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Abstract 

Kirchhoff plate bending and Winkler-type contact problems with different boundary conditions 

are solved with the use of physics-informed neural networks (PINN). The PINN is built on the 

base of mechanics laws and deep learning. The idea of the technique includes fitting the governing 

partial differential equations at collocation points and then training the neural network with the 

use of optimization techniques. Training of the neural network is performed by numerical 

optimization using Adam’s method and the L-BFGS (Limited- Broyden–Fletcher–Goldfarb–

Shanno) algorithm. The error loss function and the computational error of the approximate 

solution (output of the neural network) of the bending problem and contact problem with Winkler 

type elastic foundation are shown on examples. The predictions of the NN are investigated for 

different values of the foundation’s constants. The effectiveness of the proposed framework is 

demonstrated through numerical experiments with different numbers of epochs, hidden layers, 

neurons and numbers of collocation points. The Tensorflow deep learning and scientific 

computing package of Python is used through a Jupyter Notebook. 

Keywords: Plate bending, Winkler foundation, partial differential equation, physics-informed 

neural network, deep learning, collocation method. 

1. Introduction 

In the last years within the framework of data-driven computational techniques a relatively new 

method, so-called physics-informed neural network (PINN), became widely distributed and 

popular. The cost of effort and time needed for analyzing complex physical, mechanical, 

biological and engineering problems can be prohibitive and, in some cases even impossible to 

construct a numerical solution, converging to an exact solution of the considered problem, based 

only on classical computational tools. On the contrary, in several applications described by 

differential equations a quick even less accurate approximation of the solution is required. This 

task can be accomplished by a PINN. 

Artificial neural networks (ANNs) have been developed long time ago (see e.g., McCulloch 

and Pitts 1943). During recent years thanks to the technological progress in developing of strong, 

powerful computing software, a big growth of available data and thanks to elaboration of 
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backpropagation techniques and deep learning mechanism, became possible to solve many 

complicated problems in science and engineering.  

For the solution of elastoplastic and contact problems in mechanics by using the 

minimization of energy, Hopfield and Tank neural networks have been proposed by Kortesis and 

Panagiotopoulos (1993), and Avdelas et al. (1995). Feedforward NNs trained by the 

backpropagation algorithm, have been used for the approximation of several problems in 

mechanics based on examples (supervised learning). Inverse and parameter-identification 

problems in mechanics have been solved by using backpropagation neural networks by 

Stavroulakis et al. (1997), Stavroulakis (2000), Waszczyszyn and Ziemiański (2005) and 

Stavroulakis et al. (2003). Buckling loads in nonlinear problems for elastic plates have been 

estimated with the use of neural network in the work of Muradova and Stavroulakis (2007).  A 

recent review of classical usage of neural networks within computational mechanics can be found 

in Yagawa and Oishi (2021). 

The technique of using the governing partial differential equations, together with boundary 

conditions for training an artificial neural network in order to solve the problem has been 

proposed by Lagaris et al. (1998). Recent developments related to automatic differentiation of 

the neural networks in order to approximate the required derivatives and its implementation with 

the usage of open-source software, led to the development of the physics-informed neural 

networks (see, among others, Raisi et al. 2019, Baydin et al. 2018, Shin et al. 2020, Kharazmi et 

al. 2019, Karniadakis et al. 2021). A PINN architecture requires the classical elements of feed-

forward neural networks, like nodes, hidden layers, activation functions, and instead of the 

availability of input-output data for training, the physics law, with the governing differential 

equations and boundary conditions are used. Artificial neural networks with various hidden 

layers, which exponentially reduce the computational cost and amount of training data in some 

applications along others have been proposed by Al-Aradi et al. (2018).  

The PINNs combine a collocation approach for fitting the solution of the governing 

differential equations and boundary conditions at certain points of a domain and it’s boundary. 

After using optimization techniques the parameters of the neural networks, weights and biases, 

are found. The backpropagation improves the results on each epoch of training, till the required 

accuracy reaches. 

In the present paper PINNs are applied to Kirchhoff plate bending problems with transverse 

distributed loads and to contact models with elastic Winkler’s foundations. The Adam’s 

optimization algorithm (Kingma and Ba 2015), based on gradient decent method and more 

commonly used in deep learning together with the L-BFGS (Limited- Broyden–Fletcher–

Goldfarb–Shanno) technique (Fletcher 1987) are applied in this work. The L-BFGS optimization 

is intended for solving unconstrained nonlinear optimization problems. It is widely used for large 

scale problems and for parameter estimation in machine learning. 

The paper is organized as follows. In Section 2 the plate bending and contact problems are 

described. The Kirchhoff governing equations with transverse forces and transverse-foundation 

reaction forces are formulated. The neural network architecture for the plate models is presented 

in Section 3. The scheme, based on calculating error loss function, i.e. errors for the fitting the 

governing equations and the boundary conditions at collocation points is presented. The 

computational algorithm involving the feedforward and backpropagation steps are described in 

Section 4. Numerical results are presented in Section 5. Conclusions and discussions are provided 

in Section 6. 
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2. The plate bending and the contact problems 

The classical Kirchhoff elastic plate bending equation reads,  

 𝐷𝛥 𝑊(𝑥, 𝑦) = 𝐹(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝐺, (1) 

where 𝐺 = (0, 𝑙 ) × (0, 𝑙 ), 𝑙 , 𝑙  are the lengths of sides of the plate, 𝑊(𝑥, 𝑦) denotes the 

deflection, 𝐷 = ℎ3𝐸 12(1 − 𝜈 )⁄  is the cylindrical rigidity of the plate, ℎ is the thickness of the 

plate, 𝐸 is the Young modulus and 𝜈 is the Poisson ratio. Further,  𝛥  is the biharmonic operator 

and 𝐹(𝑥, 𝑦) are the transverse distributed loading forces. 

The simplest soil structure interaction effect is described by the classical linear Winkler’s 

foundation in which the soil reaction on the plate is directly proportional to the deformation of 

the plate. Another type of Winkler’s foundation is a separated nonlinear elastic Winkler-type 

foundation spring with contribution 𝑘 𝑊 − 𝑘 𝑊
3 (𝑘  and 𝑘  are Winkler-type stiffness’s 

constants). This subgrade model, often used in practice for nonlinear elastic foundations (e.g. 

Katsikadelis and Yiotis 2003, Shen Hui-Shen 1995), is investigated here. Namely, the following 

equation is considered,  

 𝐿𝑊 + 𝑝(𝑊) = 𝐹,    𝑥, 𝑦 ∈ 𝐺, (2) 

where 𝐿𝑊 ≡ 𝐷𝛥 𝑊 and 𝑝(𝑊) = 𝑘 𝑊 − 𝑘 𝑊
3. The proposed neural network learning 

techniques can be applied to different kind of boundary conditions for plates (see, e.g. Muradova 

and Stavroulakis 2020). In the examples in Section 5, training of the neural network is performed 

for the simply supported and clamped plates. 

3. Neural network architecture 

The artificial neural network architecture, used in this work is illustrated in Figure 1. 

 

Fig. 1. The physics-informed artificial neural network architecture. 

The input data are the position vector 𝑥, 𝑦 and the output of the neural network is an 

approximate solution 𝑊. The mesh consisting from the collocation points for the equations (1), 

(2) and for the boundary 𝜕𝐺 is 𝐺𝑁1𝑁2 = {(𝑥𝑖 , 𝑦𝑗), 𝑖 = 0,1, …𝑁 + 1, 𝑗 = 0,1, … ,𝑁 + 1, 𝑥0 =

0, 𝑥𝑁1+ = 𝑙 , 𝑦0 = 0,  𝑦𝑁2+ = 𝑙 } on the plate is considered. In case, 𝑁 = 𝑁 = 𝑁 the number 
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of collocation (interior) points for the equation (1) and (2) is 𝑁 × 𝑁. The parameters of the neural 

networks 𝑊,𝐹 for the equations (1) and (2) with boundary conditions are learned by minimizing 

the mean squared error, named loss function,  

 𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑏 +𝑀𝑆𝐸𝑓. 

Here 𝑀𝑆𝐸𝑏 is the loss for boundary conditions 

 𝑀𝑆𝐸𝐵𝑘 =
 

𝑁𝑏
∑ {(𝐵𝑘𝑊(0, 𝑦𝑗) −𝑊0𝑗

𝑘 )
 
+ (𝐵𝑘𝑊(𝑙 , 𝑦𝑗) −𝑊 𝑗

𝑘 )
 
+ (𝐵𝑘𝑊(𝑥𝑖 , 0) −

𝑁𝑏− 
𝑖,𝑗=0

𝑊𝑖0
𝑘)

 
+ (𝐵𝑘𝑊(𝑥𝑖 , 𝑙 ) −𝑊𝑖 

𝑘)
 
} ,  

where 𝐵𝑘 the corresponding differential operator, and 𝑀𝑆𝐸𝐹 is the loss for  𝐿𝑊 + 𝑝(𝑊) −
𝐹(𝑥, 𝑦), i.e. 

 𝑀𝑆𝐸𝐹 =
 

𝑁
∑ {𝐿𝑊(𝑥𝑖 , 𝑦𝑗) + 𝑝 (𝑊(𝑥𝑖 , 𝑦𝑗)) − 𝐹(𝑥𝑖 , 𝑦𝑗)}

 
𝑁
𝑖,𝑗= ,  

where 𝑁𝑏 = 𝑁 + 2 is the number of collocation points on the boundary and  𝑁 is the number of 

collocation points for the equations (1) and (2). For example, the case 𝑘 = 0,2, 𝐵0𝑊 =
𝑊,𝐵 𝑊 = 𝛥𝑊 with 

𝑊0𝑗
𝑘 = 0, 𝑊 𝑗

𝑘 = 0, 𝑊𝑖0
𝑘 = 0, 𝑊𝑖 

𝑘 = 0,   𝑥, 𝑦 ∈ 𝜕𝐺 

corresponds to the simply supported plate,  

 𝑊 = 𝛥𝑊(𝑥, 𝑦) = 0, 𝑥, 𝑦 ∈ 𝜕𝐺, (3) 

and when 𝑘 = 0,1, 𝐵0𝑊 = 𝑊,𝐵 𝑊 = 𝜕𝑊 𝜕𝑛⁄  we have the clamped boundary conditions,  

 𝑊𝑥(0, 𝑦) = 0,  𝑊𝑥(𝑙 , 𝑦) = 0,    𝑊𝑦(𝑥, 0) = 0,   𝑊𝑦(𝑥, 𝑙 ) = 0, 𝑥, 𝑦 ∈ 𝜕𝐺. (4) 

4. Feedforward and backpropagation of the neural network 

The computational algorithm is based on feedforward of the signal through the neural network 

and backpropagation of the error based on the loss function. During backpropagation the weights 

are updated and eventually training is performed.  

Step 1. Give the input data for the neural network, the vectors  𝑥, 𝑦 (the collocation points for 

the equations, i.e. 𝑥 = (𝑥 , 𝑥 … , 𝑥𝑁), 𝑦 = (𝑦 , 𝑦 … , 𝑦𝑁) and the collocation points for the 

boundary conditions 𝑥 = (𝑥0, 𝑥 , … , 𝑥𝑁, 𝑥𝑁+ ), 𝑦 = (𝑦0, 𝑦 , … , 𝑦𝑁, 𝑦𝑁+ ),
 
where 𝑥0, 𝑦0, 𝑥𝑁+  

and 𝑦𝑁+  are also included.  

Step 2. Set up the physical parameters of the plate, the loading function and in case of the 

presence of the elastic foundations the coefficients 𝑘 , 𝑘 . In feedforward, for each neuron of the 

first hidden layer we compute 𝑧𝑘
𝑖𝑗
= 𝑥𝑖𝑤𝑘

 + 𝑦𝑗𝑤𝑘
 + 𝑏𝑘,  𝑖, 𝑗 = 0,1, … , 𝑁 + 1 (for the boundary 

points) and 𝑖, 𝑗 = 1,2, … , 𝑁 (for the interior points),  𝑘 = 1,2, . . . , 𝐻,  𝐻 is the number of neurons 

in the hidden layers. Here 𝑤𝑘
 , 𝑤𝑘

  are the weights from the input layer 𝑥, 𝑦, respectively to the 

neurons of the first hidden layer and 𝑏𝑘 are the biases.  

Step 3. Compute an activation function for the neural network (Sigmoid, Tanh, ReLU etc). 

In case of using the sigmoid activation function for the first hidden layer for each neuron 𝑘,  𝑆 𝑘 =

𝜎(𝑧𝑘
𝑖𝑗
),  𝜎(𝑧𝑘

𝑖𝑗
) = 1 (1 + 𝑒−𝑧𝑘

𝑖𝑗

)⁄ . Then for the second hidden layer compute 

 𝑆 𝑘 = 𝜎(∑ 𝜎(𝑧𝑙
𝑖𝑗
)𝑤𝑙𝑘

𝐻
𝑙= + 𝑏𝑘) = 𝜎(∑ 𝑆 𝑙𝑤𝑙𝑘

𝐻
𝑙= + 𝑏𝑘)  
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from the previous hidden layer and so on for all the rest hidden layers compute 𝑆𝑝𝑘, 𝑝 = 3,4, …𝑁ℎ 

(𝑁ℎ is the number of hidden layers).  

Step 4. Calculate the output of the neural network,  

 𝑊𝑖𝑗 = ∑ 𝑆𝑁ℎ𝑘𝑣𝑘
𝐻
𝑘= + 𝑏,  

where 𝑊𝑖𝑗 = 𝑊(𝑥𝑖 , 𝑦𝑗), 𝑣𝑘 are the weights from the last hidden layer to the output layer and 𝑏 is 

the bias. The output is the approximate solution of the equation (1) or (2) with the chosen 

boundary conditions.  

The gradients are computed along with the approximate solution and then the loss function 

is calculated with the use of tools of Tensorflow scientific package. In backpropagation the 

weights and biases are updated and the loss function is minimized by applying Adam’s and the 

L-BFGS-B optimizers of Tensorflow, respectively. The output of the neural network is compared 

with the exact solution and with the numerical solution, obtained after using the spectral 

collocation method.  

5. Numerical results 

Below in the numerical examples the neural network is trained for the simply supported and 

clamped plates. The programming code for implementation of the techniques is composed in 

Python version 3.7.9, the platform for machine learning, Tensorflow 1.14.0 in Python language. 

In addition, NumPy (the core library for scientific computing) and Matplotlib (the plotting 

library) are used in the programming code. The sigmoid activation function is used, since it is a 

differentiable function and suitable for automatic differentiation. The Adam’s and L-BFGS-B 

optimizers have been tested for updating the weights and minimization of loss functions. In 

Adam’s optimizer: learning_rate=0.001, and 𝛽 = 0.9,  𝛽 = 0.999, 𝜀 = 1𝑒 − 08. In L-BFGS-

B’s optimizer maxiter=50000, 'maxfun': 50000, 'maxcor': 50, 'maxls': 50, 'ftol': 1.0 * 

np.finfo(float).eps).  

For estimation of the error of approximation the following notation is introduced: ‖𝑊‖ =

𝑚𝑎𝑥𝑖𝑗{|𝑊𝑖𝑗|}.  

Example 1. (The simply supported plate)  

The physical parameters of the plate are 𝐷 = 1, 𝑙 = 𝑙 = 1, and the transverse forces are  

𝐹(𝑥, 𝑦) = 𝑠in(𝜋𝑥)𝑠in(𝜋𝑦). The exact solution is 𝑊(𝑥, 𝑦) = (1 16⁄ 𝜋4)𝑠in(𝜋𝑥)𝑠in(𝜋𝑦). The 

neural network consists from 4 hidden layers with 100 neurons, two inputs x and y and output 𝑊. 

For training the neural network, 𝑁 = 16, epochs 50000, 80000 have been tested. The numerical 

results for the approximate solution 𝑊 for (1), (3) along a cross-section of the plate are shown on 

Figure 2.  
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Fig. 2. The cross section of the approximate solution 𝑊with 256 interior collocation points (a) 

epochs are 50000; b) epochs are 80000). 

The norm of the error of the approximate vector solution is 𝜀 = ‖𝑊 −𝑊‖ = 0.0006309 

(𝑊 is the exact solution) with epochs 50000. For epochs 80000 we have obtained 𝜀 =
0.0004778. Table 1 shows dependence of the error of the output of the PINN on the number of 

hidden layers and neurons. In Table 1 it has been taken N=10 and epochs=150000.  

       Neurons                   

Layers 
10 20 40 

2 1.13313 ⋅ 10−3 7.04430 ⋅ 10−4 4.56145 ⋅ 10−4 

4 5.65454 ⋅ 10−4 5.70129 ⋅ 10−4 4.56497 ⋅ 10−4 

6 6.03632 ⋅ 10−4 5.55525 ⋅ 10−4 1.87982 ⋅ 10−4 

Table 1. The norm of the error of the approximate vector solution 𝜀. 

The time of computations increases with increasing the number of layers, the number of 

neurons and the number of collocation points. Figure 3 shows dependence of the error loss 

function on the number of collocation points. A dynamics of changing of the error loss function 

with respect to the epochs is illustrated. 

 

Fig. 3. The error loss function MSE in correspondence with epochs. 
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For the same physical parameters and transverse forces of the plate we have trained the neural 

network for the problem (2) with the foundations’ parameters 𝑘 = 30, 𝑘 = 1. The number of 

epochs are 500000, the hidden layers are 4 with 40 neurons. The interior collocation points are 

256  and the boundary collocation points 𝑁𝑏 = 18. The results are shown on Figure 4 (𝑊 is the 

exact solution with 𝑘 = 0, 𝑘 = 0). The results are compared with the spectral collocation 

method (Muradova et al. 2018). The analytical solution is expanded into the partial sums of the 

double Fourier series, i.e. the displacement at the collocation points is computed as 

 𝑊𝑖𝑗
𝑠𝑝
= ∑ 𝜙𝑘𝑙𝑠in (𝜋𝑘

𝑥𝑖

𝑙1
) 𝑠in (𝜋

𝑦𝑗

𝑙2
)𝑀

𝑘,𝑙= ,  

where 𝑀 = 16 (𝑀 ×𝑀 is the number of global basis functions) and 𝑖, 𝑗 = 1,2, … , 𝑁. The global 

basis functions satisfy the boundary conditions (3).  

 

Fig. 4. The cross section of the approximate solutions with 𝑘 = 30, 𝑘 = 1 (after applying the 

spectral collocation method and training of the PINN, respectively) and the exact solution with 

𝑘 = 0, 𝑘 = 0. 

Example 2. (The clamped boundary conditions.)  

The physical parameters of the plate 𝐷 = 1, 𝑙 = 𝑙 = 1, and the transverse forces of the plate 

𝐹(𝑥, 𝑦) =cos2𝜋𝑥(cos2πy-1)+(cos2πx-1) cos2πy+2cos2𝜋𝑥 cos2πy are considered. The exact 

solution with 𝑘 = 0, 𝑘 = 0 is 𝑊(𝑥, 𝑦) = 1 16⁄ 𝜋4(cos2πx-1)(cos2πy-1). We have trained the 

neural network for the unconstrained problem (1) and the constrained problem (2) with the 

clamped boundary conditions (4). The hidden layers for both problems are 2 with 40 neurons. 

The collocation points including interior and boundary are 484(𝑁 = 22). For (1), i.e. when 𝑘 =
0, 𝑘 = 0 the number of epochs is 500000. The results are shown on Figure 5.  
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Fig. 5. The cross section of the exact solution and the approximate solutions with 𝑘 = 0, 𝑘 =
0 after training the PINN, respectively. 

The constrained problem (2) has been solved for different values of the foundation constants 

𝑘  and 𝑘  as well. Figure 6. shows how the loss error function MSE for different values of the 

foundation constants 𝑘  and 𝑘  changes with increasing the number of epochs.  

 

Fig. 6. The error loss function MSE for different values of the foundation constants 𝑘  and 𝑘  in 

correspondence with epochs. 

From the numerical results we can see that quite good approximations can be reached with 

just 2 hidden layers. Numerous numerical experiments have shown that with increasing mostly 

the first Winkler-type stiffness’s constant in order to reach good accuracy of the approximation 

quite many training iterations must be performed. Other words, in order to the NN could learn 

the behavior of the solution of the problem with foundation it is needed a large number of training 

epochs.  
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6. Conclusions 

The Kirchhoff plate model with transverse loading forces and with foundation interaction forces 

have been trained by artificial PINNs. Training of the neural network has been performed by 

feedforward and backpropagation using numerical optimizations as Adam’s optimizer and the L-

BFGS algorithm. The architecture of the PINN is composed, based on the nature of the problem. 

The steps of the computational algorithm are described.  

The numerical results have been obtained for the simply supported and clamped boundary 

conditions. The efficiency of the proposed techniques has been shown on examples. The results 

of the output of the PINNs are compared with the approximate solution, obtained after the 

application of the spectral collocation method, and with the exact solution. The accuracy of the 

approximate solution mainly depends on the number of training iterations (epochs), the number 

of hidden layers with neurons and the number of collocation points (samples). 

As the results have shown in order to reach high accuracy of approximation deep learning 

with many training iterations are required. However it should be taken into account that time of 

computations increases much with increasing a number of hidden layers. How many layers, 

neurons, collocation points and epochs must be taken depends on the type of the considered 

problem. Usually a complexity of the mechanical models requires more training steps for learning 

in the PINN. 

The programming code has been composed, based on scientific python packages. The 

Tensorflow library of Python, intended for artificial neural networks, has been used. The 

programming code can easily be modified and used for other material-made plates and for  plates 

with other types of boundary conditions such as, for example, partially clamped or boundary 

conditions for free edges of the plates. These are advantages of PINNs over traditional, for 

example, finite elements, boundary elements or spectral methods where local or global basis 

functions are needed to be defined. However, as the results have shown in order to reach a good 

approximation of a solution of mechanical problems many training iterations must be provided 

for neural networks. 

PINNs, as already mentioned, are considered to be useful for the quick calculation of 

estimates in comparison to complicated classical methods. This advantage can be useful for 

certain real-time applications, for instance in robotics, virtual reality etc. Furthermore PINNs are 

being developed for the unified study of direct and inverse problems, which are known to be 

difficult to be solved by classical methods Karniadakis et al. (2021). 
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