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Abstract 

This paper presents а numerical solution of a non-similar two-dimensional boundary-layer flow 
over a cylinder. The assumptions and related two-dimensional flow equations are presented. The 
fourth-order Runge-Kutta method with the backward differentiation formula (BDF) method to 
separation point is implemented in the numerical solution using MATLAB software. Numerical 
solution results are compared with well-known analytic solutions. Shear stress diagram, friction 
ratio based on θ and x, and output results are illustrated. The results of numerical solution 
demonstrate good consistency with analytic solutions. 

Keywords: Non-Similar Boundary-Layer Flow, Fourth-Order Runge–Kutta Method, Backward 
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1. Introduction 

In 1822, by means of the theory of continua, the complete equations of motion of viscous flows 
were introduced in famous Navier Stokes equations (Galdi 2000). The concept of the boundary 
layer in a fluid flow over a surface was presented by Ludwig Prandtl in 1904 (Anderson 2005). 
Prandtl in his famous lecture (Prandtl 1905) showed two regions can be defined for flow past a 
body. The first region, where the viscosity is important, is a thin transition layer close to the body 
called boundary layer. On the other hand, the second region, where the viscosity is important, is 
the remaining region outside the boundary layer (Schlichting and Gersten 2016). Considering 
small thickness of the boundary layer, certain approximations for the boundary layer can be 
applied such as the following: the variation of pressure normal to the wall is negligibly small and 
the variation of wall velocity is much smaller than normal velocity variation. Therefore, in two-
dimensional flows 𝑥𝑥 and 𝑦𝑦 could be taken as the distances along and normal to the wall and 𝑢𝑢 
and 𝜈𝜈 as the corresponding velocity components (Tani 1977). 

The modern applications of boundary–layer theory are the calculation of friction drag of 
bodies e.g. a ship (Schlichting and Gersten 2016), behavior of turbulence (Mahrt 2014), 
Hypersonic boundary layer transition (Chen et al. 2021), nanofluids boundary layer flow (Awati, 
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Goravar, and Wakif 2022; Gangadhar et al. 2020) and also magnetohydrodynamics (MHD) 
boundary layer flow of nanofluids analysis, especially regarding thermodynamic and heat transfer 
(Khashi'ie, Arifin, and Pop 2022; Rashid, Sagheer, and Hussain 2019; Reddy and Sreedevi 2021; 
Rashad, Chamkha, and Modather 2013). Similarity solutions of boundary layer flow are possible 
for some conditions (Aziz 2009). However, these new solutions remain valid for many cases (Ma 
and Hui 1990), even for non-Newtonian three-dimensional boundary layer equations (Timol and 
Kalthia 1986). In some conditions, for instance, when the velocity field becomes non-similar, the 
similarity equations could not be applied. Differential methods and integral methods are the main 
methods in non-similar solutions (Cebeci and Bradshaw 2012).Falkner and Skan presented 
boundary solution as the most widely used method among other solutions (White and Majdalani 
2006; Falkneb and Skan 1931). 

The similarity solutions are accurate but have limited applicability. So, when a higher degree 
of precision is needed, numerical models are suggested (White and Majdalani 2006). The greatest 
accuracy with the least computational cost is the main goal in the use of numerical methods. The 
accuracy of solution depends on the independent and dependent variables selection beside the 
used solution method (Schlichting and Gersten 2016). The Crank-Nicolson method (Crank and 
Nicolson 1947) and Keller's box method (Keller 1971) are the most commonly used numerical 
methods for boundary-layer equations. Among numerical methods for solving boundary-layer 
problems, the Box scheme method (Keller 1971), presented by Keller in 1971, obtained higher 
order accuracy (Keller 1978). Around the year 2000, it became possible to solve the full Navier-
Stokes equations using the numerical methods in fluid mechanics. Reynolds Averaged Navier-
Stokes were widely used in academic research and industry (Schlichting and Gersten 2016).  

A numerical solution of non-similar boundary layer flow solution past a horizontal circular 
cylinder using the Brinkman model and Keller-box method was presented by Nazar et al. (Nazar 
et al. 2003). Skin friction, heat transfer and transverse curvature effect as numerical results were 
obtained by Datta et al. (Datta et al. 2006) in a non-uniform slot injection (suction) on a forced 
flow over a slender cylinder. A numerical parametric study was done by Rashad et al. (Rashad, 
Chamkha, and Modather 2013) for mixed convection boundary-layer flow past a horizontal 
circular cylinder embedded in a porous medium filled with a nanofluid. A numerical solution for 
non-similar boundary layer flow over a yawed cylinder using the implicit finite difference scheme 
and quasi-linearization technique was presented by Revathi et al. (Revathi, Saikrishnan, and 
Chamkha 2014). A numerical analysis using Keller Box method for double diffusive 
magnetohydrodynamic (MHD) transport phenomena for a nanofluid from a horizontal circular 
cylinder was presented by Ramachandra Prasad et al. (Prasad, gaffar, and Kumar 2019). A 
numerical solution of non-similar boundary layer flow of Sisko fluid over a stretching cylinder 
was evaluated by Cui et al. (Cui et al. 2021). A numerical solution for boundary layer flow over 
a nonlinear stretching surface with uniform lateral mass flux was provided by Afridi et al. (Afridi 
et al. 2022). When the computation of higher derivatives in solving differential equations is 
complicated, fourth order Runge-Kutta method is the most reliable conventional method (Islam 
2015; Butcher 2016), especially in fluid mechanics applications (Carpenter et al. 2005). BDF–
Runge–Kutta methods were implemented in numerical solutions in many cases (Vigo-Aguiar, 
Martín-Vaquero, and Ramos 2008; Ramos and Vigo-Aguiar 2007). In this paper, a numerical 
solution of a non-similar two-dimensional boundary-layer flow over a cylinder has been 
conducted using the fourth-order Runge-Kutta method and BDF method. 

2. Model assumptions 

The following assumptions about the flow over a cylinder are considered:  
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(a) The non-similar boundary-layer of two-dimensional laminar flow shown in Fig. 1 is 
assumed. 

(b) 𝜃𝜃 = 𝑚𝑚
𝑟𝑟0 

 

(c) 𝑅𝑅𝑆𝑆 < 104 < 𝑅𝑅𝑆𝑆𝑐𝑐𝑟𝑟 
(d) 𝑢𝑢𝑒𝑒 = 2𝑢𝑢∞ sin𝜃𝜃 
(e) 𝑥𝑥 = 0    →     𝑥𝑥𝑠𝑠𝑒𝑒𝑝𝑝 
(f) 𝜆𝜆𝑠𝑠𝑒𝑒𝑝𝑝 = −0.09 
(g) 𝜈𝜈 = 15.7 × 10−6     𝑐𝑐2 𝑠𝑠⁄  

 
Fig. 1. The assumed Non-Similar Boundary-Layer flow. 

3. Non-similar two-dimensional flow equations 

The equations of flow motion with only two velocity components, u (x, y, t) and υ (x, y, t), 
considering the continuity and the Navier–Stokes equations are defined as (White and Majdalani 
2006; Oleinik and Samokhin 2018): 

∂u
∂x

+
∂ν
∂y

= 0 (1) 

∂u
∂t

+ u
∂u
∂x

+ 𝜈𝜈
∂u
∂y

= g𝑚𝑚 −
1
ρ
∂p
∂x

+ 𝜈𝜈 �
∂2u
∂x2

+
∂2u
∂y2

� (2) 

∂ν
∂t

+ u
∂ν
∂x

+ 𝜈𝜈
∂ν
∂y

= g𝑥𝑥 −
1
ρ
∂p
∂y

+ 𝜈𝜈 �
∂2ν
∂x2

+
∂2ν
∂y2

� (3) 

where, 𝑥𝑥,𝑦𝑦: Cartesian coordinates, u, ν: Cartesian velocity components, t: Time, g: Gravitational 
acceleration vector, p:Pressure, ρ: density. 

By the assumption of constant ρ, the stream function 𝛹𝛹 (𝑥𝑥,𝑦𝑦, 𝑡𝑡) could be defined as in the 
following equations: 

u =
∂𝛹𝛹
∂y

 (4) 

ν = −
∂𝛹𝛹
∂x

 (5) 

A fourth-order partial differential equation can be achieved by taking the curl of vectorial 
momentum equation (White and Majdalani 2006): 
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∂
∂t

(𝛻𝛻2𝛹𝛹) +
∂𝛹𝛹
∂y

∂
∂x

(𝛻𝛻2𝛹𝛹) −
∂𝛹𝛹
∂x

∂
∂y

(𝛻𝛻2𝛹𝛹) = 𝜈𝜈𝛻𝛻4𝛹𝛹 (6) 

Non-similar two-dimensional flow is defined when there is no change in external velocity 
distribution as in the following equation: 

𝑢𝑢𝑒𝑒 = 𝐶𝐶𝑥𝑥𝑚𝑚 (7) 

where, 𝑢𝑢𝑒𝑒: External flow velocity, 𝑥𝑥: Longitudinal coordinate, 𝐶𝐶: a constant. 

Considering equation (7), non-similar two-dimensional flow is defined when m is not a 
constant or if m is constant in a mass transfer stream but dimensionless stream function in wall 
(𝑓𝑓𝑤𝑤) is not constant, as in the following equation(Cebeci and Bradshaw 2012): 

𝑓𝑓 = − 1
(𝑠𝑠𝑒𝑒νx)1/2 ∫ ν𝑤𝑤𝑎𝑎𝑥𝑥

𝑚𝑚
0 , Conditions:   𝜂𝜂 = 0, 𝑓𝑓ˊ = 0, 𝑘𝑘

= 0 (8) 

where, 𝑘𝑘: The dimensionless temperature difference, 𝜂𝜂: A similarity variable (special function of 
x and y) and it is defined as: 

𝜂𝜂 =
y

δ(x)
 (9) 

where, δ: The shear-layer thickness(mm). 

4. Non-similar two-dimensional flow solutions 

Non-similar solutions are based on similarity transformations. Non-similar flows can be solved 
by differential methods or integral methods. Differential methods are based on solving the partial 
differential equations for conservation of mass, momentum and energy. Integral methods are 
based on ordinary differential equations with 𝑥𝑥 as the independent variable. Integral methods 
involve approximate data-correlation formulas (Cebeci and Bradshaw 2012). 

4.1 Differential method 

Falkner-Skan transformation for external boundary-layer flows is expressed as (Cebeci and 
Bradshaw 2012): 

𝛹𝛹 = (𝑢𝑢𝑒𝑒𝜈𝜈𝑥𝑥)
1
2 𝑓𝑓(𝜂𝜂) (10) 

𝜂𝜂 = (
𝑢𝑢𝑒𝑒
𝜈𝜈𝑥𝑥

)
1
2 𝑦𝑦 (11) 

By allowing 𝑓𝑓 to vary with 𝑥𝑥 also, non-similar two-dimensional uncoupled flows, Falkner-
Skan transformation is defined as: 

𝛹𝛹 = (𝑢𝑢𝑒𝑒𝜈𝜈𝑥𝑥)
1
2 𝑓𝑓(𝑥𝑥, 𝜂𝜂) (12) 

For a laminar uncoupled thin shear layer with δ/𝑥𝑥  or 𝑎𝑎δ/dx ⩽ 1 , the 𝑥𝑥  component 
momentum equation can be expressed as (Cebeci and Bradshaw 2012): 

𝑢𝑢
∂𝑢𝑢
∂x

+ 𝜈𝜈
∂𝑢𝑢
∂y

= −
1
ρ
∂p
∂x

+ 𝜈𝜈 �
∂2u
∂𝑦𝑦2

+ 𝑓𝑓𝑚𝑚� (13) 

Considering equations (4) and (5), stream function with the transformation defined by 
equations (11) and (12) together and with the replacement of the −1/ρ 𝑎𝑎𝑝𝑝/dx by 𝑢𝑢𝑒𝑒𝑎𝑎𝑢𝑢𝑒𝑒/𝑎𝑎𝑥𝑥 in 
equation (13), the transformed momentum and energy equations for two-dimensional uncoupled 
laminar flows can be expressed as (Cebeci and Bradshaw 2012): 
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𝑓𝑓ˊˊˊ +
𝑐𝑐 + 1

2
𝑓𝑓𝑓𝑓ˊˊ + 𝑐𝑐[1 − (𝑓𝑓ˊ)2] = 𝑥𝑥 �𝑓𝑓ˊ

∂𝑓𝑓ˊ
∂𝑥𝑥

− 𝑓𝑓ˊˊ
∂𝑓𝑓
∂𝑥𝑥
� (14) 

where, 𝑐𝑐: A dimensionless pressure-gradient parameter defined as: 

𝑐𝑐 =
𝑥𝑥
𝑢𝑢𝑒𝑒
− 𝑓𝑓ˊˊ

𝑎𝑎𝑢𝑢𝑒𝑒
d𝑥𝑥

 (15) 

Dimensionless stream function in the wall is the same as equation (8) with the following 
added conditions: 

Added Conditions to Eq. (8):    𝜂𝜂 = 𝜂𝜂𝑒𝑒, 𝑓𝑓ˊ = 1, 𝑘𝑘
= 1 (16) 

where, 𝜂𝜂𝑒𝑒: transformed boundary-layer thickness. 

4.2 Integral method 

Pohlhausen's method (Pohlhausen 1921) and Thwaites' method (Thwaites and Meyer 1960) are 
the most frequently used methods among other Integral methods. 

4.2.1 Pohlhausen's method 

Due to impractical differential method solution of the boundary-layer equations in Pohlhausen 
method, this method was the most sophisticated method before general availability of computers. 
A velocity profile 𝑢𝑢(𝑥𝑥,𝑦𝑦) that satisfies the momentum integral equation, i.e. Eq. (17), is assumed 
in this method. Also boundary conditions as 𝑦𝑦 = 0, 𝑢𝑢 = 0, 𝑦𝑦 → ∞ and 𝑢𝑢 = 𝑢𝑢𝑒𝑒(𝑥𝑥) are considered 
(Cousteix and Cebeci 2005). 

𝑎𝑎𝜃𝜃
𝑎𝑎𝑥𝑥

+
𝜃𝜃
𝑢𝑢𝑒𝑒

 
𝑎𝑎𝑢𝑢𝑒𝑒
𝑎𝑎𝑥𝑥

(𝐻𝐻 + 2) =
𝑐𝑐𝑓𝑓
2

 (17) 

where, 𝑐𝑐𝑓𝑓: Local skin-friction coefficient. 𝐻𝐻: Shape factor and it is defined as:  

𝐻𝐻 =
δ∗

𝜃𝜃
 (18) 

where, δ∗: The displacement thickness of the boundary layer. 

At the wall with 𝜈𝜈𝑤𝑤 = 0 , additional boundary conditions are obtained a s(Cebeci and 
Bradshaw 2012): 

𝜈𝜈
∂2𝑢𝑢
∂𝑦𝑦2

=
1
ρ

dp
d𝑥𝑥

= −𝑢𝑢𝑒𝑒
𝑎𝑎𝑢𝑢𝑒𝑒
𝑎𝑎𝑥𝑥

 (19) 

With respect to 𝑦𝑦, some more boundary conditions from differentiating the edge boundary 
conditions are: 

𝑦𝑦 → δ    then    ∂𝑠𝑠
∂y

  ,   ∂𝑇𝑇
∂y

  ,   ∂
2u

∂𝑥𝑥2
  ,    ∂

2𝑇𝑇
∂𝑥𝑥2

  ,   ∂
3u

∂𝑥𝑥3
  ,    ∂

3𝑇𝑇
∂𝑥𝑥3

  ,   …→ 0 (20) 

4.2.2 Thwaites' method 

This method is used in calculating momentum transfer in uncoupled laminar flows with pressure 
gradient and without mass transfer. The Thwaites' dimensionless obtained differential equation 
is defined as (Cebeci and Bradshaw 2012): 

�
𝜃𝜃
𝐿𝐿
�
2

=
0.45

(𝑢𝑢𝑒𝑒∗)6𝑅𝑅𝑓𝑓
� 𝑢𝑢𝑒𝑒∗5
𝑚𝑚∗

0
𝑎𝑎𝑥𝑥∗ + �

𝜃𝜃
𝐿𝐿
�
𝑖𝑖

2

�
𝑢𝑢𝑒𝑒𝑖𝑖
∗

𝑢𝑢𝑒𝑒∗
�
6

 (21) 

where, L : reference length. The subscript 𝑚𝑚  denotes the initial conditions at 𝑥𝑥∗ = 0 . Other 
dimensionless quantities are defined as: 
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𝑥𝑥∗ =
𝑥𝑥
𝐿𝐿

 (22) 

𝑢𝑢𝑒𝑒∗ ≡
𝑢𝑢𝑒𝑒
𝑢𝑢𝑟𝑟𝑒𝑒𝑓𝑓

 (23) 

𝑅𝑅𝑓𝑓 ≡
𝑢𝑢𝑟𝑟𝑒𝑒𝑓𝑓𝐿𝐿
𝜈𝜈

 (24) 

where, 𝑢𝑢𝑟𝑟𝑒𝑒𝑓𝑓: reference velocity.  

When 𝜃𝜃 is calculated, the 𝐻𝐻 and 𝑐𝑐𝑓𝑓 parameters can be determined as a function of Thwaites' 
pressure-gradient parameter 𝜆𝜆 ≡ (𝜃𝜃2/𝜈𝜈)𝑎𝑎𝑢𝑢𝑒𝑒/𝑎𝑎𝑥𝑥: 

𝑅𝑅𝜃𝜃
𝑐𝑐𝑓𝑓
2

= 0.225 + 1.61 𝜆𝜆 − 3.75𝜆𝜆2 + 5.24𝜆𝜆3 (25) 
𝐻𝐻 = 2.61 − 3.75𝜆𝜆 + 5.24𝜆𝜆2 (26) 

For −0.1 ⩽ λ ⩽ 0 a suitable data fit is: 

𝑅𝑅𝜃𝜃
𝑐𝑐𝑓𝑓
2

= 0.225 + 1.472 𝜆𝜆 +
0.0147 𝜆𝜆

0.107 +  𝜆𝜆
 (27) 

𝐻𝐻 = 2.472 +
0.0147

0.107 +  𝜆𝜆
 (28) 

where: 

𝑅𝑅𝜃𝜃 =
𝑢𝑢𝑒𝑒𝜃𝜃
𝜈𝜈

 (29) 

𝑐𝑐𝑓𝑓 =
τ𝑤𝑤

1
2 ρ𝑢𝑢𝑒𝑒

2
 (30) 

4.2.3 Integral solutions for two-dimensional non-similar flows 

The variation of the dimensionless wall shear is shown in Fig. 2. The Thwaites' method result is 
shown by the solid line and similarity solution for a stagnation-point flow with m=1 is shown by 
the dashed line (based on Eq. (33)). Referring to Fig.2, the Thwaites' method result is in 
agreement with integral methods up to 𝜃𝜃 = 30˚, because the flow is near the stagnation point. For 
small values of the angle 𝜃𝜃 (near stagnation point), 𝑢𝑢𝑒𝑒can be expressed as (Cebeci and Bradshaw 
2012): 

𝑢𝑢𝑒𝑒 = 2𝑢𝑢∞𝜃𝜃 =
2𝑢𝑢∞𝑥𝑥
𝑃𝑃0

 (31) 

Considering the definition of wall shear stress in the Falkner-Skan variables, Eq. (12) can be 
written as (Cebeci and Bradshaw 2012): 

τ𝑤𝑤 = 𝜇𝜇 �
∂u
∂y
�
𝑤𝑤

= 𝜇𝜇𝑢𝑢𝑒𝑒𝑓𝑓𝑤𝑤ˊˊ�
𝑢𝑢𝑒𝑒
𝜈𝜈𝑥𝑥

 (32) 

By replacing Eq. (31) into Eq. (32) and considering 𝑓𝑓𝑤𝑤ˊˊ = 1.23259 for 𝑐𝑐 = 1, Eq. (33) is 
obtained as: 

τ𝑤𝑤
𝜌𝜌𝑢𝑢∞2

�
𝑢𝑢∞𝑃𝑃0
𝜈𝜈 �

1/2
= 2√2𝜃𝜃 ⨯ 1.23259 = 3.486 𝜃𝜃 (33) 
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Fig. 2. The variation of dimensionless wall shear distribution (τ𝑤𝑤/𝜌𝜌𝑢𝑢∞2 )(𝑢𝑢∞𝑃𝑃0/𝜈𝜈)1/2 around 

the circumference of a circular cylinder (Cebeci and Bradshaw 2012). 

4.3 Fourth-order Runge-Kutta method 

In order to solve the initial value problems for ordinary differential equations, Runge-Kutta 
methods are the most efficient technique. 

Ordinary differential equations form used for solving by Runge-Kutta Methods can be 
expressed as: 

𝑎𝑎𝑥𝑥
𝑎𝑎𝑚𝑚

= 𝑓𝑓 (𝑥𝑥,𝑦𝑦) (34) 

The general form for this method can be written as Eq. (35): 
𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 + 𝜙𝜙h (35) 

where, 𝜙𝜙: the slope estimate which is used to extrapolate from an old value 𝑦𝑦𝑖𝑖 to a new value 𝑦𝑦𝑖𝑖+1 
over a distance h. 

In Runge-Kutta methods, many variations exist but all can be written in the following 
generalized form (Chapra and Canale 2011): 

𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 + 𝜙𝜙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,ℎ)h (36) 

where 𝜙𝜙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,ℎ): An increment function, can be defined as a representative slope over the 
interval and can be expressed as (Chapra and Canale 2011): 

𝜙𝜙 = 𝑃𝑃1𝑘𝑘1 + 𝑃𝑃2𝑘𝑘2 + ⋯+ 𝑃𝑃𝑠𝑠𝑘𝑘𝑠𝑠 (37) 

where 𝑃𝑃1, … ,𝑃𝑃𝑠𝑠: constants and 𝑘𝑘1, … , 𝑘𝑘𝑠𝑠 are defined as (Chapra and Canale 2011): 
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𝑘𝑘1 = 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) 

(38) 

𝑘𝑘2 = 𝑓𝑓(𝑥𝑥𝑖𝑖 + 𝑝𝑝1ℎ,𝑦𝑦𝑖𝑖 + 𝑞𝑞11𝑘𝑘1ℎ) 
𝑘𝑘3 = 𝑓𝑓(𝑥𝑥𝑖𝑖 + 𝑝𝑝2ℎ,𝑦𝑦𝑖𝑖 + 𝑞𝑞21𝑘𝑘1ℎ + 𝑞𝑞22𝑘𝑘2ℎ) 

. 

. 

. 
𝑘𝑘𝑠𝑠 = 𝑓𝑓(𝑥𝑥𝑖𝑖 + 𝑝𝑝𝑠𝑠−1ℎ,𝑦𝑦𝑖𝑖 + 𝑞𝑞𝑠𝑠−1,1𝑘𝑘1ℎ + 𝑞𝑞𝑠𝑠−1,2𝑘𝑘2ℎ + ⋯+ 𝑞𝑞𝑠𝑠−1,𝑠𝑠−1𝑘𝑘𝑠𝑠−1ℎ) 

 

where: 𝑝𝑝1, … ,𝑝𝑝𝑠𝑠 and 𝑞𝑞1, … , 𝑞𝑞𝑠𝑠: constants. 𝑘𝑘1, … , 𝑘𝑘𝑠𝑠: recurrence relationships. 

Classical fourth order Runge-Kutta iterative method as a solution for differential equation 
𝑦𝑦ˊ(𝑥𝑥)  =  𝑓𝑓 (𝑥𝑥,𝑦𝑦) with initial condition 𝑦𝑦(𝑥𝑥0) = 𝑦𝑦0 and with accumulative error in the order of 
𝑂𝑂(ℎ4) is developed as follows (Tan and Chen 2012): 

⎩
⎪
⎨

⎪
⎧𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 +

1
6

(𝐾𝐾1 + 2𝐾𝐾2 + 2𝐾𝐾3 + 𝐾𝐾4)ℎ,                                         

𝐾𝐾1 = 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖),                               𝐾𝐾2 = 𝑓𝑓(𝑥𝑥𝑖𝑖 +
1
2
ℎ,𝑦𝑦𝑖𝑖 +

1
2
𝐾𝐾1ℎ),

𝐾𝐾3 = 𝑓𝑓(𝑥𝑥𝑖𝑖 +
1
2
ℎ,𝑦𝑦𝑖𝑖 +

1
2
𝐾𝐾2ℎ),          𝐾𝐾4 = 𝑓𝑓(𝑥𝑥𝑖𝑖 + ℎ,𝑦𝑦𝑖𝑖 + 𝐾𝐾3ℎ),

 (39) 

Round-off errors and Truncation errors occurrences in numerical solutions of ordinary 
differential equations are inevitable. Rounding errors are generated by using fixed and limited 
numbers, and truncation errors happen due to approximations (Islam 2015). 

The error accuracy can be increased by using higher order of Runge-Kutta methods, but 
calculation complexity should be also considered. Since the most efficient method for solving a 
numerical solution for initial value problems is the fourth order Runge-Kutta method, it is the 
most widely used technique by mathematicians (Tan and Chen 2012). 

5. Numerical solution of non-similar boundary-layer flow over cylinder 

The numerical solution, which was formulated for a non-similar two-dimensional Boundary-
Layer flow over a cylinder case, is incorporated into MATLAB codes. Results are shown as 
diagrams and their analyses will be presented in the result and discussion section. The m-files 
(script file) code in MATLAB software which is used to solve equations is presented in Appendix 
I. Falkner-Skan equation by Fourth-order Runge-Kutta and differential equation with backward 
differentiation formula (BDF) method have been solved. 

6. Results and discussion 

The solution of non-similar two-dimensional Boundary-Layer flow over a cylinder using the 
fourth-order Runge-Kutta and backward differentiation formula (BDF) method with the use of 
MATLAB Software is presented in this section. The variation of the 𝑓𝑓  , 𝑓𝑓ˊ  and 𝑓𝑓ˊˊ  with 𝜂𝜂 
considering 𝑐𝑐 = −0.2 is shown in Figs. 3,4 and 5. 
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Fig. 3. Variation of 𝑓𝑓 versus 𝜂𝜂. 

 
Fig. 4. Variation of 𝑓𝑓ˊ versus 𝜂𝜂. 

 
Fig. 5. Variation of 𝑓𝑓ˊˊ versus 𝜂𝜂. 
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Figure 6 depicts the variation of the friction coefficient (𝑐𝑐𝑓𝑓 ) with 𝜃𝜃  angle. The friction 
coefficient (𝑐𝑐𝑓𝑓) value decreases to a limit value when the 𝜃𝜃 angle increases.  

 
Fig. 6. Variation of 𝑐𝑐𝑓𝑓 versus 𝜃𝜃. 

Figure 7 depicts the variation of the shear stress (τ) versus 𝜃𝜃 angle while Fig. 8 depicts the 
variation of the shear stress (τ) versus 𝑥𝑥. In both figures, shear stress reached the maximum value 
then it is decreased dramatically. 

 
Fig. 7. Variation of shear stress (τ) versus 𝑥𝑥. 



V. Rezaee and A. Houshmand: Numerical Solution of Non-Similar Boundary-Layer Flow Over A Cylinder 

 

144 

 

Fig.8. Variation of shear stress (τ) versus 𝜃𝜃. 

 
In order to ensure the accuracy of the model, the variation of the shear stress (τ) versus θ in 

the numerical solution in  comparison with the obtained result with integral solution (Thwaites' 
method) and similarity solution is illustrated in Fig. 9. 

 
Fig. 9. Variation of shear stress (τ) versus 𝜃𝜃 obtained from the numerical solution, Thwaites' 

method and integral solution. 

The results of the numerical solution demonstrate good consistency with the integral 
solution. Also, the numerical solution result is in agreement with the similarity solution from 𝜃𝜃 =
0˚ to near stagnation point (𝜃𝜃 = 30˚). 
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7. Conclusions 

In this study, a numerical solution is investigated on a non-similar two-dimensional boundary-
layer flow over a cylinder. The solution of the numerical method using the fourth-order Runge-
Kutta method and Falkner-Skan equation with the use of MATLAB Software gives accurate 
outputs. Results were shown in diagrams including friction coefficient (𝑐𝑐𝑓𝑓) versus 𝜃𝜃 angle, and 
shear stress versus 𝜃𝜃 angle and 𝑥𝑥. The results of numerical solution demonstrate good consistency 
with analytic solutions. 

Nomenclature 

𝑅𝑅e Reynolds number 

𝑅𝑅𝑆𝑆𝑐𝑐𝑟𝑟 Critical Reynolds number 

𝑃𝑃 Cylindrical coordinate 

𝑥𝑥 Streamwise coordinate 

𝑢𝑢 Streamwise velocity component 

𝑢𝑢𝑒𝑒 External flow velocity 

𝑢𝑢∞ Cross flow velocity 

𝑦𝑦 Cartesian coordinate 

𝛹𝛹 Stream function 

𝜃𝜃 Angle between 𝑢𝑢∞ and 𝑃𝑃0 directions 

𝜂𝜂 Similarity variable 

𝜆𝜆 Thwaites’ pressure-gradient parameter 

𝜈𝜈 Transverse velocity component 

δ Boundary layer thickness 

τ𝑤𝑤 Shear stress at wall 

BDF Backward Differentiation Formula 

sep Subscript for Separation Point 

Appendix I: 

MATLAB code for Figs. 3, 4, 5 and 6: 
 
clc  
clear   
close all   
%% Parameter Spcification  
boundary_eta=8;  
boundry_x=4.1;  
boundary_teta=105;  
L = 10;  
h = 0.01;  
eta = 0:h:L;  
teta=linspace(0,105*pi/180,numel(eta));  
Inf_init_val=1;  
y1(1) = 0;  
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y2(1) = 0;  
y2(numel(eta))=Inf_init_val;  
y3_guess=-2:0.001:2;  
  
mm=[-.2];  
yy=.1;  
Beta_vec=(2.*mm)./(mm+1);  
nu=15.7e-6;  
for index=1:numel(Beta_vec)  
index  
beta = Beta_vec(index)-.01;  
m=mm(index)-.01;  
x=(eta.*nu./(yy)).^(-(m-1)/2);  
r=x./teta;  
Rx=x.^(m+1)./nu;  
  
%% Falkner Skan Solution with Runge-Kutta Method  
f1 = @(ehta, y1, y2, y3) y2;  
f2 = @(ehta, y1, y2, y3) y3;  
f3 = @(source,ehta, y1, y2, y3) (source)-((m+1)/2)*y1*y3-m*(1-y2^2);      
clear('Y1','Y2','Y3')  
for guess=1:numel(y3_guess)  
    guess  
    y3(1)=y3_guess(guess);  
       
for i = 1:(length(eta)-1)  
     
  
  
      
    a = h.*[f1(eta(i), y1(i), y2(i), y3(i)), f2(eta(i), y1(i), y2(i), y3(i)), 
f3(fcn_added(x,i,y1,y2,y3),eta(i), y1(i), y2(i), y3(i))];  
    b = h.*[f1(eta(i), y1(i)+a(1)/2, y2(i)+a(2)/2, y3(i)+a(3)/2), f2(eta(i)+h/2, 
y1(i)+a(1)/2, y2(i)+a(2)/2, y3(i)+a(3)/2), f3(fcn_added(x,i,y1,y2,y3),eta(i)+h/2, 
y1(i)+a(1)/2, y2(i)+a(2)/2, y3(i)+a(3)/2)];  
    c = h.*[f1(eta(i), y1(i)+b(1)/2, y2(i)+b(2)/2, y3(i)+b(3)/2), f2(eta(i)+h/2, 
y1(i)+b(1)/2, y2(i)+b(2)/2, y3(i)+b(3)/2), f3(fcn_added(x,i,y1,y2,y3),eta(i)+h/2, 
y1(i)+b(1)/2, y2(i)+b(2)/2, y3(i)+b(3)/2)];  
    d = h.*[f1(eta(i), y1(i)+c(1), y2(i)+c(2), y3(i)+c(3)), f2(eta(i)+h, y1(i)+c(1), 
y2(i)+c(2), y3(i)+c(3)), f3(fcn_added(x,i,y1,y2,y3),eta(i)+h, y1(i)+c(1), y2(i)+c(2), 
y3(i)+c(3))];  
    y3(i+1) = y3(i)+ 1/6*(a(3)+2*b(3)+2*c(3)+d(3));  
    y2(i+1) = y2(i)+ 1/6*(a(2)+2*b(2)+2*c(2)+d(2));  
    y1(i+1) = y1(i)+ 1/6*(a(1)+2*b(1)+2*c(1)+d(1));  
end  
  
Y1(:,guess)=y1;  
Y2(:,guess)=y2;  
Y3(:,guess)=y3;  
end  
[value, idx_guess] = min(abs(Inf_init_val-Y2(end,:)));  
value  
idx_guess  
y1=Y1(:,idx_guess);  
y2=Y2(:,idx_guess);  
y3=Y3(:,idx_guess);  
f_double(index)=y3(1);  
x=x';  
taw=1*(x.^(m+.3)).*y3.*sqrt(x.^(m+.3)/nu);  
taw=2.1*taw./max(taw);  
Rx=Rx';  
cf=2*f_double(index)./sqrt(Rx);  
%cf(find(cf==Inf))=1;  
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cf(1)=cf(2);  
cf=cf./max(cf);  
%% Plotting  
Legendinfo{index} = sprintf('m=%.5f',mm(index));  
  
figure(3)  
plot(eta,y1,'LineWidth', 2)  
xlabel('\eta', 'FontSize', 20);  
ylabel('f', 'FontSize', 20);  
grid on  
hold on;  
  
figure(4)  
plot(eta,y2,'LineWidth', 2)  
xlabel('\eta', 'FontSize', 20);  
ylabel('df','FontSize', 20);  
grid on  
hold on;  
 
figure(5)  
plot(eta,y3,'LineWidth', 2)  
xlabel('\eta', 'FontSize', 20);  
ylabel(' d^{2} f/d\eta^{2}' ,'FontSize', 20);  
grid on  
hold on;  
 
figure(6)  
plot(teta*105/50*180/pi,cf,'LineWidth', 2)  
xlabel('\theta', 'FontSize', 20);  
ylabel('Normalized Cf', 'FontSize', 20);  
% '(u_{\infty}r_{0}/\nu}/pu_{\infty^{2} } [deg]'  
grid on  
hold on;  
 
figure(7)  
plot(x*150*105/50,taw,'LineWidth', 2)  
xlabel('x', 'FontSize', 20);  
ylabel('\tau(u_{\infty}r_{0}/\nu)^{0.5}(\rhou_{\infty}^{2})^{-1}', 'FontSize', 20);  
% '(u_{\infty}r_{0}/\nu}/pu_{\infty^{2} } [deg]'  
grid on  
hold on;  
 
figure(8)  
plot(teta*105/50*180/pi,taw,'LineWidth', 2)  
xlabel('\theta', 'FontSize', 20);  
ylabel('\tau(u_{\infty}r_{0}/\nu)^{0.5}(\rhou_{\infty}^{2})^{-1}', 'FontSize', 20);  
% '(u_{\infty}r_{0}/\nu}/pu_{\infty^{2} } [deg]'  
grid on  
hold on; 
 
 
end  
  
figure(3)  
legend(Legendinfo, 'FontSize', 15)  
xlim([0 boundary_eta])  
  
figure(4)  
%legend(Legendinfo, 'FontSize', 15)  
xlim([0 boundary_eta])  
  
figure(5)  
legend(Legendinfo, 'FontSize', 15)  
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xlim([0 boundary_eta])  
  
figure(6)  
%legend(Legendinfo, 'FontSize', 15) 
 
figure(7)  
%legend(Legendinfo, 'FontSize', 15)  
xlim([0 boundry_x])  
  
figure(8)  
%legend(Legendinfo, 'FontSize', 15)  
xlim([0 boundary_teta])  
 
 
function[source]= fcn_added(x,i,y1,y2,y3)  
h = 0.01;  
if i==1  
source(i)=x(i)*((y2(i)*(y2(i)-0))-(y3(i)*(y1(i)-0)))/h;  
else  
source(i)=x(i)*((y2(i)*(y2(i)-y2(i-1)))-(y3(i)*(y1(i)-y1(i-1))))/h;  
end  
  
end 
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