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Abstract 

Vibration suppression has been thoroughly studied in the last few years. A number of methods 

has been proposed for this purpose. An evolving method lies in the search of band gap regions, 

that is, certain frequency ranges where vibrations are isolated. In the present investigation, a 

periodic unit cell of a chiral metamaterial has been created in order to study its dynamic behavior 

and how this affects the wave propagation into a lattice structure consisting of repeated chiral 

microstructures. Each cell represents a composite structure consisted by a soft matrix with hard 

connector wings and a circular core. The system is studied by plane stress finite elements. The 

design parameters of the structure that define the shape and the material are modified in order to 

study the changes at the appearance of the band gap areas. In addition, results of the dynamic 

response of the structure in the frequency domain will be presented in order to show the 

magnitude of the vibration reduction that can be achieved in a specific frequency range. 

Keywords: Chiral metamaterials, band gaps, vibration isolation, Bloch theory 

1. Introduction 

For the study of wave propagation, the pioneering work of Brillouin (1953) and Kittel (1962) 

should be considered. According to these references, specific frequencies where the wave is able 

or unable to propagate through a structure may occur, which are called pass and stop band gaps. 

The propagation of the wave in two-dimensional periodic structures is described in (Srikantha 

Phani et al. 2006), (Mace et al. 2008). Periodic structures filled with polymer and the effects of 

different types of filling are studied in (Hsiang-Wen et al. 2017). It is shown that wide band gap 

areas appear at the unfilled structure, which can be used in vibration isolation and acoustic filters. 

It is also shown that the auxeticity affects the propagation of the wave through the periodic 

structure (Outzen et al. 2019). 

Auxeticity is an interesting property of some materials which present negative Poisson’s 

ratio, that is, the structural elements tend to expand, when stretched, while conventional materials 

tend to narrow. These mechanical metamaterials are called auxetic materials. Among the 

interesting properties of auxetics is also the enhanced vibration suppression (Ma et al. 2013). 

Auxetic materials usually have peculiar shapes, such as star-shaped and chiral microstructures, 
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or even more complicated forms which occur from topology optimization. More information on 

the auxetic materials can be found in the recent review (Duncan et al. 2018). There are several 

papers in recent literature which study the effect of the properties of microstructures, and 

especially of the ones with auxetic behavior, in the isolation of vibrations and the creation of band 

gap areas in specific frequencies (Meng et al. 2015), (Chen et al. 2018), (Bacigalupo et al. 2015), 

(Koutsianitis et al. 2019). 

Chiral metamaterials present interesting mechanical properties due to the coupling of 

longitudinal with rotational deformation. Among others, auxetic behaviour and band gap 

appearance have been observed, see (Wu et al. 2019) and the references given there. This transfer 

of deformation mode can be exploited in dynamics and leads to interesting band gaps that can be 

used for technical applications. Classical or topology optimization can be used in order to fine 

tune the band gap formation and design the microstructure with respect to required properties. 

The basic mechanism is the transfer of kinetic energy from large to small scale, where it is 

damped.  

Further information related to this topic can be found in recent literature: analytical 

investigation of the inertial amplification mechanism in (Yilmaz 2018), hexagonal chiral latices 

in (Spadoni et al. 2009), three-dimensional anti-chiral auxetic metamaterials with tunable 

phononic bandgaps (Fei et al. 2020), hybrid reentrant and anti-chiral materials in (Qi et al. 2019), 

hybrid reentrant honeycombs (Xin et al. 2021), optimal design of chiral in (Chen et al. 2021), 

(Hosseinkhani et al. 2021), (Bacigalupo et al. 2019). It should be also emphasized that the 

developments in additive manufacturing make the usage of complicated metamaterials feasible 

(Matlack et al. 2016), (Askari et al. 2020). 

In the present investigation, a model which consists of two-dimensional chiral 

microstructures is studied, using finite element analysis, in order to demonstrate the band gap 

properties. The parametric investigation presented here can be extended and coupled with optimal 

design algorithms for more detailed investigation.  

The paper is organized as follows: in Section 2, the fundamental relations, that is, the Bloch 

theory for 2D elements is presented. Section 3 is devoted to the numerical results of the study. 

Finally, in Section 4 the conclusions of the investigation are given.  

2. Bloch theory for 2D elements 

An assembly of structural elements (e.g. beams, rectangular elements, square elements, etc.) is 

called lattice and it is produced from the correlation between the unit cell and the basis vectors εi. 

In this direction, the suitable definition of a unit cell is critical. It is also necessary to define the 

lattice points rj of a unit cell, which are a subset of the nodes of the total finite element model. In 

the present paper, 2D lattices which consist of plane stress elements are considered.  

The displacement q(rj) of the lattice points of the unit cell for plane waves, is defined as: 

 
( )

( ) ji t kr

j j
q r q e

 
  (1) 

where qj is the amplitude, ω is the frequency, and k is the wave vector, respectively. 

There are two parameters n1 and n2, which can identify any other unit cell, and can be 

obtained by n translations across the e directions with respect to each specific unit cell. According 

to Bloch’s theorem the displacement at the jth point of any unit cell can be identified by such a 

unique pair of integers n1 and n2 as: 
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where: 

 
1 1 1 1

k ke i     (3) 

 
2 2 2 2

k ke i     (4) 

The complex numbers k1 and k2 of Equations 3 and 4 denote the components of the wave 

vector k which is propagated and dissipated along the vectors e1 and e2. The real part δ is the 

attenuation constant, that is, a measurement of wave propagation among the cells, and the 

imaginary part ε is the phase constant and it represents the phase change across the unit cell. If 

there is no attenuation in wave propagation, then the real part δ is zero and the wave vector can 

be expressed as:  

 
1 1

k i  (5) 

 
2 2

k i  (6) 

The first Brillouin zone of a square unit cell with two axis of symmetry P2mm is shown in 

Fig. 1. The band gaps are created using the assumption that the wave vectors follow the Brillouin 

zone (Γ-Χ-Μ-Υ) according to Maurin et al. (2018).  

 

Fig. 1. The first Brillouin zone and the irreducible Brillouin zone (Γ – Χ – Μ - Y). 

Periodic structures are repetitive geometric patterns. Uniform 2D structures constitute a 

special case of periodic structures, homogeneous in x and y directions, as an assembly of 

rectangular segments with length Lx and Ly to the x and y directions, respectively.  

The scheme shown in Fig. 2, suggests that the degrees of freedom q of the rectangular 

segment of reference can be considered with respect to the nodal degrees of freedom as: 

 
1 2 3 4

T T T T
q q q q q     (7) 

where qj are the nodal degrees of freedom of the nodes of the jth corner of the segment, while the 

superscript T denotes the transpose.  

The equations of motion of each element are given as: 

  2
M i C K q f      (8) 
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where M, C and K are the mass, damping and stiffness matrices respectively, ω is the natural 

frequency, f is the loading vector and i is the imaginary number (Mace et al. 2008).  

 

Fig. 2. A rectangular segment with a 4–noded rectangular finite element. 

The wave propagation in 2D structures can be considered as a Bloch wave (Bloch 1928), 

(Floquet 1883). The relation among the periodic displacements q on the sides of the periodic 

element is given as:  

 
2 1 3 1 4 1

, , ,
x y x y

q q q q q q       (9) 

where xi

x
e





 , yi

y
e





 and the constants

x x x
L  , 

y y y
L   μχ = κxLxdescribe the 

propagation of the wave. 

The nodal degrees of freedom can in turn be rewritten as: 

 
1R

q q   (10) 

where 
R x y x y

I I I I        . 

In the free response case one has: 

 0
L

f   (11) 

where 1 1 1 1

L x y x y
I I I I           . 

By substituting the equation (10) in the equation (8) and multiplying by ΛL, one can take the 

equation of the free wave motion as: 

  2
( , ) ( , ) ( , )

x y x y x y
M i C K q f            (12) 

where
L R

M M   , 
L R

C C    and 
L R

K K    are the reduced mass, damping and stiffness 

matrices. 

The eigenvalue problem is now given as: 

 ( , ) 0
x y

D      (13) 

where D  is the reduced dynamic stiffness matrix. 
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3. Numerical results 

In the present investigation a chiral metamaterial which consists of three different materials is 

considered (see Fig. 3). The first material (grey color) is used for the wings of the unit cell, the 

second material (green color) is used for the core, while the third softer material (blue color) is 

used for the rest of the unit cell. The dimensions and material properties of this unit cell are given 

in Table 1 and 2, respectively. 

 

 (a)                                   (b) 

Fig. 3. (a) Dimensions and (b) material distribution of the chiral unit cell. 

Radius R1 Radius R2 Length L thickness t 
0.005 m R1/4 m 0.025 m 0.00035 m 

Table 1. Unit cell dimensions 

 Material 1 Material 2 Material 3 

Young modulus (Pa) 3.6∙1012 1.1∙1011 5∙106 

Density (kg/m3) 17800 8960 500 

Poisson ratio 0.28 0.35 0.48 

Table 2. Material properties for the three materials. 

3.1 Investigation of chiral metamaterials with and without core 

In the first investigation, the dispersion curves for a chiral metamaterial with and without core 

(see Fig. 4) for the first twenty eigenfrequencies are considered.  

 

(a)                               (b) 

Fig. 4. Unit cell (a) without core and (b) with core. 

As seen in Figs. 5 and 6, several band gaps are created for both models. The largest areas for 

each case are marked with grey color. In Fig. 5, for the model without core, three band gaps 

appear between 10kHz and 10.8kHz, between 11.6kHz and 13.8kHz, and between 14.6kHz and 
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14.8kHz. In Fig. 6, for the model with core, four band gaps appear between 10.1kHz and 10.4kHz, 

between 10.9kHz and 12.9kHz, between 13.8kHz and 14.6kHz, and between 15.1kHz and 

15.4kHz. 

 

Fig. 5. Dispersion curve for the unit cell without core. 

 

Fig. 6. Dispersion curve for the unit cell with core. 

From the results, one can observe that in the case of the unit cell with the core, more band 

gaps are created, and the range of the first twenty eigenfrequencies is slightly increased. A 

parametric investigation for the influence of the wing length l to the response of the chiral 

microstructure with the core will be considered for the microstructure with core. 

3.2 Influence of the wing length of chiral metamaterials 

Subsequently, the influence of the length l of the chiral wings is investigated. Initially the length 

of the wing of the chiral unit cell was selected as 0.025 m. Four equidistant cases of ±12.5%, and 

±25% of the initial length, that is for lengths equal to 0.01875 m, 0.021875 m, 0.028125 m, and 

0.03125 m are considered. The results are presented schematically in Figs. 7, 8, 9 and 10 and 

numerically in Table 3. 

In the first case (l=0.01875 m) the dispersion curve is shown in Fig. 7. One observes that a 

reduction of 25% on the length of the chiral wing leads to a reduction of the amount of the large 

band gap areas, however, a significant area appears at lower frequencies.  
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Fig. 7. Dispersion curve for l=0,01875 m. 

In the second case (l=0.021875 m) the dispersion curve is shown in Fig. 8. A reduction of 

12.5% of the wing length increases the amount of the band gaps, by creating more clear zones, 

even of smaller size. In this case, the isolation zones appear in high frequencies.  

 

Fig. 8. Dispersion curve for l=0.021875 m. 

The dispersion curve for the third case (l=0.028125 m) is shown in Fig. 9. The first significant 

band gap area appears above 8 kHz, with three discrete zones, very close to each other within the 

range 8 kHz-12 kHz.  

 

Fig. 9. Dispersion curve for l=0.028125 m. 
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In the last case the length is increased by 25% (l=0.03125 m). The dispersion curve for this 

case is shown in Fig. 10 where six large band gaps appear. These zones are equally distributed in 

two different frequency areas (between 7 kHz – 10 kHz and 12 kHz-15.5 kHz). 

 

Fig. 10. Dispersion curve for l=0.03125 m. 

From the parametric investigation one concludes that the wing length modification affects 

the band gaps. However, the range of the first twenty eigenfrequencies remains within 0-16 kHz. 

 
 l=0.01875m l=0.021875m l=0.025m l=0.028125m l=0.03125m 

1st bg (Hz) 4675-4701  3805-4018  3030- 3148  2947-3099  7005-7670  

2nd bg (Hz) 4930-5550 8950-9550  9505- 9550  7797-7824  8140-9550 

3rd bg (Hz) 10150-10490  9634-10382  10025- 10494 8197-9550  9593-9805 

4th bg (Hz) 10714-13115 12443-13120  10690- 13111 9615-10488 11956-13096 

5th bg (Hz) - 13553-13635  13346- 13576 10676-12002 13668-14674 

6th bg (Hz) - 13786-14975 13690- 14525 15092-15834 15028-15576 

7th bg (Hz) - 15046-15835 15000- 15390 - - 

8th bg (Hz) - 15857-16018 - - - 

Table 3. Numerical results of the parametric investigation for the length of the chiral wing. 

3.3 Influence of the radius R1  

In the third instance, the influence of the radius R1 of the bigger disk (see Fig. 3) is investigated. 

Initially the radius R1 was set to 0.005m. Again, four equidistant cases of ±10%, and ±20% of the 

initial radius were studied. More specifically, radiuses of 0.004m, 0.0045m, 0.0055m, and 0.006m 

are considered. The results are depicted in Figs. 11, 12, 13 and 14. The numerical results are given 

in Table 4. 

In the first case (R1=0.004m) the dispersion curve is shown in Fig. 11. One observes that a 

reduction of 20% of the radius R1 of the chiral material affects the frequency range of band gaps, 

as they appear after the frequency of 10kHz. There are six band gap areas, however only four are 

visible. 
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Fig. 11. Dispersion curve for R1=0.004m. 

The dispersion curve for the second case (R1=0.0045m) is shown in Fig. 12. In this case the 

band gaps are moved in higher frequencies; however, a large band gap area is created within 

12kHz and 14.7kHz.  

 

Fig. 12. Dispersion curve for R1=0.0045m. 

In the third case of this investigation, that is for radius which is increased by 10% 

(R1=0.0055m), we obtain the dispersion curve of Fig. 13. One can observe that the microstructure 

of this case is very efficient for frequencies between 10kHz and 14kHz. Moreover, a smaller band 

gap area appears between 7kHz and 8kHz, which is lower than the ones οφ the original case 

(R1=0.005m). The number of the zones does not seem to be affected. 
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Fig. 13. Dispersion curve for R1=0.0055 m. 

In the last case of this subsection, the radius R1 is increased by 20% (R1=0.006m). The 

dispersion curve for this case is shown in Fig. 14 where four large band gap areas appear. These 

zones are distributed within the frequency range of 2.8kHz - 13kHz. The important thing here is 

the appearance of two band gaps at lower frequencies, a large between 6.3kHz – 7.8kHz and a 

smaller between 2.8kHz – 3kHz, which might be useful in some applications. The number of 

large band gap zones here are increased to five. 

 

Fig. 14. Dispersion curve for R1=0.006 m. 

From the parametric investigation one concludes that the wing length modification affects 

the band gaps. However, the range of the first twenty eigenfrequencies remains within 0-16kHz. 

 
 R1=0.004m R1=0.0045m R1=0.005m R1=0.0055m R1=0.006m 

1st bg (Hz) 3720-3890  2955-3020  3030- 3148  2945-3020  2827-3010  

2nd bg (Hz) 11065-12010 3290-3478  9505- 9550  7911-7947  6363-7753 

3rd bg (Hz) 12275-12326  9750-9793  10025- 10494 9740-11820  9362-10760 

4th bg (Hz) 12955-13425 10320-10722  10690- 13111 12084-12275 11055-11182 

5th bg (Hz) 19630-20270 10870-11780  13346- 13576 12345-13200 11285-11926 

6th bg (Hz) - 11972-14717 13690- 14525 13465-14270 12203-12990 

7th bg (Hz) - 14914-15144 15000- 15390 14293-14348 13014-13120 

8th bg (Hz) - 17775-17780 - - - 

Table 4. Numerical results of the parametric investigation for the radius R1. 
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3.4 Influence of the density ρ of the material of the core 

In the next investigation, the influence of the density ρ of the material of the core (see Material 2 

in Table 2) is studied. Initially the density was set to 8960kg/m3. Four cases are taken into account, 

where density is altered at ±10% and ±20% of the initial one. Namely, a density of 7160 kg/m3, 

8060 kg/m3, 9860 kg/m3, and 10760 kg/m3 are considered. The results are shown in Figs. 15, 16, 

17 and 18. The numerical results are given in Table 5. 

In the first case, the density is decreased by 20% (ρ=7160 kg/m3) and the dispersion curve is 

shown in Fig. 15. It is clearly shown that this reduction affects not only the frequency range of 

band gaps, but also their number, as well as their size. Five visible isolated areas are created, with 

a large band gap between 10.8k Hz and 13 kHz. 

 

Fig. 15. Dispersion curve for ρ=7160 kg/m3. 

The dispersion curve for the second case (ρ=8060 kg/m3) is shown in Fig. 16. It is observed 

that in this case the results are similar with the previous case.  

 

Fig. 16. Dispersion curve for ρ=8060 kg/m3. 

In the third case (ρ=9860k g/m3), the dispersion curve is depicted in Fig. 17.  
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Fig. 17. Dispersion curve for ρ=9860 kg/m3. 

In the last case the density is increased by 20% (ρ=10760 kg/m3). The dispersion curve for 

this case is shown in Fig. 18 where again, the results look similar to the ones of the previous 

cases. This suggests that the number and the range of the band gap zones does not seem to be 

affected by the modification of the density of the core’s material.  

 

Fig. 18. Dispersion curve for ρ=10760 kg/m3. 

 ρ=7160kg/m3 ρ=8060kg/m3 ρ=8960kg/m3 ρ=9860kg/m3 ρ=10760kg/m3 

1st bg (Hz) 2935-3028  2933-3030  3030- 3148  9460-9500  3010-3030  

2nd bg (Hz) 3260-3443 3091-3285  9505- 9550  10700-13110  9420-9456 

3rd bg (Hz) 9630-9700  9562-9617  10025- 10494 13340-13575  10015-10479 

4th bg (Hz) 10050-10515 10035-10503  10690- 13111 13690-14525 10693-13110 

5th bg (Hz) 10724-13110 10714-13110  13346- 13576 15000-15390 13340-13575 

6th bg (Hz) 13340-13575 13340-13575 13690- 14525 - 13690-14525 

7th bg (Hz) 13690-14525 13690-14525 15000- 15390 - 15000-15390 

8th bg (Hz) 15000-15390 15000-15930 - - - 

Table 5. Numerical results of the parametric investigation for the density ρ of Material 2. 

3.5 Study of a ten-by-ten lattice made of chiral microstructures 

In the last investigation, a ten-by-ten lattice, which consists of chiral unit cells is considered, using 

the material and design properties as mentioned in the Tables 1 and 2 (see Fig. 19).  

Two different boundary conditions are applied on the structure. A roller boundary condition, 

preventing the movement on the vertical axis and leaving free the movement on the horizontal 
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axis, is applied at the bottom and top sides, while fixed constraints are applied at the right edge 

of the lattice.  At the left edge of the lattice, a harmonic load with amplitude which corresponds 

to a pressure equals to 10Mpa, is applied with direction on the horizontal axis. The frequency 

response of the structure under this harmonic load is studied and compared with the dispersion 

curve.  

 

Fig. 19. The 10 by10 lattice, loadings and boundary conditions. 

The displacement amplitude of the red point (see Fig. 19) at the band gap areas is equal to 

zero. One can observe that the approximation of the Bloch theorem is very accurate and effective 

as it predicted four different zones where oscillation isolation is achieved. These frequency zones 

appear between 10 kHz-15.3 kHz as seen in Fig. 20. 

 

Fig. 20. Frequency response of the lattice and the dispersion curve of the Chiral unit cell. 

The band gap areas affect the whole lattice and not only one specific point. For instance, a 

loading case with a harmonic excitation and frequency outside of the band gap zones (e.g. 

14.8kHz) creates strong oscillations in several areas of the lattice and the wave propagates through 

the medium. On the other hand, the use of a frequency within a band gap zone (e.g. 11kHz) leads 

to oscillation isolation, which is achieved by preventing the wave propagation before it passes 

from the second layer of unit cells (see Fig. 21). Thus, the stresses and the displacement of the 

structure remain in low levels.    



Panagiotis Koutsianitis et al.: PARAMETRIC INVESTIGATION OF BAND GAP EFFECTS … 

 

 

76 

 

Fig. 21. Stresses and displacements of the lattice inside and outside of the band gap. 

4. Conclusions 

In the present investigation, a chiral microstructure is studied as a potential vibration isolation 

medium for certain frequencies. Initially the influence of the use of a different material for the 

core of the element is investigated, indicating that the metamaterial with the core presents 

improved behavior in the creation of band gap zones. Subsequently, the length of the chiral wings 

is modified, in order to study the effect on the band gaps. From the results of the parametric 

investigation, it was shown that the modification of the geometrical parameters of the chiral 

material, that is the wing length l and the radius R1, significantly affects the occurrence of the 

band gap areas, without intervening on the range of the first twenty eigenfrequencies which 

remains within 0-16 kHz. On the other hand, the modification of the material properties, and more 

specifically the alteration of the density of the material of the chiral core, does not seem to affect 

the appearance of band gaps.  

Finally, the application of such metamaterials on a ten-by-ten lattice is considered. The 

results validate the dispersion curves of the previous investigations. The influence of chirality on 

band gap properties and, in particular, the transfer of energy between longitudinal and rotational 

vibration can be studied by using a two-dimensional finite element model. Design for specific 

demands for a given application and optimal design can be based on this computational procedure. 

The influence of inclusions and geometry constants, investigated here, as well as of different 

shapes (Qi et al. 2019) (Xin et al. 2021) and possible piezoelectric enhancements (Koutsianitis et 

al. 2021), open possibilities for the design of new tailored metamaterials. 
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