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Abstract 

In this paper, numerical analysis of turbulent fluid flow is presented. Finite Element Method is 

used combining implicit integration with Eulerian spatial formulation, i.e. nodes and geometry 

are fixed in time. Characteristic values, such as fluid pressure and velocity, kinetic energy, 

turbulence, and dissipation of turbulent kinetic energy, are calculated in the finite element nodes 

for each step of the incremental-iterative procedure. For calculation of characteristic values, a 

two-equation model in the viscous sublayer is implemented. The main goal of our research was 

development of flexible methodology for application of proposed numerical procedures in the 

clinical studies. It was achieved in three steps: first was implementation of the turbulent finite 

element model in in-house solver PAK, the second step was development of the software for 

customized generation of finite element meshes for biological shapes, and the final step (which 

was the main focus of this paper) was the analysis of complex blood flow problems inside the 

bifurcation of arteries. Results shows that the proposed tools and methods can be used by 

cardiologist or vascular surgeons for investigating the hemodynamic conditions inside patient 

specific blood vessels. This would allow them better customization of drug treatment and 

planning of operation if one is needed. 

Keywords: Fluid flow, turbulent flow, finite element, simulation, k   model 

1. Introduction 

Blood flow through the cardiovascular system is one of the most important and studied 

phenomena in bioengineering Kojić et al. (2008). Fluid flow in general can be laminar or 

turbulent. is. In laminar flow fluid layers move in parallel, hence it is more energy-efficient. while 

in the turbulent flow we have swirling vortexes and eddies.  Turbulent flow occurs in the 

narrowing of the blood vessels, when the flow velocity exceeds a certain value, or when the blood 

suddenly slows down due to the obstacles like stenosis. Laminar flow is the default blood 

behavior, but for the doctors dealing with cardio-vascular conditions, turbulent flow is more 

interesting. In order to predict further development of disease, they need velocity and pressure 

fields, wall sheer stress and oscillatory shear index which can be used to predict plaque formation. 
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Blood is the most important fluid in the human body that carry oxygen, nutrients, , hormones 

and other crucial chemicals. Although all these inclusions have different properties, due to their 

relative size in comparison to the analyzed geometry of the vessel, blood is modelled as a 

homogenous fluid with averaged viscosity properties, according to Shi et al. (2011).  Transport 

of the moleculs is governed by convective-diffusive laws. With blood approximated as a 

incompressible homogenous viscous fluid, the flow in blood vessels can be modelled by the 

Navier–Stokes equations and incompressibility equation (Kojić et al. 2017). 

Plaque deposition in the cardiovascular system that causes atherosclerosis occurs primarily 

in the branches, where the arteries have a complex geometry (Soulis et al. 2011). This complex 

geometry governs the flow, which is according to (Weydahl et al. 2001) specific for each patient 

Yet, so far, most of the flow calculations were done on the averaged or idealized geometries. This 

causes significant deviations from the solutions obtained by patient specific modeling of the blood 

vessel (Owida et al. 2012). The advances in the fields of radiological diagnostics and increased 

computer performance, were necessary conditions for patient specific treatment, as can be seen 

in (Owida et al. 2012) and (Goubergrits et al. 2003). But, this raw data is useless unless we have 

comprehensive software solutions for its processing and analysis, which was the main scientific 

contribution of our work, and will be the future focus of our research with continuous 

improvements and development.  

The statistical modeling of turbulence requires approximation of the fluid velocity as the sum 

of the average values of velocity and velocity fluctuations around that value (McDonough 2007). 

Reynolds equations are obtained from the Navier-Stokes equations using this approximations 

according to (Wilcox 1988). The new components in these equations are called turbulent or 

Reynolds stresses. Model k   has been introduced by (Wilcox 1994) and (Wilcox 2006) to 

predict turbulent flow. This model is unjustly neglected in biomechanical and medical research, 

the fact on which we must shed light on in our numerical simulations. 

In-house Finite Element Method (FEM) solver PAK that we use in our research is based on 

theory developed and summarized by Bathe (2006). Reynolds equations and k   turbulent 

model coupling is done according to (Bassi et al. 2005) and (Bassi et al. 2014). For the verification 

and comparison with the experimental results published by (Jovic et al. 1994) we used example 

of a channel with a backward-facing step. Analysis with the FEM k   model corresponds well 

with the experimental results published by (Jovic et al. 1994) The innovative implementation of 

the k   model in bioengineering, presented in this paper will enable doctors analyze the 

development of cardiovascular problems for specific patients and to decide the most appropriate 

treatmentor surgery. Using PAK software doctors can observe how stenosis can cause the 

transition from laminar to turbulent flow, Also the can see that changes of shears stress on the 

blood vessel wall can increase the risk of plaque formation. 

Carotid artery geometries used in our research, were obtained from radiological scans of 

several anonymous patients. The methodology of generating a quality finite element mesh using 

STL2FEM software is described in detail in Blagojević et al. (2013). This software uses 

volumetric model obtained by radiological imaging to generate a block topology, which is 

afterwards used for generating finite elements using the multi-block method (Blagojević et al. 

2013) and (Arbogast et al. 2000). For the particular patient whose carotid artery is best suited to 

show the capabilities of the developed software, fluid velocity, pressure field and shear stress is 

shown. 
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2. Methods 

2.1 Basic equations of turbulent flow and k-ω model 

All computational turbulent models are based on Reynolds equations and Boussinesq 

approximation (Boussinesq 1877), (McDonough 2007). Each model has form of one-equation or 

two-equations that explains turbulent quantities. Boussinesq approximation is used for members 

of the Reynolds equations where turbulent stresses are approximated by turbulent dynamic 

viscosity. 

k   turbulent model is commonly used for modeling the turbulent problems. It was 

presented for the first time in the papers of Wilcox (Wilcox 1988, Wilcox 1994 and Wilcox 2006). 

Since then, this model has not been significantly modified.  

k   turbulent model has two equations, equation for kinetic energy of turbulence and 

equation for specific dissipation of the kinetic energy of turbulence. Model don’t need wall 

functions for calculating fluid flow near the walls of problem following Wilcox (1988) and 

Ferziger et al. (2002).  

Later, turbulent model k   was improved to version with low Reynolds number. 

Discontinuous Galerkin method is implemented for numerical algorithms for discretization 

following papers of Li et al. (2018) and Tomboulides et al. (2018). 

The Reynolds Averaged Navier-Stokes (RANS) are based on the Navier-Stokes equation and 

the equation of continuity and represent the first part in modeling of turbulence by statistical 

methods: 

  
j

ji i i

j eff

j i j i

vv v vp
v

t x x x x x
 

       
                    

,  (1) 

 0i

i

v

x





, (2) 

where eff
  is the effective dynamic viscosity defined by the sum of dynamic viscosity and 

turbulent dynamic viscosity: 

 
eff T

    . (3) 

In k   turbulent model, turbulent dynamic viscosity of fluid 
T

  is calculated by turbulent 

kinetic energy and specific dissipation of the kinetic energy of turbulence as: 

 
*

T

k
 


 . (4) 

Equation for the kinetic energy of the turbulence k  is defined following McDonough (2007) 

as: 

  *

j T k k

j j j

k k k
v P k

t x x x
      
      

               

, (5) 

where 
k

P  represents the effect of kinetic energy of turbulence and is defined as: 
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ji i

k T

j i j

vv v
P

x x x


  
  
   
 

 (6) 

Second variable, specific dissipation of the kinetic energy of turbulence   is defining the 

scale of turbulence and can be calculated by next equation: 

   2

j T k k

j j j

v P
t x x x k



   
     
      

               

 (7) 

In equations (5) и (7) constants * ,  , 
 , 

k
 ,   and *  have the following values 

according to Wilcox (1988) and Wilcox (2006): 

 

* *5 3 9 1 1
1, , , , ,

9 40 100 2 2
k k          

 (8) 

2.2 Finite element formulation of RANS equations and k-ω model 

In the previous section, we show basic equations that are solved for turbulent fluid flow are the 

RANS equations represented by the equations (1) and (2). For each finite element, velocity of 

fluid (x, y,z)v  is approximated by a velocity vector (r,s,t)v  where , ,r s t  are the local coordinates 

of the finite element according to Kojić et al. (2008) and Bathe (2006). Fluid velocity in each 

finite element node can be written by the velocity vector v  as: 

 

1

, , 1, 2, 3; 1, 2,....,

N
I I

i I i I i

I

v h V h V i I N



    v = HV  (9) 

where kh  are the interpolation functions, I

i
V  are the components ( , ,x y z ) of the fluid velocity 

vector for the node I  and N  represent total number of the finite element nodes. The governing 

equations (5) and (7) for k   model can be converted to the finite element equations of balance 

for a single finite element by implementing a standard Galerkin weighting method (Milosevic et 

al. 2018). Applying a Galerkin method to equations (1), (2), (5) and (7) using the interpolation 

functions for fluid velocity, the pressure, kinetic energy k  and specific dissipation   given with 

(Kojić et al. 2008 and Bathe 2006): 

 I

Ii i
v h V  (10) 

 I I
ˆ

i
p h P  (11) 

 
I

I
k h k  (12) 

 
I

I
h   (13) 

The previous equations are obtained in the matrix form: 

 
vv vt vp v s

T

vp

0

00 0 0

        
        

        

K K KM V F FV

K PP
 (14) 

The components of these submatrices and subvectors are: 



Journal of the Serbian Society for Computational Mechanics / Vol. 15 / No. 2, 2021 

 

 

83 

   I JIJ

V

h h dV M  (15) 

  
I

vv I K J,IJ j j

V

h h V h dV K  (16) 

    vt I, J,IJ T j j

V

h h dV   K  (17) 

  vpi I, JIJ i

V

h h dV K  (18) 

  vi II

V

i

V

h f dV F  (19) 

    
I

si I ,I i T i j j

S

h pn V n dS     
  F  (20) 

For the turbulent model k  , finite element equations are derived from equations (5) and 

(7) formulated as: 

                K VK MK βk VV1 SK2
M k K K K k K V F  (21) 

              K VK Mω βω VV2 Sω
M ω K K K ω K V F  (22) 

The components of submatrices and subvectors for the equation (21) are: 

   I JIJ

V

h h dV KM  (23) 

   J
I J I,IJ i j

V

h h V h dV VKK  (24) 

    *
I, J,IJ T j j

V

h h dV   MKK  (25) 

   J
I J K

IJ
k

V

h h h k dV  βkK  (26) 

   J
I J, K,IJ

2 T j i j

V

h h V h dV VV1K  (27) 

    *
I ,I T j j

S

h k n dS    SK2F  (28) 

The components of submatrices and subvectors are for the equation (22): 

     I, J,IJ T j j

V

h h dV 
 
  
 
 
MωK  (29) 
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   J
I J K

IJ

V

h h h dV  βωK  (30) 

   J
I J, K,IJ

2 k T j i j

V

h h V h dV  VV2K  (31) 

     I ,I T j j

S

h n dS    SωF  (32) 

If Reynolds equations (14) are coupled with equations (21) and (22) we have the following 

system of equations in matrix form: 

 
vv vt vp v s

T

vp

0 00 0 0

0 0 0 00 0 0 0

0 00 0 0

0 00 0 0

        
       
        
          
       

             

V

VV1 VK MK βk SK2K

VV2 VK Mω βω SωK

K K K F FM VV

K PP

K K K K FM kk

K K K K FM ωω

 (33) 

2.3 Incremental-iterative procedure for solving nonlinear equations 

The fluid velocity in the convection member in equation (33) make this equation nonlinear, so 

incremental-iterative procedure is used for solving following Kojić et al. (2008).  

The fluid velocity, the pressure, kinetic energy k  and specific dissipation   at the end of the 

time step ( t t  ) can be calculated as the values from the previous iteration ( 1i  ) and the 

increment from current iteration ( i ) following Nikolić et al. (2021): 

 
   1

I I I
t t t t i i

i i iV V V
  

    (34) 

 
   1

I I I

i it t t t
P P P

 
    (35) 

 
   1I I Ii it t t t

k k k
 

    (36) 

 
   1I I Ii it t t t  
 

    (37) 

where i  is the current iteration number. Then, variables from eqs. (34) to (37) can be derived by 

the time via Euler's forward scheme: 

 

   1
I I I I I

I

t t t t t t t i i t

i i i i i
i

V V V V V
V

t t

   

   
 

 
 (38) 

 
   1I I I I I

I
i it t t t t t

t t k k k k k
k

t t

 
    

 
 

 (39) 

 
   1I I I I I

I
i it t t t t t

t t

t t

    


 
    

 
 

 (40) 

If we use equations (34), (35) and (38) in the equation (14) we get the iterative-incremental 

equation: 
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       

 

 

 

1 1 1 1

vv vt vv vp

1

vp

1

0

i i i iit t t t t t t t

ii t t
T

t


      



 
                        

B

P

M K K J K FV

FPK

 (41) 

If equations (34), (36) and (37) are combined with equations (38), (39) and (40) we get the 

next equation: 

    

     

         

 

 

 

 

 

 

1 1
1

1 1 1 1

1

1 1 1 1 1

0 0

1
0 0

1
0

i it t t t
i it t

i i i i it t t t t t t t

i it t

i i i i it t t t t t t t t t

t

t

  


      



        

 
     
            
    
 

     
  

KV VVK
V

VK MK βk K

ω

ωV VVω VK Mω βω

K K ΔV R

M K K K Δk R

Δω R
K K M + K + K + K






 (42) 

An algorithmic scheme is defined to explain the coupling of RANS equations and turbulent 

model k   as: 

1. Calculating initialization parameters for turbulent flow (dynamic turbulent viscosity at the 

start of problem 
0T

 , kinetic energy of the turbulence at the start of problem 
0

k , specific 

dissipation of the kinetic energy of turbulence at the start of problem 
0

 , turbulent length 
T
l

). 

2. Starting loop with solving of equation (41) using dynamic turbulent viscosity from 

previous step 
( 1)t t i

T
 

. 

3. Solving equations (21) and (22) using fluid velocity 
 1

I
t t i

iV
 

 from the previous step and 

calculating dynamic turbulent viscosity in the current step 
( )t t i

T


. 

4. End of loop. 

In this scheme steps 2 and 3 are repeated until calculation come to the final step. Results of 

simulation is the saved in commonly used outputs such as a post-processing software ParaView 

(James et al. 2005). 

3. Simulation of blood flow in arterial bifurcation 

The original CT images in DICOM format that contain data on the tissues of the carotid arteries, 

were imported by MIMICS software (B. Materialise NV 2017). On the Fig. 1. (a) model of carotid 

artery bifurcation in STL file format is presented while on the Fig. 1. (b) we presented blocks of 

finite elements created by STL2FEM in-house software (Blagojević et al. 2013) and (Blagojević 

et al. 2014). 
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Fig. 1. (a) Model of carotid artery bifurcation in STL file format, (b) Blocks of finite elements 

created by STL2FEM. 

Blood flow through the blood vessel was simulated on the real finite element model of the 

carotid artery of the selected patient (Blagojević et al. 2013 and Conti et al. 2016). PAK software 

was used for the calculation of blood flow (Kojić et al. 2020). The calculation was created in 200-

time steps with an interval of 0.005s. Turbulent finite element model developed by Nikolić et al. 

(2021) is used. The finite element model has 67908 3D hexahedral elements which is showed on 

Fig. 2. 

  

Fig. 2. Carotid artery bifurcation finite element model, a) from the front, b) from the back. 

One cardiac cycle (systole and diastole) is used as time function in the calculation, Fig. 3, 

(Blagojević et al. 2014). Steps that are important for bioengineering analysis are rounded on Fig. 

3, peak of systole (step 21), end of systole (step 42) and long period of diastole (step 160). 
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Fig. 3. The cardiac cycle that is used as inlet time function for the velocity of blood. 

The boundary conditions that are applied to the problem are: 

a) at the input we set parabolic velocity profile, 

b) on the surfaces on the output branches of the model there is resistance that occurs because 

the blood flow continues through other blood organs. It is a condition that surface forces at 

the outlet are zero. It is can be explained by the equation (Nikolić et al. (2021)): 

 

1
0i

i j

e j

v
p n

R x


  


 (43) 

If the pressure is not prescribed on the outlet cross-section, as a boundary condition, the result 

is a pressure drop field in the modeled domain. Blood is considered as Newton's viscous fluid 

with material characteristics as: density of fluid 3
1050 /kg m   and dynamic viscosity of fluid 

3
3.675*10 /kg ms 

 . From references and experimental papers, it was conducted that the 

average value of blood velocity is 33 /Tv cm s  for carotid artery.  

The Reynolds number in this problem calculated for inlet diameter of 0.72d cm  is 

Re 679 . Blood flow velocity results are represented by sections through the carotid artery and 

showed on Fig. 4. Results are divided in three sections for important steps in analysis, pick of 

systole (step 21), end of systole (step 42) and stationary period of diastole (step 160). 
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Fig. 4. Section cuts of velocity field, (a) step 21, (b) step 42, (c) step 160. 
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Fig. 5. Wall shear stress on carotid artery bifurcation, (a) step 21, (b) step 42, (c) step 160. 
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The wall shear stress results are shown in Fig. 5 for the most important steps of analysis: step 

21, step 42 and step 160. 

In addition, one more comparison is added. In Fig. 6, the laminar and turbulent velocity case 

is presented. On the left column, results for laminar flow is shown for Reynolds number 679. 

Right column are results for a turbulent case and Reynolds number 679. Regarding the presented 

results, it is notable that solutions given for turbulent yields flow, compared to results obtained 

for the field of laminar flow, differ in an acceptable range. Disagreement is mostly present in 

observing the shear stress values in the artery wall. Usage of quantification methods like 

oscillatory shear index (OSI) and wall shear stress (WSS) had a significant impact on the 

interpretation of the turbulent field of results, typically in those areas where increase of fluid 

vortex, as well as the velocity with respect to laminar fluid flow, is reasonable. 

  

Step 21 

  

Step 42 

  

Step 160 

a) b) 

Fig. 6. Comparison of laminar and turbulent flow case for same Reynolds number 679. 
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4. Conclusions 

In this paper, we have presented turbulent finite element model (a two-equation) because it can 

be implemented across the viscous sublayer, which can neglect the usage of wall stress function. 

Regarding the calculation of the basic physical quantities that characterize turbulent flow, we 

have used and implicit integration of equations. This novel concept and finite element model is 

also integrated into our multifunction, in-house, software package PAK. Geometry and finite 

element mesh of the artery is generated by in-house software STL2FEM. Further development 

will include varying of FE mesh quality which can serve as an improvement regarding velocity 

field results and quality of other turbulent models using the introduced finite element method. 

Also, development can go in a direction of using real geometries, obtained from CT scanners, 

and usage of clinical data which can serve as a basis for creating a certain patient database for a 

clinical research.   
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