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Abstract 

Elastic strain is covered by the effective medium homogenization method inside a representative 

volume element (RVE). It has an incremental quasi rate-independent (QRI) form obtained by the 

endochronic concept of thermodynamic time. The rate dependence takes place by means of stress 

rate dependent value of the initial yield stress. Free meso rotations and constrained micro rotations 

within a representative volume element (RVE) are assumed. A comparison between QRI and J2 

diffuse instability equations is presented for orthotropic materials. A new QRI nonlinear evolution 

equation for orthotropic materials is derived by tensor function representation with Spencer-

Boehler structural tensors.  

Keywords: Orthotropic, metal forming, endochronic, directionality 

1. Introduction 

The motivation for this paper lies in the fact that Hill’s orthotropic yield function, based on a 

simple generalization of Mises isotropic yield function, is not able to cover diverse stress 

directions in metal forming. This especially holds for non-proportional stress-strain histories (cf. 

Micunovic, 2009b) even for initially isotropic materials. The second cause is that overwhelming 

majority of so-called J2 theories of viscoplasticity is built using only uniaxial tension tests. Trials 

to apply such theories to multiaxial case are useless since they lead to introducing a lot of material 

constants. However, such calibrated constants predict very badly material behavior at shear and 

other multiaxial strain histories. The third is to extend region of diffuse instability analysis to 

higher strain rates which may appear in metal forming technology. Finally, an appropriate 

approach to inelastic strain induced anisotropy, based on micro-meso analysis, is certainly 

welcome. 

For all these reasons, another approach is needed. First, a geometry of deformation based on 

Kroener’s incompatibility approach as well on Eshelbian implanting eigenstrains is given briefly. 

By using the self-consistent effective medium approach, an effective Hooke’s law for anisotropic 

media (cf. Micunovic 2005) is used to model an orthotropic medium by stiff prolate spheroidal 
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inclusions. This method, applied to inelastic polycrystals, is based on constrained micro-rotations 

and free meso-rotations. 

Then, the evolution equation for inelastic stretching is based on quasi rate independence 

(QRI) and Rabotnov’s inelastic delay with tensor representation. A Vakulenko’s type of 

endochronic thermodynamics with the concept of thermodynamic time (Vakulenko 1970) lies 

behind such a QRI approach. Experiments in JRC, Ispra, Italy (Micunovic et al. 2007) confirmed 

that for isotropic reactor AISI reactor steels even a small number of material constants in the QRI-

approach leads to very high correlation coefficient. These tests gave rise to a universal material 

constant constituting the most important part of the hereditary Rabotnov’s kernel. The constant 

holds for diverse multiaxial stress histories and a wide range of strain rates - as it has been found 

in Micunovic et al (1997). It must be mentioned here that tensor function representation has been 

extensively used by Sawczuk, Murakami, Boehler and the others (cf. Micunovic et al 1997; 

Micunovic 1981; 2005; 2006; 2009a; 2009b; Micunovic and Kudrjavceva 2014; 2019a; Boehler 

1979) in the field of inelasticity. Such an approach makes the question of induced anisotropy 

logical and easy. The controversial issue of inelastic spin has been solved in the paper by 

Micunovic (2009b) by the concept of fixing of orientations of intermediate reference 

configurations. 

In the next sections is given a brief review of QRI approach as well as the J2 approach to 

viscoplasticity of orthotropic materials.  

2. Evolution and constitutive equations 

2.1 Geometric preliminaries 

As a prerequisite, it is necessary to build a correct geometric description of analyzed inelastic 

deformation process. Consider a polycrystalline body in a real configuration ( ( ))k t (k(t)) with 

dislocations and an inhomogeneous temperature field ( , )T X t T(X, t) (where t 𝑡 stands for time 

and X X for the place of a generic material element), a body subject  to surface tractions. 

Corresponding to ( ( ))k t (k(t)) there exists a reference configuration 0( ( ))k t (k(t0)) with 

(differently distributed) dislocations at a homogeneous temperature 0T T0 without surface 

tractions. Due to these defects such a configuration is not stress-free but contains an equilibrated 

residual stress (often named as ”back-stress”). It is generally accepted that linear mapping 

function 0F(., ) : ( ( )) ( ( ))t k t k t F(. , t): (k(t0)) → (k(t)) is a compatible  second rank total 

deformation gradient. Here time 𝑡 as the scalar parameter allows for a family of deformed 

configurations ( )k (k). In the papers dealing with continuum representations of dislocation 

distributions configuration ( ( ))k t (𝑘(𝑡)) is imagined to be cut into small elements denoted by 

( ( ))n t (n(t)). The deformation tensor (., ) : ( ( )) ( ( ))t n t k t  Φ(. , t): (n(t)) → (k(t)) 

obtained in such a way is incompatible and should be called the (purely) elastic distortion tensor 

whereas ( ( ))n t (n(t))-elements are commonly named as natural state local reference 

configurations. Of course, the corresponding distortion tensor 
1

(., ) : = ( ) (., ) F (., )t t t t


 

Π(. , t): = Φ(t)(. , t)- F(. , t) is not compatible, whereas FF is found by comparison of material 

fibres in 0( ( ))k t (k(t0)) and ( ( ))k t (k(t)) while ( )t Φ(t) is determined by crystallographic 

vectors in ( ( ))n t (n(t)) and ( ( ))k t (k(t)). Multiplying above formula from the left hand side by 

(., )t Φ(. , t) we reach the original Kröner’s decomposition rule which is often wrongly named 

as Lee’s decomposition formula. 
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Following [9] let us imagine that a typical (n)-element (called in the sequel representative 

volume element and denoted by RVE) is composed of 𝑁 monocrystal grains, such that each Λ-th 

grain has 𝑁𝑠 slip systems 𝐀𝛼Λ ≡ 𝐬𝛼Λ ⊗𝐧𝛼Λ, 𝛼 ∈ {1, 𝑁𝑠}. For instance, for FCC crystals 𝑁𝑠 =
12. Here 𝐬𝛼Λ is the unit slip vector and 𝐧𝛼Λ is the unit vector normal to the slip plane. 

If the time rate of residual microelastic strains is negligible, the volumes of all the grains 

inside the considered RVE are the same, and the microspins are very small (for details see [7]) 

then the inelastic stretching tensor for RVE reads (with time rate D𝛾𝛼Λ of the 𝛾𝛼Λ slip): 

  
1

D A A .
T

P D
N

  



  



    (1) 

2.2 Hooke’s Law by Homogenization Approach 

Let the microelastic strain of a Λ-grain inside a RVE be denoted by 𝐄Λ𝐸 . Its volume average i.e., 

𝑬𝐸 = ⟨𝑬Λ𝐸⟩ is called the macroelastic strain, with 𝐄𝐸 = (𝚽𝑇𝚽− 𝟏)/2. It must be noted, 

however, that microelastic strain of a Λ-grain escorting mapping (𝑛(𝑡)) → (𝑘(𝑡)) of RVE is 

different from residual microelastic strain (𝐔Λ𝐸
 − 𝟏)/2 whose source is inhomogeneity of grains 

inside a RVE (appearing at mapping (𝑛(𝑡0)) → (𝑘(𝑡0))). It is natural to assume that‖𝑬Λ𝐸‖ >>
‖𝑬Λ𝐸

𝑟𝑒𝑠‖. Then residual microstrains are negligible for monocrystals. If the microelastic strain is 

provoked by the corresponding microstress 𝐒Λ, then its volume average reads 𝐒 = ⟨𝐒Λ⟩. Here the 

second Piola-Kirchhoff stress tensor S = 𝚽− 𝐓𝚽−𝑇 is calculated with respect to the local 

reference (𝑛(𝑡))-configuration. Hooke’s law for the Λ-grain reads  

 S = : E ,E  D  (2) 

where 𝔇Λ is elasticity tensor of Λ-grain. It is assumed here that elastic strain is small and inelastic 

finite. Then, the volume averaging of the above relation throughout the RVE gives the familiar 

equation of homogenization approach:  

 S = : E , . ., S= : E .eff E eff Ei e D D  (3) 

In homogenization theories for composites with particulate inclusions there are two distinct 

self-consistent approaches: 

a) effective medium approach where it is assumed that each inclusion behaves as isolated and 

immersed into a medium having effective constants 𝔇𝑒𝑓𝑓 and  

b)effective field approach with an assumption that again each inclusion behaves approximately 

as isolated and situated into the matrix with elasticity constants 𝐷𝑀 while influence of 

neighbouring inclusions is taken into account by means of the effective strain field 𝐄∗ acting on 

the considered inclusion (Kanaun and Levin 1993).  

In the paper (Levin 1982) the author proposed the approach that for polycrystals the 

considered grain is understood as an inclusion in the matrix composed by all the other grains 

applying in such a way the effective field approach. If instead of an infinite medium we employ 

this reasoning to the considered RVE then a direct application of the Levin’s expression for the 

effective elastic moduli fourth rank tensor may be written as follows (index ``𝑀′′ stands for 

matrix while the notation ⟨•⟩𝜔means averaging by orientation only):  

   
1

= .eff M  



 D D D A P A  (4) 
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Here 𝔇𝑀 = ⟨𝔇⟩𝜔 and ℑ𝑎𝑏𝑐𝑑 = 𝛿𝑎𝑐𝛿𝑏𝑑 + 𝛿𝑎𝑑𝛿𝑏𝑐 is the unit fourth rank tensor. By means of 

𝔎𝑎𝑏𝑐𝑑 = (𝜕𝑎𝜕𝑑𝐺𝑏𝑐)(𝑎𝑏), we have  

 
1

= ( ) ,M
V

x x dV



 


   P S D K  

with 𝔄Λ = (𝐼 + 𝑃Λ[𝐷])
−  and [𝔇] = 𝔇Λ −𝔇𝑀. In these relations 𝔖Λ is Eshelby’s fourth 

rank tensor and 𝐆 is the Green’s function (second rank tensor) for the considered anisotropic 

crystal. The above expressions may be used for an analytical determination of the effective elastic 

constants. 

Let us assume that a matrix is strengthened by some identical prolate parallel spheroidal 

strong fibres with symmetry axes aligned with a Cartesian axis 𝑥3. Suppose now that one half of 

fibres population are rotated by some angle 𝜃 around axis 𝑥  whereas the remaining ones are 

rotated by −𝜃 around the same axis. Let concentrations of both subgroups be the same 𝑐 = 𝑐 . 

Aspect ratios are supposed to be the same. In this way we obtain a composite with planar 

symmetry with mirror axis 𝑥  and one family of fibres with two subfamilies of parallel identical 

voids. Otherwise fibres inside each subgroup are randomly distributed. If elasticity modulus of 

each fibre is much larger than the elasticity modulus of the underlying matrix, then by using (4) 

effective compliance matrix is calculated. Then, the obtained effective elastic symmetry is 

approximately orthotropic [20]. Details of the calculation are given in Micunovic and 

Kudrjavceva (2019a) where are analyzed more complex distributions of spheroidal prolate thin 

fibres and oblate thin ellipsoidal voids. 

2.3 Evolution equation – micro to meso transition 

 A special attention is paid to the associativity of flow rule based on the loading function 

Ω and derived by Rice (Rice 1971). His evolution equation for inelastic stretching is based on the 

loading function  and PIR - pattern of internal rearrangements:  

 D = (S, ).P PIR S  (5) 

The experimental evidence (cf. Micunovic et al. 1997) has shown that real time in the 

evolution equation for inelastic stretching may be replaced by some nondecreasing scalar function 

𝜁 of inelastic strain history responsible for aging whose ultimate value leads finally to rupture of 

the body. Vakulenko called this function - thermodynamic time (cf. Vakulenko 1970; Micunovic 

2005). This is the main idea in this so-called endochronic thermodynamics and in such a concept 

purely elastic strain does not contribute to the thermodynamic time. Rather lengthy details are 

given in Micunovic (2006). Replacement of real time by 𝜁 gives us a single evolution equation 

for inelastic stretching from very low to very high strain rates (cf. also Micunovic 2009b, p.74). 

3. Orthotropic QRI materials 

If the thermodynamic time is the same for all the grains, then normality of the inelastic stretching 

onto a yield (or a loading) surface could hold. In such a case, the meso evolution equation for 

RVE reads:  

  D = S,e ,M with = ( /Y-1) exp(-M).)P P eq t eqD  
   S  (6) 

Here S is the the second Piola-Kirchhoff stress, 𝐞𝑃 = (𝟏 − 𝚷−𝑇𝚷− )/2 – inelastic strain, 

𝜎𝑒𝑞 ≡∥ 𝑺 ∥, 
M  – Spencer-Boehler’s structural tensors describing anisotropy type, 𝜂 – 

Heaviside function, 𝑌 – dynamic yield stress. Since the initial yield stress depends on value of 
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stress rate the evolution equation is rate dependent. Incrementality is based on almost exact 

experimentally observed proportionality of 𝐃𝑃 and 𝐷𝑡𝜎𝑒𝑞 (cf. Micunovic et al. 1997). Constant 

𝑀 in the Λ-function covers this proportionality very well for reactor and some other steels. 

Let the characteristic structural tensors be given by orthonormal vectors 𝐚 , 𝐚 , 𝐚3. Then, 

structural Spencer-Boehler tensors (cf. Micunovic and Kudrjavceva 2019b) are 𝐌𝑘 = 𝐚𝑘 ⊗
𝐚𝑘, 𝑘 = 1,2,3. For orthotropic materials 𝐌Σ = 𝐌   and 𝐌Σ = 𝐌   are sufficient since 𝐌3 =
𝟏 −𝐌 −𝐌 . Thus, according to isotropicization theorem for anisotropic tensor functions [20], 

Ω = Ω(𝐒, 𝐞𝑃 , 𝐌Σ) may be taken as an isotropic function of its arguments. 

When thermodynamic time is a nonlinear function of inelastic power (i.e., non-steady aging 

happens) the equation (6) covers non-steady aging as well. For this it is necessary to replace time 

rates by thermodynamic time rates in (6). 

When the material body possesses three preferred anisotropy directions, then the arguments 

of the evolution equation have to include the diadics 𝐌𝑘 = 𝐚𝑘 ⊗𝐚𝑘, 𝑘 = 1,2,3. If 𝐚𝑘 are unit 

vectors then 𝑡𝑟 𝐌𝑘 = 1. Thus, (6) becomes 

  1 2 3D = S,e , M , M , M .P P  S  (7) 

with Ω = Ω(𝐒, 𝐞𝑃,  𝐌 ,  𝐌 ,  𝐌3). We restrict our consideration here to a reduced set of 

invariants to be used as the source of tensor generators (notation 𝐒𝑑 stands for stress deviator):  

      3 7= S M , = S M , = S =1, 2,3,k k k ks tr s tr s tr k
2 3

 (8) 

omitting eigen and mixed invariants of inelastic strain tensor (cf. [12] for the complete set of 

invariants). Suppose now that Ω is a polynomial of third order in S. Then the loading function has 

the following simple form (material constants 𝑎 , … , 𝑎9, 𝑏 , … , 𝑏 3 could depend on inelastic 

strain): 

 

2 2 2
1 1 2 2 3 3 4 4 5 5 6 6 7 1 2 8 2 3 9 3 1

3 3 3
1 1 3 3 2 2 4 1 4 5 1 5 6 1 6 7 2 4

8 2 5 9 2 6 10 3 4 11 3 5 12 3 6 13 7

2 a s a s a s a s a s a s a s s a s s a s s

b s b s b s b s s b s s b s s b s s

b s s b s s b s s b s s b s s b s

         

      

     

 (9) 

and the evolution equation reads: 

 

 

 

 

2
1 1 1 7 2 9 3 1 1 4 4 5 5 6 6

2
2 2 2 7 1 8 3 2 2 7 4 8 5 9 6

2
3 3 3 8 2 9 1 3 3 10 4 11 5 12 6

1 1 4 4 1 7 2 10 3

2 2 5 5 1 8 2 11 3

3

1
D M 2 3

M 2 3

M 2 3

(M S SM ) ( )

( ) ( )

(M S SM

=P d

d

d

d

d

a s a s a s b s b s b s b s

a s a s a s b s b s b s b s

a s a s a s b s b s b s b s

a b s b s b s

a b s b s b s

     


      

      

    

    

 

M S SM

2
3 6 6 1 9 2 12 3 13) ( ) 3 (S )d da b s b s b s b   

 (10) 



Ljudmila T. Kudrjavceva and Milan V. Mićunović.: ON DIFFUSE INSTABILITY OF ORTHOTROPIC…  
 

 

106 

4. Classical J2 theory of orthotropic materials 

Hill in his book (Hill 1950), as well as Logan and Hosford (1980), gave the definition of 

equivalent stress for orthotropic materials (with different properties in all the three directions) by 

means of principal stresses: 

 

2

2 2 2
2 3 3 1 1 2

2 2
2 = 1= [ ( ) ( ) ( ) ] 1,

3 3

eq
f F G H

h h


             (11) 

 2 3 3 1 1 2

2
2 = [ | | | | | | ] 1.

3
H H Hm m m

Hf F G H
h

            (12) 

In classical theory of plasticity of orthotropic materials the evolution equation is based on 

the above J2 yield function and equivalent inelastic strain 𝜀𝑒𝑞
𝑃 : = ∫

𝑡

0
||𝑑𝛆𝑃(𝜏)/𝑑𝜏||𝑑𝜏 such that 

the corresponding evolution equation reads: 

 21
= .

2 ( )

P

eqin
eq

d
f

dt h 


  S S  (13) 

All the models belonging to J2 class are based on the notion of universal flow curve. The 

family of functions  

    , , = , ,
P P P P

eq eq eq eq eq eq eqf         (14) 

defines for 𝑓 = 0 viscoinelastic (i.e., rate dependent) deformation. On the other hand  

 𝜎𝑒𝑞 −Φ(𝜎𝑒𝑞 , 𝜀𝑒𝑞
𝑃 , 0) < 0 

corresponds to elastic deformation. In a more traditional understanding constant values of 𝜀𝑒̇𝑞
𝑃 =

𝑐 , 𝑐 , … , 𝑐𝑛 define family of universal flow curves.  The word "universal" means that such curves 

should hold for all multiaxial strain states. It is allowed for straining history to be accounted for 

but strictly limited to scalar functionals of the form 

  , ,0 0
P

eq eq eq     (15) 

where presence of 𝜀𝑒̇𝑞
𝑃 (𝜏)(0 < 𝜏 < 𝑡) takes into account inelastic strain rate history while 

𝜀𝑒𝑞
𝑃 (𝜏)(0 < 𝜏 < 𝑡) is responsible for inelastic strain history. 

Now, associate flow rule formulated by Prager and Hochenemser (and then applied by 

Drucker, Perzyna and others) is based on normality of inelastic stretching tensor 𝐃𝑃 on the yield 

surface 𝑓 = 𝑐𝑜𝑛𝑠𝑡. Therefore such postulate gives 

 D = .P f S  (16) 

It must be noted that, although seemingly tensorial, (16) is completely specified by scalars 

listed in (14). Traditionally, all these scalars have been found experimentally by tension 

experiments and then applied to arbitrary multiaxial strain states. In the sequel we will see how 

such an assumption is wrong. Experiments do not support the notion of universal flow curves 

(Micunovic et al. 1997). Therefore, yield function must include not only 𝜎𝑒𝑞 and 𝜀𝑒𝑞
𝑃  but must be 

be of the include tensors 𝐒𝑑 , 𝐞𝑃 , 𝐃𝑃 where tensors (i.e., their selected proper and mixed 

invariants) instead of scalars for multiaxial stress states are to be taken into account. Despite this 

we proceed here with such an approach based on universal flow curves. For orthotropic materials 
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whose anisotropy directions are given by the orthogonal unit vectors 𝐚 , 𝐚 , 𝐚3, the corresponding 

stress invariants aligned to such directions are 𝐴𝜎𝑘 = 𝑺: 𝑴𝑘 ≡ 𝐚𝑘 ⋅ 𝑺 ⋅ 𝐚𝑘, 𝑘 = 1,2,3, with 𝑴 ≡

𝐚 ⊗𝐚 ,    𝑴 ≡ 𝐚 ⊗𝐚  and 𝐌3 = 𝟏 −𝐌 −𝐌 . To take into account such an anisotropy for 

a fixed inelastic strain rate the yield function: 

 1 2

2 22

2 2
(2 ) (2 )2 3

2 = 1 with = S 3 .
2 2 2 53 ( )

eq

eq dP
eq

b A c A
f tr

b ch

 




    
  

   

 (17) 

Here, an extended equivalent stress, necessary for orthotropic materials, is introduced. 

Moreover the following notation is here convenient  

 D e ,P Pdt d  (18) 

with inelastic strain increments along anisotropy directions 𝐌 , 𝐌 :  

 =a e a M : e , ( =1,2).
k

P
d k P k kA d d k     

Here 𝑑𝐞𝑃 is increment of inelastic strain tensor induced by the inelastic stretching 𝐃𝑃 and 

𝐴𝑑𝜀1, 𝐴𝑑𝜀2 are its invariants aligned with the anisotropy directions 𝐌  , 𝐌  . Let us remark that 

DP  is a deviator when inelastic incompressibility holds. According to [19] equivalent inelastic 

strain rate is defined by means of equality of inelastic powers (cf. (17)) 𝜎𝑒𝑞 𝑑𝜀𝑒𝑞
𝑃 = 𝐒: 𝑑 𝐞𝑃. The 

commonly accepted associate flow rule was constructed by Prager and Hochenemser in the form 

(derived from (18) by means of (16)):  

 e = , with = .
P

P eq eqd d f d d   S  (19) 

In this way we arrive at evolution equations which in the case of isotropy are called Levi-

Mises equations. Dyadic deviators 𝐌 𝑑 and 𝐌 𝑑 are formed from 𝐌  and 𝐌  shown above. 

Making use of Levi-Mises equations leads to the definition of the equivalent inelastic strain 

increment: 

 
1 21 2

3 3
e = S (2 ) M (2 ) M ,

2 2 2 5

P
eq

P d d d

eq

d
d b A c A

b c
 





 
        

 (20) 

 
 

1 2

1 2

2
2 2 22 2 1

= { e } [( 2)(2 1) ( 2)(2 1)
3 3 1

2( 2)( 2) ].

P P
eq d d

d d

d tr d b b A c c A
bc

b c A A

 

 

      


  

 

The meaning of material constants is found from Levi-Mises equations when either only 𝑆   

or 𝑆   are different from zero. Writing explicitly (20) for these two special cases of loading we 

get 

 

11 12 22 12

33 33
2 1

11 22=0, =0 =0, =0

 1 =1 , 1 =1 .

P P

P P

S S S S

d d
b r c r

d d

 

 
       (21) 

In the special case of isotropy 𝑟 = 𝑟 = 1 would lead to 𝑏 = 𝑐 = 2. For an orthotropic sheet 

with in-plane preferred directions 𝐚 1 , 𝐚 2 comparison of (21) with (11) gives rise to 

 
1 1 1

= , = , = .
2 2 5 2 2 5 2 2 5

b c
F G H

b c b c b c

 

     
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Here we have made the simplest check of the validity of Hill’s yield function. In Micunovic 

(2009b) it has been demonstrated that such yield function is much worse for nonproportional 

stress-strain histories. A simple remedy would be to take some functions of inelastic strain tensor 

instead of constants 𝐹, 𝐺, 𝐻 in (11). For the case of transverse isotropy this has been done in 

Micunovic and Kudrjavceva (2019b). 

Note 1 

A comparison of QRI with J2 approach is possible if  all the b – constants in (10) are 

negligible. However, a linearized evolution equation of QRI (derived and discussed in Micunovic 

and Kudrjavceva 2019b) has larger number of constants being more capable for description of 

multiaxial stress histories. It has to be underlined here that either Hill’s (11) or Logan-Hosford 

yield function (12) are incorrect for nonproportional stress paths (cf. Micunovic and Kudrjavceva 

2019a for details). 

5. Diffuse instability 

 According to McClintock, (cf. McClintock 1971), a nonuniform strain field may develop 

twofold: (a) thinning, caused by tension loads, occurs very gradually in dimensions comparable 

with specimen dimensions and (b) it occurs in a region comparable with sheet (or specimen) 

thickness. The first is called diffuse instability, whereas for the second phenomenon is named 

localized instability. Due to above distinction the diffuse instability could appear mainly when 

cylindrical or some other 3D specimen are used. 

At this point Hill’s stability postulate (cf. Hill 1957) is invoked stating in its local form that 

at a bifurcation point the following equality holds  

 { S D }= {D S D },t d P P d Ptr D tr  (22) 

for “rigid” inelastic materials (i.e., materials where elastic strain is so many times smaller than 

the inelastic strain that it may be neglected). In above equality 𝐷𝑡S𝑑 is the time rate of the stress 

deviator whereas 𝐃𝑃 is the inelastic stretching tensor. If the associativity of flow rule holds i.e., 

𝐃𝑃 = Λ 𝜕𝑺Ω holds, then the above equality has the form:  

 
2

{ S } { S }=0.t d dtr D tr       S S S  (23) 

Initiation of diffuse instability begins when (19) is satisfied. Explicitly, for longitudinal 

uniaxial stress 𝜎 , uniaxial transverse stress 𝜎  as well as shear stress 𝜏 the following equations 

hold if diffuse instability commences  

 

2 1
1 1 1 2 3 4 7 8 9

1 1 2 3 4 5 6 7

8 9 10 11 12 13

[1 ( )( 1) {(8 2 2 12 4 2 4 ) / 9
0

(24 3 3 14 2 2 7

7 18 ) / 27}] 0,

tD exp M a a a a a a a
Y

b b b b b b b

b b b b b b


 



        

      

      

 (24) 

 

2 2
2 2 5 1 2 3 7 8 9

2 1 2 3 4 5 6 7

8 9 10 11 12 13

[1 ( )( 1) [(12 2 8 2 4 4 2 ) / 9
0

( 3 24 3 16 2

32 2 16 18 / 3) / 27] 0,

tD exp M a a a a a a a
Y

b b b b b b b

b b b b b b


 



        

       

      

 (25) 
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 2
4 5 7 8 10 11 13

3
[1 3( 2 2 6 ) ( 1) ( ) / 3] .

0
tD b b b b b b b exp M

Y


           (26) 

All the equations are algebraic. From the last equation we see that a diffuse instability in the 

case of shear is predicted solely by nonlinear quadratic terms.  

Let us see how the diffuse instability is predicted by J2 approach. Replacing (24) into (18) 

we arrive at the following differential equations 

 
 

2
1

1 0,
2 2 2 5

t

c
D

h b c


  

 
 (27) 

 
 

2
2

2 0,
2 2 2 5

t

b
D

h b c


  

 
 (28) 

 0,tD
h


   (29) 

for longitudinal uniaxial stress 𝜎 , for transverse uniaxial stress 𝜎  and for shear 𝜏, respectively. 

If the material functions   ℎ, b, c are known, then the above three differential equations could be 

solved. It should be underlined here that the J   approach allows diffuse instability only for small 

strain rates and that a shear diffuse instability is impossible by J2 approach. It is essential to note 

that if J2 approach is applied, then this is always a differential equation which gives few hundreds 

larger inelastic stretching for relatively small increase of stress. Thus, results of J2 approach are 

correct only for small inelastic strain rates. On the contrary, the factor Λ in the QRI approach is 

proportional to stress rate (cf. Micunovic 2009a). Thus, we solve an algebraic equation which 

holds for small to large strain rates.  

6. Some conclusions 

Some of the results of this paper may be summarized as follows. 

Although the majority of the features of the QRI modelling are listed in the introduction, we 

could underline here that the above consideration of diffuse instability has shown its advantage 

in comparison with the classical J2 modeling. Since the J2 theory is based on uniaxial experiments 

(mainly tension) it is blind for directionality when we try to apply tension data to shear (cf. 

Micunovic 2009b for details). 

It is shown that J2 approach with Hill’s orthotropic yield function cannot cover all tension 

stress directions. This holds especially for shear. 

Explicit diffuse instability equations are written for orthotropic materials applying J   as well 

as QRI approach.  

The basic novelties of this paper are the following: 1. application of tensor function approach 

to orthotropic inelastic materials by using endochronic evolution equation with extended 

Vakulenko’s thermodynamic time, 2. formulation of viscoplasticity with loading function 

dependent on stress, inelastic strain and structural tensors and 3. a new QRI nonlinear evolution 

equation for orthotropic materials is derived by tensor function representation with Spencer-

Boehler structural tensors. 
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