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Abstract 

Hypertrophic cardiomyopathy is one of the most prominent cardiovascular diseases, with almost 
1 in 500 people suffering from it. It is of great importance for this disease to be detected in a 
timely manner, so that patients can be provided with an adequate therapy. This is also important 
for monitoring the future development of the disease so that those patients under a high risk of 
sudden cardiac death can be provided with lifesaving implantable cardioverter-defibrillators. 
Regression models were created for the purpose of this paper using the random forest regression 
algorithm to monitor the future states of patients based on their previously known parameters. 
Regression models were built by maximizing R2 score for important patient parameters. The 
training of classification models was done using the random forest and extreme gradient boosted 
trees algorithms for the purposes of risk prediction. The classification models achieved 96% and 
99% F1 score over the high-risk class respectively and 99% prediction accuracy overall. 

Keywords: hypertrophic cardiomyopathy, extreme gradient boosted trees, random forest, risk 
prediction, risk classification. 

1. Introduction

Cardiomyopathy is a generalized name for heart diseases where the walls of the heart muscle are 
deformed i.e. thickened, stretched or stiffened. Hypertrophic cardiomyopathy (HCM) is a genetic 
disorder, characterized by the hypertrophy of the left ventricle, which cannot be attributed to 
secondary sources (Marian and Braunwald, 2017). Left ventricle hypertrophy, that is, the 
thickened walls of the left ventricle significantly reduce the volume of the atrium and thus the 
amount of blood the atrium can receive (Keren, Syrris and McKenna, 2008). Thickened walls 
cannot relax completely, so they become stiffer and more rigid over time. These heart muscle 
deformations impact the main flow of blood and cause obstructions (Marian and Braunwald, 
2017). 

In the majority of cases, HCM has a stable course over the years without any major signs of 
heart failure (HF) (Marian and Braunwald, 2017). However, in some cases, most prominently in 
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cases in which young adults and adolescents are affected, HCM can be a cause of sudden cardiac 
death (SCD) Major risk factors of SCD include manifestations of non-sustained ventricular 
tachycardia, syncope and severe cases of cardiac hypertrophy (Katritsis, Zareba and Camm, 
2012). Family history of SCD is also an important indicator that should be consulted for SCD 
prevention purposes. 

High-risk patients cannot be provided optimal protection through only the application of 
pharmacological therapy, and instead need to receive an implantable cardioverter-defibrillator 
(ICD) (Gersh et al. 2011). An implantable cardioverter-defibrillator is a device that requires a 
surgical operation to be implanted subdermally, whose purpose is to monitor the heart rhythm. 
The device has two electrodes that are introduced into the heart through the right atrium. Through 
these electrodes, the ICD can deliver a strong electric shock if it detects a faster than normal 
heartbeat or a series of small electrical shocks if it detects a slower than normal heartbeat, 
restoring the heart rhythm to a normal pace (heart.org, 2016). Since ICD requires a surgical 
procedure in order to be implanted and it is permanent, it is of great importance that the ICD is 
implanted only in patients that are under a lot of danger of dying from complications caused by 
arrhythmias.  

 Nevertheless, pharmacological therapy plays its own important role in improving patient 
quality of life and reducing the risk of further health complications (Ammirati et al. 2016). 
Pharmacological therapy in HCM is primarily tasked with the control of symptoms, dynamic 
intraventricular gradient reduction, keeping atrial fibrillation and ventricular arrhythmias in check 
and preventing cardioembolism (Ammirati et al. 2016). 

When assessing cardiomyopathy risk, patient’s genetic and clinical features need to be 
evaluated dynamically, and risk stratification needs to be conducted over a longer period of time. 
With regard to SCD, based on international guidelines, the high-risk status of a patient has been 
defined in multiple ways over the years (Christiaans et al. 2010). 

Several studies were conducted with the goal of finding the best risk stratification method 
for HCM patients. Smole et al. (2021) used very similar methodology to ours with a few minor 
differences. These methodologies differ in the way of utilizing available data for both processes 
of risk stratification and disease prediction. They achieved classification accuracy of 0.75 and f1 
score of 0.71. Kochav et al. (2021) created random forest and gradient boosted decision tree 
models for risk stratification purposes; however, they concentrated on patients’ event data rather 
than genetic and clinical data. Their evaluation showed the values of 0.88 for sensitivity and 0.84 
for specificity metrics. A study was conducted by Augusto et al. (2021) in which left ventricular 
maximum wall thickness (MWT) was used as the primary feature for risk stratification. Aurore 
et al. (2018) used mathematical models combined with clustering methods to divide patients into 
four distinct risk classes. They used the data gathered from HCM patients as well as the data 
gathered from healthy volunteers for comparison. These data were comprised of genetic data, 
clinical findings of ECG along with CMR images and extracted T and QRS biomarkers. Tse et 
al. (2020) used a multilayer perceptron approach to predict the risk of incidents of atrial 
fibrillation and stroke. Although this study was aimed at predicting heart failure in general, atrial 
fibrillation prediction can be used for risk stratification of patients with HCM in cases of 
tachycardia induced cardiomyopathy. Their multilayer perceptron approach yielded results with 
an f1 score value of 0.88 when assessing incidental atrial fibrillation and 0.87 when assessing 
transient ischemic attack and stroke, with an f1 score value of 0.89 for all-cause mortality. Wasan 
et al. (2013) worked on a study which compared machine learning approaches with classical 
statistical approaches to solve risk stratification problems in predicting heritable arrhythmias. 

Although there were several aforementioned studies that deal with implementing patient risk 
stratification models through the use of machine learning algorithms, most of these models 
predict the current state of the disease exclusively. Knowledge of the way the disease would be 
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progressing over time could give doctors a better idea of which therapy should be administered 
to the patient and at which time. Therefore, we propose a methodology based on machine learning 
not only to classify patients based on the current state of the disease, but also to predict the future 
progression of the disease. 

2. Materials and methods 

This part of the paper contains information on the dataset and all steps taken in the process of 
data preprocessing and the methodology used for data labeling, classification of patients into 
high-risk and low-risk classes and regression methods used for future prediction. A graphical 
representation of the methodology we used is shown in Fig. 1. 

 
Fig. 1. Schematic representation of ML methodology for risk stratification and disease 

prediction. 

2.1. Dataset overview 

Our dataset is comprised of 3 distinct subsets of data. The first subset contains patients’ personal, 
clinical and genetic data. These data are gathered from doctor checkups where certain tests are 
performed. Genetic data are gathered through a blood examination during which the DNA is 
isolated and certain genes are checked for mutations. During the genetic test, only the genes that 
are most commonly associated with the development of different types of cardiomyopathies are 
examined (Columbia cardiology, n.d.). The most common genes associated with HCM are the 
beta-myosin heavy chain (MYH7) and myosin binding protein C (MYBPC3), which are present 
in more than 50% of HCM patients (Cahill and Watkins, 2013). Other genes usually tied to HCM 
are cardiac troponin T (TNNT2), cardiac troponin I (TNNI3), essential myosin light chain 
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(MYL3), cardiac actin (ACTC1), alpha-tropomyosin (TPM1) and regulatory myosin light chain 
(MYL2) (Cahill and Watkins, 2013). 

For the collection of clinical data, echocardiography and the tissue Doppler tests were used. 
Echocardiography was used for the purposes of collecting data regarding the heart rhythm and 
heart muscle shapes. Data required for heart rhythm assessment is gathered from ECG waves and 
contains information on the length of the P wave, length of the QRS complex and distances 
between the end of the P wave and the start of the QRS complex and the start of the QRS complex 
and the T wave end. Data regarding heart muscle shape that can be gathered through 
echocardiography include intraventricular septum thickness (IVS), posterior wall thickness (PW), 
left ventricular internal diameter end systole (LVIDs), and at end diastole (LVIDd), left ventricle 
volume end systole (LVESV) and end diastole (LVEDV). Tissue Doppler test or ultrasound was 
used for uncovering obstructions of heart valvulae and anomalies in blood circulation. The most 
important information gained during the tissue Doppler test was the measure of left ventricular 
outflow tract obstruction (LVOTO) in states of provocation (LVOTO_provocation) and rest 
(LVOTO_rest). All of the available data points and their descriptions are shown in Table 1. 
 

Name Description and possible range of values 
PersonID A unique ID number assigned to the patient 

The number can be any integer value 
Age Patient’s age 

An integer value between 10 and 90 
Gender Patient’s gender 

Categorical value [male/female] 
Primary_Diagnosis Primary diagnosis of the patient 

Categorical value [HCM/FAMILY_HISTORY_HCM/DCM/ 
FABRYS_DISEASE/ARVC/HYPERTENSIVE_CARDIOMYOPATHY/ 
CASO_GRIGIO/NO_CLINICAL_FINDING/OTHER] 

FHx_DCM Family history of dilated cardiomyopathy  
Binary value [1 if history of DCM exists, 0 otherwise] 

FHx_HCM Family history of hypertrophic cardiomyopathy 
Binary value [1 if history of HCM exists, 0 otherwise] 

FHx_SCD Family history of sudden cardiac death 
Binary value [1 if history of SCD exists, 0 otherwise] 

FHx_CAD Family history of coronary artery disease 
Binary value [1 if history of CAD exists, 0 otherwise] 

Alcohol Note of patient’s alcohol consumption  
Binary value [1 if consumption is present, 0 otherwise] 

Drug Note of patient’s drug consumption 
Binary value [1 if consumption is present, 0 otherwise] 

Pregnancy Note of the patient’s history of pregnancy 
Binary value[1 if history of pregnancy exists, 0 otherwise] 

Smoking Note of the patient’s smoking habits 
Binary value [1 if the habit exists, 0 otherwise] 

Gene_Testing_Performed Data point that indicates if genetic test were performed 
Binary value [1 if test were performed, 0 otherwise] 

Gene_Name_ACTC1 Indicates weather ACTC1 has mutations 
Binary value [1 if a mutation is present, 0 otherwise] 

Gene_Name_CSRP3 Indicates weather CSRP3 has mutations 
Binary value [1 if a mutation is present, 0 otherwise] 

Gene_Name_MYBPC3 Indicates weather MYBPC3 has mutations 
Binary value [1 if a mutation is present, 0 otherwise] 

Gene_Name_MYH7 Indicates weather MYH7 has mutations 
Binary value [1 if a mutation is present, 0 otherwise] 

Gene_Name_MYL2 Indicates weather MYL2 has mutations 
Binary value [1 if a mutation is present, 0 otherwise] 

Gene_Name_MYL3 Indicates weather MYL3 has mutations 
Binary value [1 if a mutation is present, 0 otherwise] 

Gene_Name_OTHER Indicates weather a mutation is discovered on a gene that is not usually 
regarded as a gene of interest 
Binary value [1 if a mutation is present, 0 otherwise] 

Gene_Name_PRKAG2 Indicates weather PRKAG2 has mutations 
Binary value [1 if a mutation is present, 0 otherwise] 
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Gene_Name_TNNI3 Indicates weather TNNI3 has mutations 
Binary value [1 if a mutation is present, 0 otherwise] 

Gene_Name_TNNT2 Indicates weather TNNT2 has mutations 
Binary value [1 if a mutation is present, 0 otherwise] 

Gene_Name_TPM1 Indicates weather TPM1 has mutations 
Binary value [1 if a mutation is present, 0 otherwise] 

Gene_Name_TTN Indicates weather TTN has mutations 
Binary value [1 if a mutation is present, 0 otherwise] 

Diagnosis__DIABETES Patient’s diagnosis of diabetes 
Binary value [1 if present, 0 otherwise] 

Diagnosis__DIABETES_TYPE_2 Patient’s diagnosis of type 2 diabetes 
Binary value [1 if present, 0 otherwise] 

Diagnosis__HYPERCHOLESTEROLEMIA Patient’s diagnosis of hypercholesterolemia 
Binary value [1 if present, 0 otherwise] 

Diagnosis__HYPERTENSION Patient’s diagnosis of hypertension 
Binary value [1 if present, 0 otherwise] 

Encounter_Date Data on which the checkup took place 
Date format: year-month-day 

Weight Patient’s weight in kilograms 
Numeric value between 40 and 180 

Height Patient’s height in centimeters  
Numeric value between 100 and 200 

BP_Systolic Value of blood pressure in systole 
Numeric value between 70 and 190 

BP_Diastolic Value of blood pressure in diastole 
Numeric value between 30 and 130 

NYHA New York heart association class 
Numeric value usually between 1 and 4, but can be greater (values above 
4 are viewed as if they were 4) 

BMI Patient’s body mass index  
Numeric value between 13 and 50 

BSA Bovine serum albumin  
Numeric value between 0.8 and 2.5 

ECG_Inverted_T_Waves Note of inverted T waves  
Binary value [1 if T waves are inverted, 0 otherwise] 

ECG_Pathological_Q_Waves Note of pathological Q waves 
Binary value [1 If Q waves are pathological, 0 otherwise] 

ECG_PR Distance between the end of P wave and the start of QRS complex 
Numeric value between 20 and 400 

ECG_QRS Length of the QRS complex 
Numeric value between 20 and 400 

ECG_QTc Distance between the start of QRS and end of T wave 
Numeric value between 50 and 1000 

ECG_Rate Distance between two consecutive R waves 
Numeric value between 30 and 100 

ECG_Rhythm Classification of the ECG response 
Categorical value [Sinus rhythm/Atrial Fibrillation/Paced/Other] 

ECG_P Length of the P wave 
Numeric value between 10 and 400 

Ech_Echo_IVS Intraventricular septum thickness 
Numeric value between 5 and 40 

Ech_Echo_PW Posterior wall thickness 
Numeric value between 5 and 30 

Ech_Echo_LA Left atrium diameter 
Numeric value between 15 and 80 

Ech_Echo_LA_Vol Left atrium volume 
Numeric value between 20 and 400 

Ech_Echo_Aortic_Root Aortic root diameter 
Numeric value between 20 and 50 

Ech_Echo_LVEDV Left ventricular volume end diastole 
Numeric value between 20 and 300 

Ech_Echo_LVEF Left ventricular ejection fraction 
Numeric value between 0 and 100 

Ech_Echo_LVESV Left ventricular volume end systole 
Numeric value between 10 and 230 

Ech_Echo_Max_LVT Left ventricular thrombus 
Numeric value between 5 and 40 
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Ech_Echo_Max_LVT_Loc Left ventricular thrombus location 
Categorical value [SEPTUM/POSTERIOR/MID_SEPTUM/ 
APICAL/FREE_WALL/CONCENTRIC/ANTERIOR/OTHER] 

Ech_Echo_LVIDd Left ventricular internal diameter (diastolic) 
Numeric value between 20 and 90 

Ech_Echo_LVIDs Left ventricular internal diameter (systolic) 
Numeric value between 15 and 70 

Ech_doppler_LVOTO_Provocation Left ventricular outflow tract obstruction in the state of provocation 
Numeric value between 4 and 180 

Ech_doppler_LVOTO_Rest Left ventricular outflow tract obstruction in the state of rest 
Numeric value between 3 and 150 

Ech_doppler_Mitral_Valve_AVel Mitral valve velocity A 
Numeric value between 15 and 180 

Ech_doppler_Mitral_Valve_E_DT E wave deceleration time 
Numeric value between 30 and 500 

Ech_doppler_Mitral_Valve_EVel Mitral valve velocity E 
Numeric value between 20 and 200 

Ech_tissuedoppler_ave_ea Average E/A ration 
Numeric value between 0.1 and 10 

Ech_doppler_obstruction Existence of obstruction 
Binary value [1 if an obstruction exists, 0 otherwise] 

Table 1. Complete dataset overview 

The main challenge within this data subset is that not all of the tests are performed at every 
examination, and that not all patients attended checkups when certain tests were performed. This 
led to missing data, but had to be replaced in other ways. This subset of data contains binary, 
categorical and numeric data, and these values were replaced in different ways. The missing data 
were transcribed from past or future values for the specific patient, where possible. In places 
where transcribing was not possible, missing data were filled out in one of three ways depending 
on the type of missing data. Categorical data were replaced by the most numerous categories. 
Binary data were replaced by choosing values of 1 or 0 so that the distribution stays the same as 
it was before data preprocessing, while also making sure that the new values are logically possible. 
Numerical missing data were replaced by the mean of the available values. Additionally, some 
rows of this subset needed to be dropped due to containing values of certain parameters that were 
not physically possible, and were presumed to be mistakes when the dataset was being created. 

The second data subset contains patients’ events and dates when those events occurred. This 
dataset contained information on patients’ history of syncope, which would later be used for risk 
prediction. The dataset also contained information on events marked as heart failure and sudden 
cardiac death, which were used to limit which patients’ data would be used for prediction of future 
parameter values for risk evaluation at 5 years. The third data subset contains data on medications 
prescribed to patients, but this dataset was not used in the final product, because all the relevant 
data could be gathered from the other two subsets. 

2.2. Data labeling 

The dataset, after preprocessing, contains 13386 data samples belonging to 3453 distinct patients 
of which 2178 are male and 1275 are female. These data can be used differently in the processes 
of risk stratification and the prediction of future values. For risk stratification, every row of the 
dataset can be interpreted as a possible state of a unique patient, because past values are not 
required. On the other hand, prediction of future values does require information on the past 
patient states, so this approach cannot be utilized. The available dataset does not contain class 
labels, therefore, the first step, after data preprocessing, is labeling every row of available data 
with a class value of 1 if the patient has a high risk of suffering SCD or 0 otherwise. 

It was shown that unsupervised learning was not helpful in grouping the instances. Clustering 
of the available data was tested using K-means, hierarchical clustering and Gaussian mixture 
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algorithms, since these algorithms allow the definition of the exact number of expected clusters. 
However, there is a big overlap between clusters, henceforth, it was crucial to find a different 
method of labeling data. 

Better results with data labeling were achieved when using instructions obtained from 
medical professionals. These instructions denote 9 conditions of which if 4 are true, the patient 
would be considered to belong to the high-risk class when attending a checkup. 
These conditions include:  

• the past diagnosis of syncope, 

• New York heart association (NYHA) class>3, 

• family history of SCD for patients under the age of 40, 

• interventricular septal (IVS) thickness or posterior wall (PW) thickness<30mm, 

• left atrium diameter>40mm, 

• ejection fraction lower than 50%, 

• left ventricular outflow tract pressure gradient (LVOT PG) in resting state>30mmHg, 

• N-terminal-pro hormone BNP (NT-proBNP) value greater than 900pg/ml and 

• the existence of atrial fibrillation (AF) in any form (Jordà and García-Álvarez, 2018). 

After using the proposed method, the results of data labeling show that there exists a large 
class imbalance. This imbalance needed to be accounted for when training classification models. 

2.3. Patient classification 

Once the data have been labeled, ML classification models can be trained. Since data clustering 
could not be applied on unlabeled data the use of kernel based methods like support vector 
classification is not recommended because of the underlying risk of underfitting the model or bad 
generalization properties. Deep learning is also not an option in this case, because of the small 
amount of available data. The main proposition is the use of tree-based ensemble classification 
models (Boulesteix et al. 2012). 

The first model was created using the random forest ensemble algorithm with default 
parameters. The second model is an extreme gradient boosted tree model created using the 
XGBoost library. We tested multiple approaches to training these classification models with 
different features. Namely, we tried training them with only genetic and only clinical data (Smole 
et al. 2021), however, training the models with both genetic and clinical data together yielded 
better results. After acquiring these results, tests were ran using scikit-learn and XGBoost inbuilt 
methods for determining the importance of all features used. Both models showed similar results 
for certain features, therefore, the final models were trained again using only those features which 
were graded highly by both methods of measuring importance. Both models have an inherent bias 
towards predicting the low-risk class, however, the models have great accuracy predicting the 
high-risk class as well, as shown in the results and discussions section. 

2.4. Disease prediction 

The proposed methodology for future prediction used regression models to predict the future 
values of certain parameters after which previously trained classification models are used to 
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predict future patient risk classes. Instructions received from doctors specify 6 parameters that 
should be monitored over time, in order to monitor progression of the disease. 
These parameters are: 

• NYHA class, 

• left atrium diameter, 

• left atrium volume,  

• left ventricular ejection fraction, 

• left ventricular internal diameter end systole and 

• left ventricular internal diameter end diastole. 

Random forest based regression models were trained by utilizing other patient clinical data, 
along with the previous values of proposed parameters. The criteria by which the training data 
for these regression models were chosen are based on the number of appearances of unique 
patients within the dataset. Namely, the patient needed to have at least two doctor visits during 
which the observed parameter was measured, not including imputed parameter values. 
Additionally, patients who were marked as having suffered a sudden cardiac death or heart failure 
in the event subset were not used for training due to the perceived impossibility of obtained future 
parameter values. Afterwards, the new data were compiled by transcribing patients’ old clinical 
data and feeding them into proper regression models. The amount of future data samples added 
into the future risk classification dataset was based on the average amount of time passed between 
checkups for those patients. Patients who had only a single recorded doctor visit always had 5 
new data samples added into the future disease classification dataset in one year increments. 
Patients who had suffered HF or SCD did not receive additional data samples in the future disease 
classification dataset because the predicted data could not be used in a productive manner. New 
data were classified, so that disease progression and the associated risk class could be monitored 
over time. 

3. Results and discussion 

In the scope of this study, we have developed multiple machine learning models for the purposes 
of risk classification and prediction of disease progression over the next 5 years. This part of the 
paper is dedicated to evaluating the acquired results as well as comparisons to previously 
conducted studies in the same field. 

3.1. Classification results 

The first goal of the paper was the classification of patients suffering from hypertrophic 
cardiomyopathy into high-risk and low-risk classes in terms of risk of SCD. Both of the proposed 
classification models have very good classification accuracy as shown in Fig. 2a for random forest 
and Fig. 2b for extreme gradient boosted decision tree. 



Journal of the Serbian Society for Computational Mechanics / Vol. 17 / No. 2, 2023 
 

 

161 

 
Fig. 2. Confusion matrix for (a) random forest classification model and (b) XGBoosted decision 

tree model. 

However, prediction accuracy is not a relevant evaluation metric for these models because 
of data imbalance. High-risk class is much smaller than the low-risk class so there may exist an 
inherent prediction bias towards the larger class. Also, it is imperative to predict the high-risk 
class correctly in as many cases as possible due to the consequences of incorrect prediction in 
these cases. Therefore, F1 score for the high-risk class was used as the main evaluation metric for 
our models. A complete overview of achieved classification sensitivity, specificity, precision, 
negative predictive value (NPV), F1 score and prediction accuracy metrics are presented in Table 
2. 
 

 Random Forest XGBoosted trees 
Low Risk (0) High Risk (1) Low Risk (0) High Risk (1) 

Sensitivity 0.99 1 1 1 
Specificity 1 0.99 1 1 
Precision 1 0.92 1 0.97 

NPV 0.92 1 0.97 1 
F1-score 1 0.96 1 0.99 
Accuracy 0.99 0.99 0.99 0.99 

Table 2. Evaluation metrics of classification models 

Both models achieved very similar results, with the XGBoosted tree model only being 
slightly better than the model created using the random forest algorithm, making them 
interchangeable in the future prediction step of our research.  

3.2. Regression metrics 

Regression models were created with a goal of predicting future states of important patient 
parameters that can be used in evaluating disease progression over time. Each of these parameters 
required the training of a separate regression model. Separate models were built with regards to 
maximizing the R2 score metric to insure the highest possible correlation between the most 
important patient parameters that the system is predicting and other data points. These models 
were evaluated using the mean squared error metric. Results are denoted in Table 3. 
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 R2 score Mean squared error 
NYHA 0.56 0.22 

LA 0.76 16.88 mm 
LAvol 0.8 35.11 mm3 

LVIDd 0.69 13.19 mm 
LVIDs 0.81 7.8 mm 
LVEF 0.7 33.23 % 

Table 3. Evaluation metrics of different regression models 

Mean squared error metrics are compared with the span of possible values for each parameter 
to evaluate the accuracy of our regression models. Regression models show very good prediction 
properties except for the NYHA class regression model. In future research, regression models 
will be created using additional data on applied pharmacological therapies and their impact on 
the patient over time. However, this inclusion will require data on disease progression over a 
longer period of time for a larger set of patients.  

3.3. Discussion 

Although there were multiple studies conducted on this subject, most of them do not have the 
same approach to solving the problem at hand. Most of the studies that use images as risk 
stratification data suffer from the inability to predict future disease progression. Also, in many of 
the cases, even though other types of data were used, the study was focused strictly on classifying 
the current state of the disease. In this study, we strived towards predicting the disease progression 
over multiple years as well as the current state so that pharmacological therapy could be 
considered in advance, before the symptoms became too severe for intervention. 

Smole et al. (2021) had a different approach to using the given dataset, wherein they did not 
view each patients visit to an examination as a separate entity, but viewed all of the single patients’ 
visits as a single entity. Therefore, using the proposed methodology we had more samples for 
training and testing our classification models and achieved better results in terms of f1 score. 
Both of our classification models outperformed those presented in the study of Kochav et al. 
(2021) who used event centric data for risk stratification. Aurore, et al. (2018) achieved great 
results with their approach to solving this problem, however, we are unable to make a logical 
comparison between the two proposed methodologies, due to the uncertainty of the utilization of 
unsupervised learning methods in the process of classification and also the discrepancies between 
the classes that were being predicted. Tse et al. (2020) created models using machine learning 
approaches, for risk stratification of HF in patients suffering not only from HCM, but other heart 
complications as well. However, our model achieved better accuracy for specifically SCD caused 
by HCM. The comparison between similar studies is shown in Table 4. Attention needs to be 
drawn to the fact that the performance indicator varies between these studies because of the 
differing approaches and decisions made by authors. 
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 (Smole et al. 
2021) 

(Kochav et 
al. 2021) 

(Aurore et al. 
2018) 

(Tse et al. 
2020) 

Proposed 
methodology 

Investigated 
problem 

HCM 
patient 

stratification 
on clinical 

data 

HCM 
patient 

stratification 
on event 

data 

ECG phenotypes 
in HCM patients 

Stratification 
of heart 
failure 

HCM 
stratification 
on clinical 
and genetic 

data 

Binary/Multi 
classification 

Binary (low 
/high risk) 

Binary 
(low/high 

risk) 

Multi (healthy, 
low/medium/high 

risk) 

Binary 
(low/high 

risk) 

Binary (low/ 
high risk) 

Performance 
indicator and 

value 

High risk F1 
score: 0.71 

Sensitivity: 
0.88 Not applicable High risk F1 

score: 0.89 

High risk F1 
score: 
0.99 

Table 4. Overview of results in similar studies 

While our final evaluation shows great promise in predicting the disease progression of 
hypertrophic cardiomyopathy, it can still be speculated about the improvements of these results 
in the future. One of the main limitations of this research was the amount of data available in the 
dataset, although it was sufficient for classification purposes, many patients had only one or two 
recorded sets of parameters weighing down the possibility of obtaining better future parameter 
value prediction results through regression. One of the proposed methods of enhancing this 
dataset is creating more patient data through finite element method physical simulations. In this 
way, we could obtain more data, much faster than it could be obtained otherwise, using physical 
laws that govern the heart muscle contractions and blood flow, therefore improving prediction 
methods to be even more precise than they currently are.  

4. Conclusion 

The main goal of this research was not to replace medical professionals in diagnosing HCM in 
patients, but to provide a decision support system whose purpose is to lend a helping hand in 
examining large amounts of data and providing a second opinion. The current gold standard for 
diagnosing hypertrophic cardiomyopathy is a calculator that is able to predict the future state of 
HCM patients in the next 5 years (O'Mahony et al. 2014). While this calculator already exists, it 
is based on a concrete mathematical equation that reports the patient’s risk class in different time 
frames. This study was conducted using new data that were not available in the creation of the 
HCM calculator. Moreover, during the creation of this system, it was imperative to predict future 
values of many different data points and not only the risk class. These crucial future data points 
are also available to medical professionals for further inference into solving the task at hand. 
Additionally, the decision making nature of the utilized tree based classification models can 
outperform the existing mathematical equation in edge cases when data is extrapolated, due to 
good generalization properties.  

In conclusion, it was possible to create a decision support system that predicts the current 
state of the patient almost perfectly while also having a high amount of success in predicting the 
future development of the disease. The regression section of the system was built by maximizing 
R2 score for important patient parameters that ultimately amounted to 81% LVIDs, 69% LVIDd, 
80% LAvol, 70% LVEF, 76% LA and 56% NYHA. The classification section of the system has 
96% or 99% f1 score over the high-risk class depending on if the algorithm in question is random 
forest or XGBoost and 99% prediction accuracy over all. The system can be improved further 
through gathering additional data. Likewise, in future endeavors, the scope of this research will 
be expanded to focus on the creation of a decision explanation module whose purpose would be 
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to give doctors an insight into the inner workings of the system and raise the trust of patients 
towards an automated diagnostics process.  
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