 2003), it was shown that Young's modulus in the 
perpendicular direction (ZD) is about 200 times lower than that of MD. At the same time, the 
study of Stenberg et al. (N. Stenberg, Fellers, and Östlund 2001) also showed that the in-plane 
deformation during compression with thickness is negligible. Therefore, the Poisson's ratios γxz 
and νyz are close to zero. 

Paper exhibits anisotropic properties. In this study, we use the Isotropic Plasticity Equivalent 
model (IPE) to describe the behavior of paper (Mäkelä and Östlund 2003). The orthotropic 
elasticity behavior in-plane stresses is defined by: 
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The yield criterion was formulated by Mäkelä and Östlund (2003) as:  
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where σy is the plasticity threshold, 
p
eqε

 is the equivalent plastic strain, E0 and n are the stiffness 
modulus and stiffness exponent, respectively, {𝑠𝑠} is the deviatoric stress row vector defined in 
Eq. (3), and 〈𝑠𝑠〉 is its transpose (〈𝑠𝑠〉 = {𝑠𝑠}𝑇𝑇). 

The deviatoric stresses vector and the IPE plasticity criterion are given by: 
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where L is a fourth-order invariant transformation tensor and it satisfies the symmetry conditions; 
a, b, c, d, and n describe the anisotropy of the material which can be identified from the 
experimental traction curves (see next section). This model will be implemented in the 
Abaqus/Explicit software using the VUMAT user subroutine. 

3. Inverse method 

The mechanical behavior of materials is expressed through the relationship between force vs 
displacement or stress vs strain obtained after performing tensile tests. Therefore, the graphs 
representing these relationships are often used to determine the values of parameters 
corresponding to each material behavior model. Based on the definition of “curve fitting” by Piegl 
(1988), inverse identification methods have been used to determine the system parameters that 
cannot be measured directly. In contrast, the values of these parameters directly affect the model 
output. Many techniques have been proposed to solve inverse problems. 

For material behavior modeling, the quantitative values of parameters in the material model 
are difficult to determine directly from experiments. The proposed method is developed by 
iteratively minimizing the deviation between the experimentally measured quantities and the 
numerically calculated quantities. The objective function used is a least-squares scalar function 
consisting of the difference between the numerical calculation and the experimental measurement 
of the force-displacement curve as shown in expression (4): 

 ( ) ( )( )2
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Where N is the number of data sets, Unum and Uexp are the numerical and experimental 
displacement, and Fnum and Fexp are the tensile forces determined by numerical simulation and 
measured experimentally, respectively. The flowchart of the identification process is shown in 
Fig. 3. The main steps in the process of determining the parameters of the IPE model for the 
materials used in this study: 

3.1 Perform experiments 

In this section, tensile tests on the research material will be conducted to determine the 
experimental data (force-displacement relationship data). 
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3.2 Finite element simulation of the tensile test 

Perform numerical simulations of the experiments conducted in the previous section. From there, 
the data needed for the inverse determination process will be determined. 

3.3 Select optimization algorithm 

There are many optimization algorithms in use today. The genetic algorithm (GA), based on the 
principles of genetics and natural selection, allows a population of individuals to evolve according 
to specific selection rules to a state that minimizes the cost function by finding a local minimum. 
Therefore, several multi-objective evolutionary algorithms based on GA have been developed 
such as Multi-Objective Genetic Algorithm (MOGA), Pareto Niche Genetic Algorithm (NPGA), 
Weighted Genetic Algorithm (WBGA), Randomly Weighted Genetic Algorithm (RWGA), etc. 
Among them, MOGA-II is an improved version of MOGA, which was proposed by Poloni et al 
(Poloni et al. 2000). Research by Saha and Bandyopadhyay (2013) has shown that MOGA-II uses 
intelligent multi-objective search to achieve efficiency and directional intervention to achieve fast 
convergence. Compared with other algorithms, the advantages of MOGA-II are good stability, 
low sensitivity to termination at local extrema, and adaptability to nonlinear problems. MOGA-
II requires very few user-supplied parameters, and some other parameters are interpolated to 
improve the efficiency of the optimization process. In particular, the convergence speed is fast. 
Therefore, the MOGA-II algorithm is used in this study. 

In addition, the numerical optimization process is performed in the ModeFRONTIER 4.0 
software. ModeFRONTIER is a multi-objective design and optimization environment, written to 
easily combine CAD/CAE tools and finite element structural analysis. Many standard or 
advanced optimization algorithms exist. They can be used depending on the complexity of the 
problem to be solved. The general procedure for inverse determination of parameters in 
modeFrontier is shown in Figure 4. 

 
Fig. 3. Identification method by the inverse method 
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Fig. 4. General procedure for determining parameters 

3.4 The optimization process to determine the IPE model parameters  

Main tasks in this step: 

• Select and extract test data of the force-displacement curve; 

• Simulate tensile test in three directions using ABAQUS software; 

• Extract force and displacement values from the ODB file (Abaqus) using Python script; 

• Evaluate the objective function given in equation (4); 

• Update the set of constitutive parameters using the MOGA-II genetic algorithm; 

• Determine the set of material parameters for the optimal solution. 

4. Results and discussion 

The proposed inverse determination procedure is used to determine the parameters in the IPE 
model for paper material. The determined parameters will be fed into a numerical simulation 
model of a compressed carton box. The obtained results will be compared with experimental 
results to evaluate the reliability of the proposed identification procedure. 

4.1. Experiment 

To separate the paper layers from the corrugated core cardboard, the cardboard sheets are soaked 
in water to allow the paper layers to peel off. The flat sheets are then kept at 23°C and 50% 
relative humidity (RH) for several days to allow the paper to dry. The specimens used for tensile 
testing are designed with the shape and size shown in Figure 5. The paper specimens are cut in 
three directions: MD, CD, and 45° for each paper layer (Fig.6 and Fig.7). To ensure the clamping 
jaws grip more firmly when placing the specimen, cardboard pieces are glued to the two sides of 
the two ends of the tensile specimen. The tensile test results of paper specimens are presented as 
force-displacement curves as shown in Figs. 8 and 9. 
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Fig. 5. The dimensions of the tensile test specimen 

 
Fig. 6. Tensile specimens of papers 1 and 3 

 
Fig .7. Tensile specimens of paper 2 



Journal of the Serbian Society for Computational Mechanics / Vol. 18 / No. 2, 2024 
 

 

103 

 
Fig. 8. Force vs displacement relationship of paper specimens 1 and 3 

 
Fig. 9. Force vs displacement relationship of paper specimen 2 

4.2. Finite element simulation of the tensile test 

Finite element simulations of the tensile tests of paper specimens were performed using Abaqus 
software. The FEM model size of the simulated specimen was taken the same as the tensile 
specimen size in the tensile test in the previous section. The selection of the element size in the 
FEM model should be based on the balance between the computation time and the accuracy of 
the model. Therefore, the specimen was discretized using 1038 four-node linear quadrilateral 
elements (S4R), and the element size was 1mm (Fig. 10). Furthermore, based on the experimental 
conditions, all simulations were performed under the same conditions as the tensile test. In 
addition, the FEM model of the simulated specimen considered material nonlinearity and 
geometric nonlinearity. Numerical simulations were performed on a computer with Intel Xeon 
Dell Precision T7810 E5-2667 v3 CPU (3.20 GHz), 32 GB RAM. 
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Fig. 10. Mesh and boundary conditions of tensile specimen 

4.3. The optimization process 

During the optimization process, the boundaries of eleven design variables are provided in Tables 
2 and 3. A number of the initial design of experiments (DOE) was set to 12 designs by the Sobol 
algorithm, and the number of generations was set to 200. 
 

Design variables Ex (MPa) Ey (MPa) νxy Gxy (MPa) E0 

Lower bound 2000 500 0.05 500 50 

Upper bound 3000 1500 0.4 1500 650 

Table 2. Boundaries of design variables (elastic properties) in IPE’s model 

Design variables n A B C D ε0 

Lower bound 1.5 1 1 1 1 0.001 

Upper bound 5 1 3 3 3 0.02 

Table 3. Boundaries of design variables (plastic properties) in IPE’s model 

At the end of the reverse identification process, the results are shown in Figs. 11 and 12. 
Figure 11 shows that the parameter values of the IPE model accurately describe the paper 
behavior and a good agreement is observed between the experimental force-displacement curve 
and the finite element prediction. In Figure 12, there is a difference between the simulation results 
and the experimental results. This is the graph of the corrugated core layer when pressed flat to 
create tensile test samples in MD, CD, and 450 directions, causing the material's mechanical 
properties to change at the bending position of the paper. This leads to differences between 
simulation and experimental results, especially in the MD direction. On the other hand, in the 
corrugated board structure, the corrugated core does not undergo tension in the MD direction. 
Therefore, the error for the core board is acceptable. The parameter values obtained are shown in 
Tables 4 and 5, respectively. To check the accuracy of the determined material parameter values, 
a carton compression test was conducted. The box has dimensions as shown in Figure 13. 
Compression tests were performed on an INSTRON 4204 machine with a load of 5 kN (Fig.14). 
At the same time, a numerical simulation of carton compression test was also conducted. The 
finite element model uses the material parameters in Tables 4 and 5. Note that the plastic behavior 
model of paper is not available in finite element analysis software. Therefore, it is necessary to 
build a subroutine VUMAT to implement the IPE model in Abaqus software as in the studies of 
Tien et al (2024), Tien et al (2023), and Luong et al. (2023) comparing the experimental results 
and numerical simulations obtained in Figure 15. Note that when performing the carton 
compression test, the carton panels are compressed and folded. When the boxes are compressed, 
the cardboard sheets are compressed and folded differently in each test. This leads to the curves 
not matching between compression tests. However, this deviation is within acceptable limits. 
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Figure 15 shows that there is good agreement between the experimental curve and the numerical 
simulation. This proves that the material parameter values in the IPE model determined by the 
proposed method are accurate and reliable. 

 
Fig. 11. Experimental and numerical simulation curves of papers 1 and 3 

 
Fig. 12. Experimental curve and numerical simulation of paper 2 

Paper layer Ex (MPa) Ey (MPa) νxy Gxy (MPa) E0 

1,3 2350.2 879.91 0.0829 1047.2 91.45 

2 1120.4 615.85 0.0717 301.05 80.31 

Table 4. Elastic properties of the paper 



D. L. Tien and V. D. Luong: Inverse Identification Method of Plasticity Parameters of Anisotropic... 

 

106 

Paper layer n A B C D ε0 

1,3 3.807 1.0 2.136 2.136 1.422 0.48e-3 

2 3.047 1.0 2.718 2.136 1.571 0.92e-3 

Table 5. Plastic properties of the paper 

 
Fig.13. Dimensions of the compression box (all dimensions are in mm) 

 
Fig.14. Experiment setup on INSTRON 4204 compression testing machine 
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Fig.15. Comparison between experimental and numerical compression curves of carton box 

5. Conclusions 

This study proposed and developed an inverse procedure to determine the parameters in the paper 
material behavior model. This helps to improve the accuracy of numerical simulation of the 
material mechanical properties. The proposed procedure, which combines analysis and evaluation 
of experimental data and numerical simulation, has determined the important parameters in the 
plastic behavior model of paper materials. The parameters in the IPE model of the paper that have 
been determined are applied to simulate the compression carton box. A comparison of the 
obtained numerical curve with the experimental curve shows a good agreement. The research 
results show that the proposed procedure can determine accurate and reliable parameter values, 
thereby helping to optimize the simulation model. This procedure can be applied to other 
anisotropic and isotropic materials by modifying the material behavior model during the 
numerical simulation step of the inverse determination process. This study makes an important 
contribution to the design of packaging and industrial paper products. However, there are still 
some limitations such as not considering the impact of environmental factors such as humidity 
and temperature on the accuracy of the model. The results of this study provide a solid basis for 
further research to address remaining issues. 
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