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Abstract 

Accurate prediction of stress and displacement in plates with central cracks is vital for 
engineering design safety. However, the impact of finite plate size on stress and displacement 
distribution is an important factor that has not been fully addressed in previous studies, 
highlighting the need for further investigation. Thus, this study presents a closed-form elastic 
solution for a rectangular plate with a central crack under tension load. The solution uses complex 
polynomial functions satisfying equilibrium equations and boundary conditions. Numerical finite 
element models verify the analytical solution's accuracy for plates with varying crack lengths. 
The presented closed-form solution accounts for the impact of finite plate size on stress and 
displacement distribution accurately. Developing closed-form solutions for structural mechanics 
problems enables engineers to optimize designs for safety, efficiency, and cost-effectiveness 
more accurately. 

Keywords: Finite cracked plate, size effect, closed-form solution, stress prediction. 

1. Introduction 

While an elastic solution for the crack problem in an infinite medium is readily available in many 
references (Sadd, 2005), closed-form solutions for real problems with limited sizes have not been 
provided due to the complexity of applying boundary conditions. Despite this limitation, the stress 
intensity factor in finite bodies has been studied extensively by researchers to consider size 
restrictions at the crack-tip fields. 

In the review paper by Isida (1971), a collocation method was employed to apply boundary 
conditions to a cracked strip under uniform tension, resulting in the estimation of the crack-tip 
stress intensity factor, while Wu et al. (1983, 1984, 1989) used the weight function method to 
calculate stress intensity in finite bodies under arbitrary loading conditions, a technique that has 
since been widely adopted by researchers such as Rice (1972), Fet (1999), Ng and Lau (1999), 
Kiciak et al. (2003), and Jones et al. (2004). Other methods used to estimate stress intensity factors 
in finite plates with multiple cracks include the general method presented by Cheung et al. (1992) 
and the Eigen function method used by Jun and Yu-qiu (1992), while more recent paper by Chen 
(2011) utilized the superposition of the Zener-Stroh crack problem in an infinite plate and a usual 
Griffith crack problem in a finite plate to calculate stress intensity factors. 
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Various studies have utilized numerical methods to investigate crack-tip fields in finite 
bodies under different loading conditions, alongside analytical works. Among these methods, the 
finite element method is widely used and has been employed by several researchers, including 
Rybicki and Kanninen (1977) and Guangwei et al. (1998). Additionally, Vafai and Estekanchi 
(1999) conducted a thorough examination of the stress and displacement fields in cracked plates 
and shells using finite element models. Palani et al. (2008) combined the crack closure technique 
with finite element models to determine the strain energy release rate and stress intensity factor. 
Nevertheless, other numerical methods have been used, as demonstrated by Rangelova et al. 
(2003) and Sahli et al. (2007), who evaluated the stress intensity factor using two different 
boundary element numerical methods. 

Numerous studies in the existing literature on the crack problem have focused on specific 
geometries or boundary conditions, providing numerical values of the stress intensity factor or 
empirical relations for the associated correction factor (Kabir and Aghdam 2019; 2021). 
However, Vafai and Estekanchi (1999) conducted an exceptional study using the numerical 
approach of finite element analysis to evaluate all stress and displacement fields in an entire 
cracked plate. Analytically, Seif and Kabir (2015, 2016) obtained the general form of stress and 
displacement fields, as well as the buckling load of symmetric and anti-symmetric modes for 
finite cracked plates. Subsequently, in their papers (2017, 2018), they verified the analytical 
results of buckling loads with experimental data by testing both modes under monotonic and 
fatigue cyclic loads, studying the effect of buckling on fracture capacity and fatigue life. In their 
more recent paper (2019), Seif and Kabir utilized the spline finite strip method to model the 
nonlinear post-buckling state and provided analytical approaches to evaluate the fracture capacity 
and fatigue life of notched sheets in the presence of buckling. 

The primary objective of the present study is to build upon the previous research conducted 
by Seif and Kabir in 2016, which explored the analytical form of stress and displacement fields 
in finite cracked plates. In order to achieve this, we aim to present a closed-form solution that 
takes into consideration the equilibrium equations and boundary conditions, with the aim of 
determining the unknown coefficients. To achieve this objective, the paper provides a detailed 
overview of the elastic fields' general form before delving into the method of analytical 
development. This approach allows us to present a comprehensive and robust analytical solution 
that takes into account all the necessary variables and parameters. Moreover, the paper aims to 
verify the validity of the analytical relations by comparing them with numerical results obtained 
using the finite element method. This will help establish the accuracy and precision of the 
analytical solution presented. Overall, the study represents a significant contribution to the field 
of finite cracked plates, as it presents a novel and more efficient approach to the determination of 
the stress and displacement fields. It is hoped that the results of this study will be useful in the 
design and analysis of structures that rely on finite cracked plates. 

2. Analytical approach 

2.1. General forms of the elastic fields 

Seif and Kabir (2016) presented a comprehensive solution for the elastic stress and displacement 
fields of a cracked plate depicted in Fig. 1. This solution is applicable to both finite and infinite 
cracked plates. To obtain the solution, the authors utilized the potential functions of infinite 
cracked plates and expanded them around the crack-tip. Consequently, the obtained results 
comprise infinite series forms of stresses and displacements. It is worth noting that the solution 
does not consider the plate's shape and boundary conditions. The presented solution is considered 
general, as the coefficients of the infinite series were not determined analytically, leading to an 
unknown value for these coefficients. 
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Fig. 18. Central cracked plate under tension. 

We take into consideration the complex form of the fundamental elastic relations for the 
stress and displacement fields as the basis for our solution. 

 ( )2 ' 'yy xxσ σ γ γ+ = +  (1) 

 ( )2 2 '' 'yy xx xyi Zσ σ τ γ ψ− + = +  (2) 

 2 ( ) 'U iV k Zµ γ γ ψ+ = − −  (3) 

where Z = X+iY is the well-known coordinate in the complex domain with the definition of i =
1− , γ and ψ are the complex potential functions, µ and k are defined in terms of the elasticity 

modulus E and Poisson’s ratioν  as µ = E/2(1+ν) and k = (3−ν)/(1+ν) and the prime and over-bar 
signs denote the derivative with respect to Z and the complex conjugate, respectively. A 
comparison between the general forms and the classic relation for infinite cracked plates is 
illustrated in Figure 2. 
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Classic relations of infinite cracked plates General relations for both finite and 
infinite cracked plates 
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Fig. 19. Elastic stresses and displacements of the cracked plate (Seif and Kabir, 2016) 

2.2. Closed-Form Solution 

On the right-hand side of Figure 2, the complex series represent the extended elastic relations 
from an infinite cracked plate to a finite one. Nevertheless, these series comprise an infinite 
number of terms with unknown coefficients, which can only describe the general form of stresses 
and displacements, irrespective of the plate's shape and boundary conditions. The objective of 
this section is to derive a closed-form solution for a rectangular, tensioned finite plate with a 
central crack, as depicted in Figure 3. 
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Fig. 20. A finite plate with a central cracked under applied tension. 

In order to obtain a closed-form solution for the problem, it is necessary to determine the 
unknown coefficients Ai and Bi on the right-hand side of Figure 2. These coefficients can be 
mathematically derived from the equilibrium equations and boundary conditions. However, since 
the number of such relations is limited, only a finite number of coefficients can be derived. 
Therefore, the number of terms in the analytical solution is proportional to the number of 
available relations. To take advantage of the symmetry of the problem, we consider a quarter of 
the plate, as depicted in Figure 4.  

 
Fig. 21. Schematic stress distribution in a quarter of a cracked plate. 

The model illustrated in Figure 4 leads to a force equilibrium in the X and Y directions, given 
by: 
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 ( ,0)
W

yy oa
X dX Wσ σ= ×∫  (5) 

Furthermore, the boundary conditions of stress and displacement can be considered as 
defined relations. The potential functions γ and ψ are naturally compatible with the symmetry of 
the problem and the boundary conditions associated to the symmetry of the problem, including 
the stresses and displacements on the axes of X and Y, do not give new relations. Therefore, the 
stress conditions on the outer edges of the plate, X = W and Y = L are considered as  

 ( ,0) 0xx Wσ =  (6) 

 oyy L σσ =),0(  (7) 

By utilizing the last four relations, we can determine the four unknowns, which include a 
single parameter, Bo, and three coefficients, Ao, A1, and A2, corresponding to the first three terms 
of the infinite series. By considering the first three terms from the relations on the right-hand side 
of Figure 2, we can simplify the normalized stress profiles as follows:  

 
2 2 2 2(2 ) 2 (2 3 ) 2 2 2 2(0, ) 3 (3 5 )1 22 2 3 2 2( )

Y a Y Y a YY A A A Y a Y a Y Bxx o o o
a Y a Y

σ σ
    + − +      = + + + + −        + +   
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 (11) 

Substituting (eq. 8-11) into (eq. .4-7), four unknown coefficients Ao, A1, A2 and Bo are 
determined in terms of geometry characteristics of the rectangular cracked plate W, L and a. The 
obtained results for a square plate with different crack lengths are tabulated in Table 1. 

 

a/W Bo Ao A1 A2 

0.20 1.0817 1.0600 -0.0008 0.0000003 

0.25 1.1291 1.0937 -0.0020 0.0000020 

0.30 1.1888 1.1349 -0.0042 0.0000090 

0.35 1.2617 1.1836 -0.0079 0.0000319 

0.40 1.3497 1.2397 -0.0137 0.0000967 

0.45 1.4551 1.3035 -0.0223 0.0002600 

0.50 1.5813 1.3751 -0.0345 0.0006380 

Table 1. The results obtained for a square plate with various crack lengths. 
 

By plugging the derived coefficients into the first three terms of the series shown on the right-
hand side of Figure 2, we can determine the elastic stress and displacement fields over the entire 
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cracked plate. To illustrate, Figure 5 displays the stress distribution obtained for a square cracked 
plate with a/W = 0.35, in comparison to the infinite cracked plate. 

Fig. 22. The stress distribution is depicted by the solid line for the quarter of the square cracked 
plate with finite sizes, whereas the dashed line corresponds to the infinite ones. 

As shown in Figure 5, the stress distribution in the cracked plate is notably affected by the 
finite size of the plate. Specifically, the singular stress intensity at the crack-tip of the finite plate, 
denoted by σyy, is higher when compared to that of the infinite cracked plate. In fracture 
mechanics, such an intensification of stress at the crack tip is defined by the well-known 
correction factor β. In the case of σxx, a similar increase appears at the crack edge and 
unexpectedly at the upper edge of the plate. However, the profile of stress σxx in both finite and 
infinite cracked plates coincide nearly at the zero point of stress (see Figure 5). It should be noted 
that the current solution considers only three terms of the series. As a result, the method presented 
provides an approximate closed-form solution for the elastic stresses and displacements of the 
finite cracked plates. To verify the accuracy of the current solution, a parametric study and 
numerical modeling, such as the finite element method, are required, which will be discussed in 
the following section. 

3. Numerical modelling and verifications

To validate the closed-form solution presented, a numerical finite element method was employed 
using the ABAQUS software. The numerical models were constructed using 4-node doubly 
curved general-purpose shell elements S4R. Similar to the analytical approach, only a quarter of 
a square sheet was modelled due to the biaxial symmetry of the plate, with overall dimensions of 
200 mm width and a half crack length of a = 70 mm. After conducting sensitivity analysis, the 
mesh divisions of the model were determined, as shown in Figure 6, with refinement near the 
crack tip. In comparison, the analytical results of the closed-form solution were calculated at 
uniform intervals of 5 mm in both the X and Y directions. 
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Fig. 23. Mesh layout for finite element analysis. 

The stress and displacement results of the closed-form solution and finite element method 
(FEM) were obtained under a uniform tension stress of 100 MPa. As the presented closed-form 
solution is the first of its kind for cracked plates with limited dimensions, contour plots were used 
to display the results. Figures 7 and 8 depict the comparison between the stress and displacement 
contours obtained from the closed-form solution and the numerical FEM simulations. The results 
show that the quality and quantity of the closed-form solution are in acceptable agreement with 
the numerical results of the finite element method. 
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Fig. 24. Comparison between the closed-form solution (Theory) and numerical finite element 

method (FEM) results for in-plane stress fields. 

Based on Figure 7, it can be observed that both numerical and analytical results show similar 
stress distributions around the crack tip, as well as the pattern of remote stresses. This indicates 
that the presented closed-form solution considers the singularity of the crack-tip stress and also 



A. E. Seif and M. Z. Kabir: Closed-Form Solution of A Metal Plate With A Central Crack Under Tension 

 

50 

takes into account the effects of exterior boundary conditions. Displacement contour plots in 
Figure 8 also show good agreement between numerical and analytical results. These contours are 
more uniform compared to the stress contours, as there is no singularity condition in the 
displacement fields. In conclusion, the comparison made in Figures 7 and 8 suggests that the 
analytical relations on the right-hand side of Figure 2, with the factors tabulated in Table 1, 
accurately provide the elastic fields of stress and displacement throughout the entire finite cracked 
plate. 

 

 
Fig. 25. Comparison between the numerical results of the in-plane displacement fields obtained 

from the finite element method (FEM) and the closed-form solution (Theory). 

To perform a thorough examination, stress and displacement diagrams along the X and Y 
axes were obtained from both the finite element method and the presented closed-form solution. 
Three different crack lengths, a/W = 0.2, 0.35, and 0.5, were considered small, medium, and large 
cracks. In addition, the classical solution of the infinite cracked plate (relations on the left-hand 
side of Figure 2) was included to emphasize the effect of finite sizes considered by the current 
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closed-form solution, which can also be taken as the theoretical lower limit of the relative crack 
length (e.g. a/W ≈ 0). The combined effects of crack length and plate size are briefly referred to 
as the size effect. The normalized stress and displacement diagrams are shown in Figures 9-12. 

Figure 9 illustrates the normalized diagrams of stresses, denoted as σxx and σyy, through the 
X-axis (where Y = 0) for various crack lengths. Results obtained using both the finite element 
method and the closed-form solution demonstrate that stresses near the crack tip are significantly 
intensified due to the size effect, which is known to increase as the crack widens. The stress 
diagram for σxx approaches zero at the free edge of the plate (a = W), as described by equation 
(6) in the closed-form solution. Conversely, the stress diagram for σyy has a non-zero value at the 
plate edge, which decreases as the crack length progresses. This is explained by equation (5), 
which states that the total area under the σyy diagram remains constant, independent of the crack 
length. Consequently, the stress value on one side of the diagram is diminished as the crack-tip 
stress on the other side increases, maintaining the total area constantly. Overall, the results 
obtained using the closed-form solution and numerical finite element simulations are in 
reasonable agreement, as demonstrated in Figure 9. This agreement is also evident in Figure 10, 
which shows that the general form of displacement diagrams is unaffected by the size effect. 

  
Fig. 26. The stress diagrams normalized at Y = 0 and X ≥ a are depicted using symbols for the 
finite element method, thin lines for the current closed-form solution of a finite cracked plate, 

and a bold line for the classic theory of an infinite cracked plate. 
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Fig. 27. The normalized displacement diagrams at Y = 0 are shown using symbols for the finite 
element method, thin lines for the current closed-form solution of a finite cracked plate, and a 

bold line for the classic theory of an infinite cracked plate. 

Normalized stress diagrams through the Y axis (X=0) are depicted in Figure 11. As the crack 
grows, both numerical and analytical results indicate that the maximum compressive stress is 
amplified for σxx. To account for this increase in compressive stress due to the size effect, Seif 
and Kabir (2015) introduced a new correction factor, denoted as β'. Moreover, the finite element 
results demonstrate that changes in tensile stress are more significant. The stress diagram 
generally exhibits a descending trend within the tensile phase for the infinite cracked plate, while 
for the finite cracked plates, it unexpectedly rises. This difference is also well established by the 
closed-form solution. Theoretical equation (4) asserts that the total area beneath the tensile stress 
diagram is in equilibrium with that of the compressive stress. Thus, to fulfil the equilibrium 
equation (4), increasing the maximum compressive stress because of size limitation must also 
lead to an increase in tensile stress (Kabir and Hooton (2020), Kabir et al. (2020)). 

 
Fig. 28. At X=0, the stress diagrams are normalized and obtained from three sources: the finite 
element method (represented by symbols), the current closed-form solution of the finite cracked 
plate (represented by thin lines), and the classic theory of infinite cracked plate (represented by 

a bold line). 
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All stress diagrams for σyy depict a zero-stress value at the free edge of the crack (Y=0). 
Furthermore, according to equation (7), the stress value should achieve the remote stress σo at the 
loading edge of the plate (Y=L). This fact is evident from both the finite element method and the 
closed-form solution prediction, as shown in Figure 11. In regard to σyy and the vertical 
displacement V in Figure 12, the impact of finite size on the overall trend of the diagrams is 
considered insignificant. In other words, the finite size effect can only be observed as an increase 
in stress and displacement linked to the improvement in relative crack length. 

 
Fig. 29. At X=0, the displacement diagrams are normalized and obtained from three sources: 
finite element method (represented by symbols), the current closed-form solution of the finite 

cracked plate (represented by thin lines), and the classic theory of infinite cracked plate 
(represented by a bold line). 

It is evident from Figures 9 to 12 that the size effect can substantially alter the shape of the 
stress and displacement diagrams. The impact of the size effect is more prominent in plates with 
wider cracks, particularly near the boundaries. Nevertheless, the current solution effectively 
accounts for the size effect in the finite cracked plates, and the resulting outcomes are in excellent 
agreement with the numerical results.   

4. Conclusion 

In this paper, we reviewed the general form of elastic fields in finite cracked plates previously 
presented by the authors and compared it with the conventional solution to the crack problem in 
an infinite plate. We discussed the relevant boundary conditions in a rectangular plate with a 
central crack, as well as the equilibrium equations in the quarter model of the plate. This resulted 
in four relations associated with two stress boundary conditions and two force equilibriums. 
Finally, we provided a closed-form solution for the finite cracked plate by taking the first three 
terms from the existing general solution and applying the four known relations. We presented the 
number of coefficients for a square plate with various crack lengths and verified the obtained 
elastic fields with the results of the finite element method made in the ABAQUS environment. 
The contour plots in a cracked plate with a/W = 0.35 showed the excellent conformity of the 
current closed-form solution with the numerical results of the finite element method over the 
entire plate. 

Based on the stress contour plots, we concluded that the presented closed-form solution 
accurately reflects the singularity of the crack-tip stress and the effects of outer boundary 
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conditions. For the displacement fields, analytical and numerical contours are more compatible 
due to the lack of singularity. We obtained normalized diagrams of the elastic stress and 
displacement fields in a square plate with relatively small, medium, and large cracks from the 
current closed-form solution and compared them with the numerical results of the finite element 
method. The diagrams showed how the stress and displacement diagrams change due to the size 
effect, with more changes observed over the plates with wider cracks. The major change in the 
form of the diagram was found in the case of σxx through the Y axis. Our results exhibited that 
the presented closed-form solution recognizes all size effects in finite cracked plates and is in 
good agreement with the numerical results. In conclusion, the presented closed-form solution for 
the elastic fields in finite cracked plates is an accurate and useful tool for engineers and 
researchers studying the behavior of cracked plates in various applications. 
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