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Abstract 

The results of a computational experiment on the analysis of the effectiveness of placing stiffeners 

on the outer side of the shell structure are presented. The calculations were carried out on the 

basis of a geometrically nonlinear mathematical model that takes into account transverse shears 

and orthotropy of the material. The calculation algorithm is based on the Ritz method and the 

method of continuing the solution with respect to the best parameter. To take into account 

stiffeners, the refined discrete method, proposed by the author earlier, is used. Shallow shells of 

double curvature are analyzed. The structures are made of steel and are simply supported, the 

stiffening ribs are arranged orthogonally. The values of critical buckling loads are presented. The 

effectiveness of the location of the stiffeners on the outer side of the shell structure is shown. It 

is revealed that the location of the ribs on the outside increases the value of the critical buckling 

load. 

Keywords: stiffened shells, buckling, outside ribs, Ritz method, mathematical model. 

1. Introduction 

The study of the process of deformation of shell structures is essential for various industries, 

including aircraft, building, shipbuilding, rocket science, and others (Al-Hashimi et al. (2009), 

Efimtsov and Lazarev (2009), Garcia and Ramos (2021), Sun et al. (2013), Uematsu et al. (2001), 

Ghasemi et al. (2021), Verwimp et al. (2015), Yu and Li (2016)). In construction, such structures 

are often used, for example, to cover large-span structures. 

The main requirement for shell-coatings of building structures is to ensure safe and long-term 

reliability of the structure at given levels of loads. At the same time, it is also important to reduce 

the material consumption of shell structures. Coating shells of building structures are made from 

various materials: reinforced concrete, steel, composite materials, some of which can be 

considered as orthotropic materials. 

Ghasemi et al. (2021) developed a new multi‐step optimization method to predict the optimal 

fiber orientation in GFRP composite shells. Some experiments are conducted to evaluate the 

critical buckling pressure in GFRP specimens, and the obtained analytical results are verified 

through comparison with experimental ones. 
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When calculating thin-walled shells, it is important to take into account the presence of 

reinforcement with stiffeners (Solovei et al. (2015), Dung and Nam (2014), Less and Abramovich 

(2012), Qu et al. (2013), Wang et al. (2016)), since this enables significant increase in the value 

of the critical load, redistribution of dangerous stresses, and thereby improvement of the 

performance of the structure. 

In Yu and Li (2016) the generalized similitude requirements and the scaling law of orthogonally 

stiffened cylindrical panels and shells for buckling and free vibration are derived by applying the 

similitude transformation to the total energy of the structural system. 

Structures reinforced with stiffeners are much more difficult to investigate than structures of 

constant thickness. There are several approaches to the introduction of stiffeners. For example, 

in Kidane et al. (2003) andJaunky et al. (1996), a discrete approach is singled out, which can be 

found, for example, in Qu et al. (2013), Amiro and Zarutskii (1983), Huang and Qiao (2020), 

Khalmuradov and Ismoilov (2020), Lee and Kim (1998), Mustafa and Ali (1989), Sadeghifar et 

al. (2011), Talebitooti et al. (2010), Wang et al. (1997), Wang and Hsu (1985) and Zhao et al. 

(2002), as well as an approach with stiffness smearing (Efimtsov and Lazarev (2009), Jaunky et 

al. (1996), Bich et al. (2013), Buragohain and Velmurugan (2009), Srinivasan and Krishnan 

(1989), Totaro (2016), Tu and Loi (2016), etc.). 

In Qu et al. (2013), free vibration characteristics of shell combinations with ring stiffeners are 

investigated by using a modified variational method. Reissner–Naghdi’s thin shell theory in 

conjunction with a multilevel partition technique, viz., stiffened shell combination, shell 

component and shell segment, is employed to formulate the theoretical model. 

Reviews on stiffened shells and the application of stiffening smearing methods can be found in 

significant papers (Wang et al. (2016), Jaunky et al. (1996), Sadeghifar at al. (2011), Buragohain 

and Velmurugan (2009), Jones (1968), Ren et al. (2014)). 

Ren et al. (2014) performed buckling experiment on an advanced grid stiffened structure to 

validate the efficiency of different modeling methods. Based on the comparison, the 

characteristics of different methods are independently evaluated. 

Earlier in Semenov (2021) and Karpov and Semenov (2020) the authors proposed a refined 

discrete method for calculating stiffening structures. In these papers, the application is extended 

to the class of shallow shells of double curvature, stiffened with stiffeners from the outside. 

2. Theory and Methods 

2.1 Fundamental relations 

For the Timoshenko (Mindlin – Reissner) model, displacements in a layer located at a distance 

z  from the middle surface will take the form 

 , ,
z z z

x yU U z V V z W W        (1) 

where U , V , W  – displacements of points of the middle surface along the local shell axes 

, ,x y z  respectively; ,x y   – angles of rotation of the normal in the planes ,x z y z  . 

Geometric relations in the middle surface of the shell, taking into account the geometric 

nonlinearity, are presented as follows: 
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where ,x y   – strains along coordinates x , y  of middle surface; , ,xy xz yz    – shear strains in 

, ,x y x z y z   ; ,A B  are Lamé parameters; ,x yk k  are the primary curvatures of the shell along 

the x  and y  axes; 1 2,R R  are the principal curvature radii characterizing the geometry of the 

shell. Geometric relations for a layer, spaced at z  from the middle surface are expressed as 

follows: 

 1 2 12, , 2 ,
z z z

x x y y xy xyz z z               (3) 

and the curvature functions 1 , 2  and torsion function 12  are: 
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The shape of the shell structure is specified through the Lame parameters and the values of the 

radii of the main curvatures of the shell. 

In order to find stresses, stress-strain relations are used:  
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Here, 1 2 12 21, , ,E E    are the elastic moduli and Poisson coefficients of the shell material; 

12 13 23, ,G G G  are the shear moduli in the , ,x y x z y z    planes, respectively; ( )f z  is a function 

characterizing the distribution of shear strains ,xz yz   along the thickness of the shell; and k  is 

a numerical coefficient: 
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For shells, stiffened by ribs, it is convenient to write separately the parts of the model related to 

the skin, and separately the parts related to the stiffeners. 

First, the expressions for the forces and moments that occur in the skin (superscript “0”) are 

considered – they are found by integrating stresses (5) by z  from / 2h  to / 2h : 
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As a basis for the mathematical model of deformation of the shell structure, it takes the functional 

of the total potential energy of deformation (the Lagrange functional). Models built using the 

functional were also considered by many authors (Qu et al. (2013), Jaunky et al. (1996), Lee and 

Kim (1998), Mustafa and Ali (1989), Talebitooti at al. (2010), etc.).  

Represent the functional as the difference between the potential energy of the system and the 

work of external forces 

 
0 0

,
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s s p p pE E E E E       (6) 

where 
0

sE  – component of the functional related to the skin; 
R

pE  – potential deformation energy 

of the system related to stiffeners; 
0

pE  – potential deformation energy of the system related to the 

skin;   (alfa) – work of external forces. 

Part of the functional related to the skin: 
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and 
R

pE  part of the functional related to stiffeners 
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   (8) 

As a rule, if an external load is applied along the normal to the surface of the shell, then 

,x xsv y ysvP P P P   (self-weight load components), and its transverse component can be given as 

0 svq q q  , where 0q  – applied lateral load, MPa; svq – transverse load component due to shell 

self-weight, MPa. 

In accordance with the refined discrete method for taking into account stiffeners, the forces and 

moments acting in the ribs can be written as (Karpov and Semenov, 2020): 
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where 

     , , , / 2, / 2, / 2,
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Here ,
i j

h h  – stiffeners height; superscripts i  and j  indicates the number of the stiffener located 

parallel to the axis x  and y  respectively; ,n m  – ribs amount;  min ,
ij i j

h h h , that is, the 

common part of the intersection of the stiffeners;  jx x   and  iy y   – unit column 

functions, which are the differences of two unit functions      ;j j jx x U x a U x b       

      ,i i iy y U y c U y d       where  / 2j j ja = x r A ,   / 2 ,j j jb = x + r A  

 / 2i i ic = y r B ,   / 2i i id = y + r B , ,i jr r  – width of stiffeners. 

In order to place the stiffeners on the outer side of the skin, it is necessary in Eq. (10) for the 

variables , ,x y xyS S S  to change the sign to the opposite one (i.e. to “–”). 

2.2 Methods 

In this paper, for the study of shell structures, it is proposed to use an algorithm based on the Ritz 

method and the method of continuing the solution with respect to the best parameter (Semenov 

(2016)). 

According to this algorithm, the Ritz method is applied to the functional to reduce the variational 

problem to a system of nonlinear algebraic equations. To do this, the desired functions are 

represented in the form: 
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where kl klU PN  – unknown numeric parameters. Substituting Eq. (12) into functional Eq. (7), 

(8), derivatives can be found with respect to the unknown numerical parameters kl klU PN . Thus, 

a system of nonlinear algebraic equations is obtained. 
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To solve this system, the method of continuing the solution with respect to the best parameter is 

used. 

All calculations are carried out in dimensionless parameters; however, all formulas and 

results are given in dimensional form. 

3. Numerical Results 

The applicability of the method described above for introducing stiffeners is demonstrated by the 

example of calculating flat shells of double curvature (Table 1) made of steel with parameters 
5

1 2 2.1 10E E    MPa, 12 21 0.3   . The shells are square in plan, simply supported along 

the contour and are under the action of a uniformly distributed transverse load q  directed along 

the normal to the surface.  

The shells are stiffened by an orthogonal grid of ribs distributed evenly over the structure. Ribs 

width 2
j i

r r h  , ribs height 3
j i

h h h  . The distance between the ribs is denoted rx , and 

the outside ribs will be located from the contour of the structure at a distance 0.5 rx . 

 

, mh  , ma  , mb  1, mR  2 , mR  

0.09 18 18 45.27 45.27 

Table 1. Geometrical parameters of shells. 

 

m18a
m18b

m27.4521  RR

m09.0h

 

Fig. 1. Considered shallow shells of double curvature. 

In Eq. (12) takes 16N  . 

The number of stiffeners will be taken the same in both directions, increasing it by 4 for each new 

version of the grid. 

Table 2 shows the values of critical buckling loads for different stiffening options, obtained using 

the refined discrete method of considering stiffeners.  

As can be seen from the presented data, the reinforcement of the structure with stiffeners from 

the outside is effective. Fig. 2 shows graphs of the corresponding dependencies “load – 
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deflection”. The red curve 
cW  in the diagrams depicts the deflection in the center of a structure 

  1
/ 2, / 2x a a y b   , and the blue curve 

4W  the deflection in the quadrant of a structure 

  1
3 / 4, / 4x a a y b   . 

 

Stiffening scheme 
Critical buckling load 

crq , MPa 

0 0  4 4  8 8  12 12  

Ribs on the inner side 
0.6238 

1.1411 2.5078 3.0508 

Ribs on the outer side 1.9087 3.2679 3.2115 

Table 2. Critical buckling loads for the considered shell when placing stiffeners on the inside or 

outside. 
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Fig. 2. Results for the considered shell with stiffeners located on the outside. 

From Fig. 2 it can be seen that an increase in the number of stiffening elements at a certain 

moment changes the form of the deformation process: before the increase in the grid of stiffeners 

to 12x12, the formation of loops in the “load – deflection” graph at the central point was specific, 

which indicates the formation of dents and local buckling. With a grid of stiffeners 12x12, the 

value of the critical buckling load is slightly reduced; however, this is a compensating effect from 

the stabilization of the deformation process and the disappearance of local buckling in the central 

part of the structure. 

The proposed method was verified for shells stiffening with ribs on the inside (due to the fact 

that the author could not find experimental results for problems in an absolutely identical 

formulation in known sources). 

In their publication, Klimanov and Timashev (1985) present results of experiments 

conducted at the Ural Research Center of the USSR Academy of Sciences to study the buckling 

of plexiglass shells. The authors tested 18 samples of square shallow doubly curved shells with 

parameters 0.001h   m, 0.604a b   m, 1 2 1.51R R   m (material: plexiglass with 

parameters 
5

0.0331 10E    MPa, 0.354  ; parameters of stiffeners: 9n m  , 

0.0033
i j

h h   m, 0.0092r   m). The resulting buckling load values crq  ranged from 



Alexey Semenov: BUCKLING OF SHALLOW SHELLS OF DOUBLE CURVATURE…  
 

 

62 

2
0.411 10


  MPa to 2

0.703 10


  MPa. After mathematical processing of the experimental data, 

the resultant value of the critical load was calculated to be 
2

0.503 10crq


   MPa. 

Analysis for this version of the structure using the refined discrete method, mathematical 

model and algorithm, described in this paper, yielded the critical buckling load 
2

0.551 10 MPacrq


   which is in good agreement with the experimental results. 

Verification of the kind of the resulting curves can be partially compared with the work of 

Wang (2007), where orthotropic shallow shells of double curvature, square in plan and simply 

supported on the contour are investigated. In the base of the algorithm, it is proposed to use DQM 

(Differential quadrature method). Parameters of the shell: 0.2a b   m, 1 5R   m, 

2 3.33R   m, 0.00022h   m, 
5

1 0.2 10E    MPa, 
5

2 0.4 10E    MPa, 12 0.1  , 

5

12 0.1 10G    MPa. It should be noted that the model presented in Wang (2007), in contrast to 

the proposed model, does not include the effect of transverse shears. The “load q  – deflection 

W ” graph are shown in Fig. 3. 

 

Pa,q

m,W
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60

4
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0

40

4
105




4
10


 4

10


 2007,WangcW

 2007,WangmaxW

cW

4W

 

Fig. 3. Verification of the proposed methodology (comparison with Wang (2007)). 

4. Conclusions 

The author extended the previously proposed refined discrete method for accounting for stiffeners 

to the class of shallow shells of double curvature, reinforced with stiffeners from the outside. The 

bottom line is to add different reduction factors along different coordinate axes. For stiffeners 

directed perpendicular to the considered direction, a reduction factor is introduced equal to the 

ratio of the width of the ribs in this direction to the linear size of the shell in the considered 

direction. 

Analysis was made for the buckling of steel shallow shells of double curvature, stiffening by 

ribs from the outside or from the inside. Comparison of results is carried out. It was found that 
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the location of the ribs on the outside increases the value of the critical load of buckling, and can 

have an effect of up to 40 %, decreasing with an increase in the number of stiffening elements. 
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