
Journal of the Serbian Society for Computational Mechanics / Vol. 16 / No. 1, 2022 / pp 16-28 

(10.24874/jsscm.2022.16.01.02) 

 

ON THE EQUILIBRIUM OF STRATIFIED VISCOELASTIC PLASMA 

WITH QUANTUM PRESSURE AND SUSPENDED PARTICLES 

SATURATING POROUS MEDIUM 

Anukampa Thakur1, Veena Sharma1*, Gian C. Rana2*  

1 Department of Mathematics and Statistics, Himachal Pradesh University, Shimla-171005, 

India 

e-mail: anu.thakur9@gmail.com, veena_math_hpu@yahoo.com 
2 Department of Mathematics, NSCBM Govt. College, Hamirpur-177005, Himachal Pradesh  

e-mail: drgcrana15@gmail.com 

*corresponding authors 

Abstract 

Stability of stratified incompressible viscoelastic plasma arranged in horizontal strata with 

quantum pressure and dust particles saturated by a porous medium is investigated. The rheology 

of the plasma is described by the Walters’(model '
B ).The set of non-linear partial differential 

equations defining the physical system are reduced to linear ordinary differential equations by 

using the perturbation method, linear theory and normal mode technique. The density, viscosity, 

viscoelasticity and quantum pressure are assumed to stratify exponentially along the vertical, to 

obtain exact solutions satisfying the physical boundary conditions and the dispersion relation. 

The values of growth rate of the unstable perturbed modes are computed numerically to 

investigate roles that the various variables play on the stability on the considered physical system 

and are shown graphically. It is observed that the suspended dust particles density and relaxation 

time factor have a destabilizing effect on the system; whereas viscoelasticity in the presence of 

suspended dust particles lead to more damping in the frequency of perturbed waves. This work 

finds applications in diverse fields viz. modern technology, industries, astrophysics, petroleum 

oil additives, equipment of aero planes etc. 

Keywords: Quantum pressure, stratified plasma, Walters’ (model '
B ), porous medium, dust 

(suspended) particles. 

1. Introduction 

Rayleigh-Taylor instability (RTI) arises from the equilibrium of an incompressible in which 

density of a layer is higher than its adjacent layer and is continuously varying along the vertical 

chosen direction under the action of vertical gravity field Rayleigh (1900) and Taylor (1950). The 

experimental demonstration of the development of the Rayleigh–Taylor instability (in case of 

heavier fluid overlaying a lighter one, is accelerated towards it) was described by Lewis (1950). 

This instability is of significance in the extraction of oil from the earth to eliminate water drops, 

in analyzing the frequency of gravity waves formed in deep oceans, lazer and inertial confinement 

fusion (ICF) etc. 
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Quantum physics is the branch of science that deals with discrete, individual units of energy 

is called quanta as described in quantum theory. The pressure term in the equations of motion is 

divided into two terms, 
C Q

p p p  . The classical pressure, 
C

p  and quantum pressure, 
Q

p have 

been investigated by Gardner and Haas (1994, 2005), by using Wingen principle and Schrödinger 

wave equation. In the momentum equations, the classical pressure and the quantum pressure 

(Bohm vector potential) are defined by  p  and 

2ˆ
,

2
e i

h
Q

m m






 
  

 
 

 where ˆ, , eh m  

and im  are the Plancks constant, density of fluid, masses of electron and ion, respectively. 

Plasma is comprised of an electrically neutral medium of positive and negative particles. The 

mobility of charges influences each other’s fields due to the generated electrical currents due to 

magnetic fields. As far as the electron plasma frequency is larger than the electron-neutral 

collision frequency, dominance of electrostatic interactions takes place over the ordinary gas 

kinetics processes. Plasma is an ionized gas that is also called the fourth state of matter. To form 

plasma, the gas may be heated or an excess of free electrons is needed to displace electrons in the 

atoms and molecules of the gas. The degree of ionization of a plasma is defined as proportion of 

charged particles to the total number of particles including neutral and ions. It is mainly controlled 

by temperature. It is surprising that a partially ionized gas with hardly 1% ionized particles, may 

act as plasma. Lightning is an example of plasma present at Earth’s surface. 

Partially ionized plasma is presented by a condition that often exists everywhere. The 

interaction between the ionized and neutral gas components is one of the situations of great   

importance in cosmic physics. Ionized hydrogen has been reported to be limited to certain sharply 

bounded regimes of space by Strömgren (1939). O-type stars and their clusters are essentially 

non-ionized. Gardner (1994) has introduced the quantum hydro-dynamic model (QHDM) for 

semiconductor physics to describe the mobility of charge, energy and momentum in plasma. The 

impact of quantum pressure with inclusion of magnetic field on RTI has been investigated by 

Hoshoudy (2009) and the vertical magnetic field is found to bring more stability on the growth 

rates of unstable configuration along with quantum effect. External magnetic field effect on RTI 

in non-homogeneous rotating plasma/fluids with an angular velocity has been demonstrated by 

Hoshoudy (2012). The plasma or fluids have been taken to be Newtonian in the aforesaid studies.  

With the growing potential of the non-Newtonian fluids saturating a porous medium in 

industrial processes, petroleum engineering and astrophysical situations (Larson (1992), Bird et 

al. (1987)), the researchers are attracted and show interest to investigate RTI of such fluids 

worldwide. There is a variety of models of such fluids whose behavior is described by constitutive 

relations. We are interested therein the Walters’ (model '
B ) proposed theoretically by Walter 

(1960). RTI for both cases of superposed and exponentially stratified non-Newtonian fluids have 

been investigated theoretically and analytically by many authors (Sharma and Sharma (1977), 

Sharma and Kumar (2004), Sunil et al. (2004), Kumar and Lal (2007), Kumar and Singh (2011)). 

Stability of stratified viscoelastic fluid through porous medium with magnetic field has been 

established by Sharma and Urvashi (2006) and magnetic field is found to stabilize the system 

substantially.  

In general, comets may comprise of a dusty snowball, being a mixture of frozen gases and 

transform from gas to solid and vice versa. Dust (suspended) particles play a vital role in 

industries, space, astrophysical plasmas and laboratory problems. Interstellar media has been 

found to contain small particles in the outer atmosphere termed as grains, galaxies and get ejected 

into the medium. This problem was first demonstrated by Alfvén and Carlqvis (1978) to analyze 

the formation of stars through Jeans instability. Sharma (1975) studied the impact of dust particles 

on the gravitational instability of an infinite homogeneous gas–particle medium, while that of a 
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finitely conducting, rotating with uniform vertical magnetic field has been investigated by Sharma 

and Sharma (1980). Prajapati et al. (2009) have also discussed the influence of magnetic field of 

two streaming superimposed fluids. Later, Prajapati and Chhajlani (2010) found the impact of 

suspended dust particles on streaming superposed fluids in porous media and observed substantial 

stabilizing influence of suspended dust particles density and medium porosity on the unstable 

growth rates. A time dependent flow problem of dusty fluid flow in a rotating horizontal channel 

has been studied by Singh et al. (2016). Dolai and Prajapati (2018) have investigated the stability 

of two rotating superposed dusty plasmas and found a stabilizing influence in the presence of 

magnetic field, dust cloud and rotation. Spacecraft observations have emphasized upon a vital 

role of dust particles in dynamics of atmosphere and diurnal with variations in the surface 

temperature of Martin weather. 

The empirical formula of flow of a fluid saturating a homogeneous and isotropic porous 

medium has been postulated by Darcy (1856). It replaces the usual viscous and viscoelastic terms 

in the equations of motion in an incompressible Walters’ (model '
B ) fluid by the resistance terms 

1 '

1
k t

 
  
   

  
 

q
 where 

'

1, , and k q  are filter velocity of pure fluid, kinematic viscosity, 

kinematic viscoelasticity and medium permeability.  

Yadav and Ray (1991) have analyzed the unsteady flow of n-immiscible Walters’(model '
B ) fluid 

in a porous medium within two parallel plates to include a vertical magnetic field. Sharma and 

Rana (1999) analyzed the stability of viscoelastic fluid with horizontal magnetic field and rotation 

with a uniform vertical angular velocity in a porous medium and the system is found to be 

stabilized substantially due to magnetic field which was otherwise unstable.  Numerical 

investigations on the stability of viscoelastic Walters’(model '
B ) fluid/plasma with exponential 

variations in density ,viscosity, viscoelasticity and quantum pressure in porous medium has been 

established by Sharma et al. (2014) and quantum pressure is found to bring about more stability 

for a certain wave number band, on the growth rate of unstable configuration. Prajapati (2016) 

has analyzed the RTI of strongly coupled viscoelastic fluid with non-uniform magnetic field and 

rotation and magnetic field, viscoelasticity and rotation are found to suppress the RTI 

substantially. Hoshoudy and Awasthi (2020) have analytically demonstrated the compressibility 

effects in Kelvin Helmholtz instability, KHI and RTI of two immiscible fluids in a porous 

medium and found that compressibility suppresses the Kelvin Helomholtz instability.  

Motivated by diverse applications of various parameters mentioned above, the present work 

aims at to examine the stability of stratified viscoelastic plasma embedded with dust particles and 

quantum pressure saturating a porous layer, which is primarily devoted to the research work of 

Sharma et al. (2014). The viscoelastic behavior of the plasma is described by Walter’(model '
B ) 

and Darcy model (1856) is deployed to explore the characteristics of porous medium.  

2. Physical problem and mathematical analysis 

An infinitely non-compressible, infinitely extending viscoelastic Walters’ (model '
B ) 

heterogeneous (heavy) plasma bounded by the planes   and   is arranged in horizontal strata of 

electrons and immobile ions saturating porous medium. The density, coefficient of viscosity, 

viscoelasticity and hydrodynamic pressure are assumed to vary with respect to vertical co-

ordinate of inertial frame of reference i.e. z-axis. 
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Due to the dust particles, the fluid exert a force on particles which is equal and opposite to 

that of particles, an extra force term given by  
KN


V q  is added in the equations of motion 

where , ,N V  are suspended particle velocity, the particle number density, medium permeability 

and K  is the Stokes’ coefficient of resistance, given by 6K a   for spherical particles, a  is 

the particle radius. The inter-particle reactions are ignored due to large enough distance among 

the particles. 

The modified conservation equations of the problem (Chandrasekhar (1961), Hoshoudy 

(2011, 2016)) are 

    '

1

1 1
. ,

 

KN
p

t k t


  

  

    
               

q q g q Q V q  (1) 

 . 0, q  (2) 

  . 0.
t

 





  


q  (3) 

The equations of motion and continuity of the dust particles are given by 

    
1

. ,mN KN
t 

 
     

V
V V q V  (4) 

  . 0,
N

N
t




  


V  (5) 

where m  is the mass of dust particles and mN  represents mass of particles contained in unit 

volume. 

The buoyancy force on the particles is neglected.  

The basic state solutions for which the stability is to be examined, is characterized by 

      0,0,0 , 0,0,0 , z   q V  and ( ).zQ Q  (6) 

The stability of the system of flow of motion is examined by superimposing perturbations 

with infinite amplitude on the basic state solutions (6).  

Let      1 1 1, , , , , , , , , ,x y zu v w l r s p Q Q Q  q V Q  represent the respective perturbations in 

fluid velocity, particle velocity, density, pressure and quantum pressure, which are assumed to be 

functions of space as well as time variables. Thus the disturbed flow is represented by 

 
           0,0,0 , , , 0,0,0 , , , ,u v w l r s p p z p z          q V    

 and  z . Q Q Q  (7) 

Using perturbations given by (7) and linear theory (neglecting the products of second and 

higher order perturbations because their contributions are infinitesimally very small), equations 

(1) – (4) in the linear perturbed form become  

  '

1

1
,

KN
p

t k t


    

 

  
        

  

q
g q Q V q  (8) 
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 . 0, q  (9) 

  . 0,
t

 





  


q  (10) 

where 

 

     

     

1 1 1 1 22 2 2 2
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2

h

m m
e i

 
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   



     

  

 
                   

 
  

        
 
 

Q   

Both the bounding surfaces are supposed to be rigid. Thus, appropriate boundary conditions 

to be satisfied by the problem are 

 0w  , 0Dw   at 0z   and .z d  (11) 

To examine the stability of the system, perturbations are analyzed in terms of modes by 

ascribing a wave number, whose dependence on the space ( , , )x y z  and time, t  is of the form 

      '
, , , exp ,x yf x y z t f z i k x k y nt    (12) 

where 
2 2

x yk k k   is the resultant real wave number and n  is the complex growth rate.  

Now, using the expression (12) and equation (4), equations (7) - (9) in the Cartesian form are 

  ' '

1

1

1
,x xN u ik p in u Q

k


  


      (13) 

  ' '

1

1

1
,y yN v ik p in v Q

k


  


      (14) 

  ' '

1

1

1
,zN w D p g in w Q

k


   


       (15) 

 0,x yik u ik v Dw    (16) 

 ,in wD    (17) 

where ' imnN
N = in+ ,

imn
ρ 1+

k

 
 
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Eliminating variables , ,u v p  and using equations (13) - (17), we get characteristic equation 

in w as 

 

      

 

* * * 2
2 2

2 2 2
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 
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 
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where  * ' '

1

n in n in
k


 

 
   

 
 

3. Solution of the problem 

Now the fluid density, coefficient of viscosity, viscoelasticity, pressure of quantum plasma are 

assumed to stratify continuously of the form  

 

       

       

0 0 0 0

' '
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D D
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D D

z z
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L L

z z
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 

   
    

   

   
    

   

 (19) 

where        '

0 0 0 00 , 0 , 0 0qn    and DL  are constants. 

Using the stratifications of the form given by (19), the characteristic equation (18) transforms 

to 

      * 2 2 * 2 2 * 21
0,q q q

D D

g
n n D w n n Dw k n n w

L L

 
       

 
 (20) 

where 
2

2
2ˆ

2
q

h k
n

nm m
e i


  represents the parameter accounting for quantum pressure. 
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Using the boundary conditions (10), the equation (20) implies that 

 
2

0D w   at 0z   and .z d  (21) 

Therefore, the exact analytical base functions of equation (20) satisfying the boundary 

conditions (10) and (21), are taken as 

  sin exp ,
m

w z z
d




 
  

 
 (22) 

where m  is a positive integer.  

Substituting the solution given by (22) in equation (20), we obtain  

 

* 2 2
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Equating the coefficients of sin
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 
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n
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d

 
 
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 of equation (23) yield that 

  
2

2 2 * 2* 2
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
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 (24) 

and 
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As * 2
n n

q
  , therefore, equation (25) implies that 

1
.

2 DL
    

Putting this value of   in equation (24), the dispersion relation so obtained is 
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 
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which on substituting the value of 
*

n  implies to 
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 (26) 

where 
6

m

a


 
  and 0

mN



  represent the relaxation time and mass concentration of dust 

particles, respectively. 
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Now introducing the non-dimensional quantities 

2 2 '
* * 2 * * '*1

2 4 2

2
*2 *2 2 2 * *1

1 2 2
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, , , , ,
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* , , , ,

q
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in equation (26) (the asterisks are omitted for the sake of convenience) yields 
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 (28) 

Since r in n in   and pure oscillations occurs for 0rn   and 0in  , therefore, the equation 

(27) implies that 

 
4 3 2

1 2 3 4 5 0.i i i ia n a n a n a n a      (29) 

Equation (29) is the required dispersion relation between growth rate, n and the wave 

number, k to examine the stability of the system. 

Now special cases arise: 

Case I: In the absence of suspended particles i.e. 0   and 0 0,   equation (29) reduces 

to 

    
'

2 2 2 2 2 2 2 2 2

1 1

1 4 4 4 0,
q D

n n d gk d m n gk d L
k k

 


     
          

     

 (30) 

which is in good agreement with the earlier result by Sharma et al. (2014). 

Case II: In the absence of quantum pressure i.e. 0qn   equation (30) shrinks further to 

  
'

2 2 2 2 2 2 2 2

1 1

1 4 4 4 0,
D

n n d gk d m gk d L
k k

 

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         

     

 (31) 

which coincides well with the earlier results of Sunil et al. (2004). 
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4. Results and discussion 

The numerical values of the growth rate of unstable mode are computed numerically from the 

dispersion relation encapsulated in equation (31) with the help of software Mathematica version-

12. The fixed permissible values of the involved pertinent parameters are taken as 

1 00.6, 0.4, 0.6, 0.4, 1, 1, 2, 0.4qn k m d            and 10g   respectively, 

(Hoshoudy 2011, 2016). 
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Fig. 1. The square of normalized growth rate, 
2

in  versus the square of normalized wave 

number, 
2

k  with respect to kinematic viscosity, 
' . 

Figure 1 illustrates the variation of the square of normalized growth rate, 
2

in  versus the 

square of normalized wave number, 
2

k  for distinct values of kinematic viscoelasticity, 
'

0.4,0.6,0.8.   It has been found from the figure that the viscoelasticity decreases the maximum 

point, maxk  for the instability and the magnitude of 
2

in  decreases with increase in 
'  implying 

thereby the stabilizing effect of kinematic viscoelasticity on the system.  
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Fig. 2. The square of normalized growth rate, 
2

in  versus the square of normalized wave 

number, 
2

k  with respect to quantum pressure, 
qn . 

In Fig. 2, the influence of the quantum pressure of plasma, is visualized on the growth rates. 

The graphs depict a large enough stabilizing role on the growth rate of RTI of stratified plasma 

as the amplitude of growth rate educes with the increase in the value of quantum pressure 

parameter, 
qn . Thus the instability region is shrunk. 
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Fig. 3. The square of normalized growth rate, 
2

in  versus the square of normalized wave 

number, 
2

k  with respect to mass concentration,  . 

The variation of the square of the normalized growth rate, 
2

in  versus the square of 

normalized wave number, 
2

k  for distinct values of mass concentration parameter accounting for 

suspended particles, 0 0.4,0.6,0.8   has been displayed in Fig. 3.  It is depicted from the graph 

that there is an increment in the amplitude of growth rate with increase in the value of mass 
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concentration parameter. Consequently, the mass concentration of the dust particles has a 

destabilizing role on a system. 
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Fig. 4. The square of normalized growth rate, 
2

in  versus the square of normalized wave 

number, 
2

k  with respect to relaxation time factor,   

The growth rate, 
2

in  is plotted against the wave number, 
2

k  in Fig. 4 for three distinct values 

of relaxation time factor, 0.6,1, 2.   It is assessed from the graph that relaxation time factor has 

stabilized the RTI, as the amplitude of growth rate falls with rise in the relaxation time factor. 

It is noteworthy from Fig. 1, 3, 4 that the presence of the viscoelasticity, quantum pressure 

and suspended particles reduce the values of cut-off wave number.  

5. Conclusion 

Influence of quantum pressure and dust particles on the stability of stratified Walters’ (model
'

B ) fluid / plasma in a porous medium is investigated. The relevant quantum hydrodynamic 

equations with dust particles and porous medium are formed. These equations are solved 

analytically using the normal mode technique to derive a dispersion relation of the RTI to assess 

impact of pertinent parameters on this instability. The effect of elasticity is revealed through the 

quantum pressure in the presence of dusty particles. The relaxation time of dust particles, the 

quantum pressure and the kinematic viscoelasticity are found to stabilize the RTI by lowering the 

amplitude of growth rate of perturbation substantially; whereas the effect of the mass 

concentration of the dust particles is to destabilize the RTI. Thus the simultaneous presence of 

quantum pressure and suspended particles play a major role in stabilizing quantum hydrodynamic 

RTI. This research work can be further extended for the presence of uniform as well as variable 

magnetic field to explore the suppression of RTI in laser plasma interaction, crab nebula, MTF 

(Modulation Transfer Function) device, white dwarfs in which the growth rate of RTI will be 

stabilized substantially due to magnetic field. 
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