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Abstract 

Lie derivative plays a key role in mathematics and physics. In particular, the Lie derivative 
discretization scheme has been implemented for a relatively large time step in order to quickly 
solve the numerical solution of the system. In this paper, an algorithm of the Lie derivative 
discretization scheme is applied to variable mass systems. Four different types of variable mass 
systems are employed to study the numerical solutions, and the calculated results are consistent 
with those obtained by the fourth-order Runge-Kutta method. Computational experiments 
demonstrate the success of the proposed method on variable mass systems. Moreover, the 
algorithm of Lie derivative discretization is shown to have superior computational efficiency and 
larger time steps compared to the Runge-Kutta algorithm. 

Keywords: variable mass, Lie derivative, discretization, high efficiency, large time step. 

1. Introduction 

Traditional system dynamics often assume that the system's mass is constant, but in practical 
application, there are many cases where mass is varying (Cveticanin 2016; Cao et al. 2023). 
Therefore, to describe and analyze the dynamic behavior of this kind of system more accurately, 
it is necessary to introduce the concept of a variable mass system. The study of variable mass 
systems has become a prominent area. The development of variable mass systems has been 
comprehensively and thoroughly reviewed (Irschik and Holl 2004; Cveticanin 2012). In the 
specific research within this field, investigations into the dynamic buckling phenomena of 
variable mass systems have been carried out (Cveticanin 2001), and detailed research and analysis 
have also been conducted on the vibration characteristics of linear variable mass single-degree-
of-freedom systems (Flores et al. 2003). In the realm of equation formulation, a general governing 
equation has been successfully proffered by merging two independent equations that are typically 
employed to delineate single-degree-of-freedom free vibration systems with varying parameters 
(Nhleko 2009). Additionally, the generation of the motion control equation constitutes one of the 
notable achievements of the research (Hurtado 2018). Concurrently, extensive deliberations have 
also been conducted on effective methods for describing the dynamic behavior of time-varying 
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mass systems (Chen et al. 2024). Typically, obtaining precise solutions for differential equations 
with coefficients that change with time is challenging. Therefore, to get high-precision results, 
many numerical methods are usually used to find numerical solutions. 

Researchers often use the algorithm of Lie discretization to solve simultaneous equations. It 
has superiority because it preserves the original equations' stationary points and covers large time 
steps. The truncated Lie derivative expansion scheme was proposed based on the original 
equation (Monaco and Normand-Cyrot 1990). It was verified through research that the derivative 
scheme of Lie retains the original fixed point (Mendes and Billings 2002), and it was also found 
that some solutions of the Lie derivative discretization method are topologically equivalent to the 
original system (Mendes and Letellier 2004). Regarding the Lie derivative discretization 
algorithm, research on chaotic behavior has been carried out (Letellier et al. 2007). Meanwhile, 
the discretization technology based on Taylor-Lee was proposed (Meena and Janardhanan 2018). 
In addition, a new approach was constructed through infinite computer arithmetic to calculate the 
Lie derivative of functions that cannot be expressed analytically (Iavernaro et al. 2021). 
Furthermore, in specific contexts such as in slow excitation shape memory oscillators, the Lie 
derivative algorithm was used to validate the outcomes of the Runge-Kutta method (Zhang et al. 
2022). In the field of fluid mechanics, the Lie derivative was applied, and some conservation 
properties were obtained (Gouin 2023). The discretization scheme of the Lie derivative 
mentioned above mainly aims at mass invariant systems. But, for mass variable systems, the 
report is scarce. To address this issue, this paper studies the discretization algorithm of the Lie 
derivative for dynamical systems with variable mass. Section 2 provides the discretization 
algorithm for the Lie derivative of nonautonomous nonlinear systems. In the third section, the Lie 
derivative discretization algorithm is applied to four types of variable-mass systems, and the 
calculation results are compared with those of the traditional classical fourth-order Runge-Kutta 
algorithm. The fourth section is the conclusion of this paper. 

2. Lie derivative discretization of mass-variable systems 

We consider the forced vibration of a nonlinear oscillator with varying mass and the general 
model of the governing equation as: 

 ( ) ( ) cos( )mx m u x cx q x f tω− − + + =     (1) 

where variable mass 0 (1 )m m tα= +  is a time-varying function, 0m  is an initial constant mass, 
α  is the coefficient of continual mass variation, x  is the displacement response of the system, 
c  is the damping coefficient, u  is the velocity after the mass change, ( )q x  is a conservative 
restoring force, ω  is the external excitation frequency and f  is the external excitation 
amplitude. 

Eq. (1) can be written as the general form: 

 ( , )t=x g x  (2) 

where 1 2[ , ]x x=x , 1x x= , 2x x=  , then 1 2( , )g t x=x , 2
( ) ( ) cos( )( , ) m u x cx q x f tg t

m
ω− − − +

=x
  

. 

The mass-variable system (1) is generally a nonlinear equation with variable coefficients, so 
it is difficult to find the analytical solution. Thus, it is an effective approach to find the numerical 
solution. In order to obtain the numerical solutions, we will use the discretization scheme based 
on a Lie expansion of Eq. (2), which can be written as 
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where h  represents the time size, and η  represents the truncation order. The expression for the 
Lie derivative is 

 
1

( , ) ( , )
m

k k j k k
j j

L t g t
x=

∂
=

∂∑g
xx x  （4） 

where jg represents the j th component function of g . The high-order Lie derivative can be 
expressed as 

 1( , ) ( ( , ))n n
k k k kL t L L t−=g g gx x  （5） 

3. Numerical experiments 

In order to express the excellent efficiency of the Lie derivative discretization scheme to several 
nonlinear oscillators with varying mass, we choose the traditional classical fourth-order Runge-
Kutta algorithm for comparison to check the efficiency of the proposed method. Four oscillators 
with varying mass are carried out to show the efficiency of the new proposed scheme. 

3.1 Variable mass monostable nonlinear oscillator 

Firstly, a variable mass monostable nonlinear oscillator is introduced, and the motion equation is 

 3
0 0(1 ) ( ) ( ) ( ) ( ) ( ) cos( )m t x t m c x t x t x t f wtα α+ + + + + =   （6） 

with the initial conditions 0 0(0) , (0)x s x v= =

.
 

The discretization formula of the Lie derivative is applied to the Eq. (6), and its second-order 
discretization can be expressed as 
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Fig. 1 shows the restoring force and potential energy function curves of the system (6). As 
can be seen from Fig. 1(a), when the restoring force is equal to 0, the function has only one 
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solution at 0x = . It is evident from Fig. 1(b) that the corresponding potential energy has a 
minimum value only at 0x = , so this point is stable and the potential has a single well, then the 
system is monostable. 

 
Fig. 1. The restoring force function curve (a) and the potential energy function curve (b) of the 
variable mass monostable nonlinear oscillator (The red dot indicates a stable static equilibrium 

point). 

Fig. 2 shows the displacement response, 3D waveform, and phase diagram under three 
different excitation conditions, in which the blue line is the calculation result of the Lie derivative 
numerical algorithm and the red point is the result of the Runge-Kutta fourth-order algorithm. 
The fixed time step is 0.01. It is clear from the comparison diagram that the numerical results of 
the Lie derivative discretization algorithm are consistent with those of the fourth-order Runge-
Kutta algorithm. Meanwhile, Table 1 displays the computational cost. As it can be seen from the 
table, when the time steps are the same, the calculation time can be significantly shortened by 
applying the Lie derivative algorithm, and the calculation efficiency can be improved to 93.7%. 
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Fig. 2. The displacement response, 3D diagram, and phase diagram of the variable mass 

monostable nonlinear oscillator for (a, d, g) where 0.6,ω = 0.01,f = , (b, e, h) where 
1, 0.01fω = = , (c, f, i) where 1.3, 0.01fω = =  (The blue line is the calculation result of the Lie 

derivative algorithm, and the red point is the calculation result of the Runge-Kutta fourth-order 
algorithm). 

Fig. 3 compares the fourth-order Runge-Kutta algorithm (step size of 0.01) with the Lie 
derivative numerical algorithm (step size of 0.1). From the comparison diagram, we can see that 
the discretization algorithm of the Lie derivative has a satisfactory solution, and the calculation 
results of the two algorithms are in good agreement. 
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Fig. 3. The displacement response, 3D diagram, and phase diagram of the variable mass 

monostable nonlinear oscillator for (a, d, g) where 0.6, 0.01fω = = , (b, e, h) where 1, 0.01fω = = , 
(c, f, i) where 1.3, 0.01fω = =  (The blue line is the calculation result of the Lie derivative 

algorithm, and the red point is the calculation result of the fourth-order Runge-Kutta algorithm). 

Fig. 

Method 
Fig.2(a) Fig.2(b) Fig.2(c) 

Lie 0.1562 0.1286 0.1178 

Ode45 1.8325 1.8407 1.8687 

Table 1. The computational cost of the two numerical schemes from the system (6) 

3.2 Variable mass symmetric bistable nonlinear oscillator 

Secondly, the variable mass symmetric bistable nonlinear oscillator is introduced, and the 
governing equation is 

 3
0 0(1 ) ( ) ( ) ( ) ( ) ( ) cos( )m t x t m c x t x t x t f wtα α+ + + − + =   （8） 

The discretization formula of the Lie derivative is applied to Eq. (8) of the variable mass 
symmetric bistable nonlinear oscillator, and its second-order discretization can be employed as 
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Fig. 4 shows the restoring force and potential energy function curves. Fig. 4(a) displays that 
the function has three solutions when the restoring point is 0. Fig. 4(b) demonstrates the potential 
energy has double wells, in which the energy in the two external equilibrium points is the 
minimum and the potential energy of the middle equilibrium point is the maximum value. 

 
Fig. 4. The restoring force function curve (a) and the potential energy function curve (b) of the 

variable mass symmetric bistable nonlinear oscillator. (Red dots represent unstable static 
equilibrium points, and yellow dots represent stable static equilibrium points.) 

Fig. 5 displays the displacement response, 3D diagram and phase diagram under three 
different excitation conditions with a step size of 0.01. From Fig. 5, we can see that the results of 
the two algorithms are in good agreement under the fixed step size. In addition, the calculation 
time in Table 2 shows that the Lie derivative algorithm is efficient at the same time step. 
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Fig. 5. The displacement response, 3D diagram, and phase diagram of the variable mass 

symmetric bistable nonlinear oscillator for (a, d, g) where 1 2fω = =， , (b, e, h) 1.2 2fω = =， , 
(c, f, i) where 1.5 2fω = =，  (The blue line is the calculation result of the Lie derivative 

algorithm, and the red point is the calculation result of the Runge-Kutta algorithm) 

Fig. 6 describes the numerical results of these two algorithms in different step sizes, where 
the step size of Lie derivative discretization is 0.1, while the size of the Runge-Kutta algorithm 
has remained the same. It can be observed that the results of the two numerical algorithms with 
different step sizes are consistent, which further shows that the Lie derivative discretization 
algorithm has the characteristics of large step size. It demonstrates that the Lie derivative 
discretization algorithm has the ability to handle more extended step sizes. 
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Fig. 6. The displacement response, 3D diagram, and phase diagram of the variable mass 

symmetric bistable nonlinear oscillator for (a, d, g) where 1 2fω = =， , (b, e, h) where 
1.2 2fω = =， , (c, f, i) where 1.5 2fω = =，  (The blue line is the calculation result of the Lie 

derivative algorithm, and the red point is the calculation result of the Runge-Kutta algorithm). 

Fig. 

Method 
Fig.5(a) Fig.5(b) Fig.5(c) 

Lie 0.1223 0.1450 0.1277 

Ode45 1.8910 1.8537 2.0758 

Table 2. The computational cost of the two numerical schemes from the system (8) 

3.3 Variable mass asymmetric bistable nonlinear oscillator 

In order to understand the numerical behavior of the proposed schemes, an asymmetric bistable 
nonlinear oscillator with variable mass is provided as 

 2 3
0 0(1 ) ( ) ( ) ( ) ( ) ( ) ( ) cos( )m t x t m c x t x t x t x t f wtα α+ + + − + + =   （10） 

Similarly, the second-order discretization can be derived 
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In a similar way to plot the restoring force and potential energy function curves, it can be 
confirmed from Fig. 7 that the system is asymmetric and bistable. 

 
Fig. 7. The restoring force function curve (a) and the potential energy function curve (b) of the 

variable mass asymmetric bistable nonlinear oscillator. (Red dots represent unstable static 
equilibrium points, and yellow dots represent stable static equilibrium points.) 

Fig. 8 compares the Lie derivative numerical algorithm and the fourth-order Runge-Kutta 
algorithm with a step size of 0.01. The contrast diagram verifies the correctness of the 
discretization algorithm of the Lie derivative. In addition, it can be seen from Table 3 that using 
the Lie derivative discretization algorithm can shorten the calculation time and improve the 
calculation efficiency. 



Journal of the Serbian Society for Computational Mechanics / Vol. 18 / No. 2, 2024 
 

 

43 

 
Fig. 8. The displacement response, 3D diagram, and phase diagram of the variable mass 
asymmetric bistable nonlinear oscillator for (a, d, g) where 1.2, 1fω = = , (b, e, h) where 

1.5, 1fω = = , (c, f, i) where 1.7, 1fω = =  (The blue line is the calculation result of the Lie 
derivative algorithm, and the red point is the calculation result of the Runge-Kutta algorithm). 

Fig. 9 presents the dynamical response of the Lie derivative algorithm and the Runge-Kutta 
methods, in which the step size of the Lie derivative scheme is 0.1, and the step size of the Runge-
Kutta algorithm is 0.01. From the comparison, it can be concluded that when the step size of the 
Lie derivative discretization numerical algorithm increases, the calculation results can still get 
desirable solutions, which proves that it has the characteristics of a large step size. 
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Fig. 9. The displacement response, 3D diagram, and phase diagram of the variable mass 
asymmetric bistable nonlinear oscillator for (a, d, g) where 1.2, 1fω = = , (b, e, h) where 

1.5, 1fω = = , (c, f, i) where 1.7, 1fω = =  (The blue line is the calculation result of the Lie 
derivative algorithm, and the red point is the calculation result of the Runge-Kutta algorithm). 

Fig. 

Method 
Fig.8(a) Fig.8(b) Fig.8(c) 

Lie 0.1309 0.1333 0.1336 

Ode45 1.9739 1.9862 1.9963 

Table 3. The computational cost of the two numerical schemes from the system (10) 

3.4 Variable Mass Linear Oscillator 

Finally, a variable mass linear oscillator is examined, and its control equation is given by 

 0 0(1 ) ( ) ( ) ( ) ( ) cos( )m t x t m c x t x t f wtα α+ + + + =   （12） 

With the help of formula (3), the discrete iteration formulas are given by 
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where, 
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We plot the dynamical responses of the variable mass linear oscillator with 0.01h = for both 
the Lie derivative algorithm and the Runge-Kutta methods in Fig. 10, which indicates that the 
outcome of the Lie derivative discretization algorithm is consistent with those of the Runge-Kutta 
algorithm. In addition, it can be seen from Table 4 that the computation time of the Lie derivative 
discretization algorithm is significantly shortened, which proves that the algorithm is efficient. 

 
Fig. 10. The displacement response, 3D diagram, and phase diagram of the variable mass linear 

oscillator for (a, d, g) where 0.5, 0.8fω = = , (b, e, h) where 0.8, 0.8fω = = , (c, f, i) where 
1, 0.8fω = =  (The blue line is the calculation result of the Lie derivative algorithm, and the red 

point is the calculation result of the Runge-Kutta algorithm). 

Meanwhile, we also plot the response curves with different time steps for these two methods 
in Fig. 11, where the time step of Lie derivative discretization is assigned as 0.1, while the Runge-
Kutta algorithm is 0.01. It can be found that both these schemes produce similar outcomes. It 
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demonstrates that the Lie derivative discretization algorithm possesses the qualities of a long 
stage. 

 
Fig. 11. The displacement response, 3D diagram, and phase diagram of the variable mass linear 

oscillator for (a, d, g) where 0.5, 0.8fω = = , (b, e, h) where 0.8, 0.8fω = = , (c, f, i) where 
1, 0.8fω = =  (The blue line is the calculation result of the Lie derivative algorithm, and the red 

point is the calculation result of the fourth-order Runge-Kutta algorithm). 

Fig. 

Method 
Fig.10(a) Fig.10(b) Fig.10(c) 

Lie 0.0620 0.0625 0.0636 

Ode45 1.7836 1.9172 1.7824 

Table 4. The computational cost of the two numerical schemes from the system (12) 

4. Conclusions 

This paper extends an algorithm for variable mass systems by using Lie derivative expansion. 
Four variable mass oscillators were taken as numerical experiments to evaluate the efficiency and 
precision of the proposed methods. The accuracy of the Lie derivative discretization algorithm is 
verified by comparing with the fourth-order Runge-Kutta method. The time history curves and 
the phase portraits are plotted, and the computational cost of the CPU is remarked. The numerical 
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calculations demonstrate the remarkable efficiency of the Lie derivative discretization algorithm 
for solving variable mass systems. It is also found that the algorithm can get consistent solutions 
under a large time step, which proves that the Lie derivative discretization algorithm has the merit 
of short calculation time. 
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