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Abstract 

Molecular dynamics simulations of the rigid-anvil collision test are performed by using a two-

dimensional computational setup that mimics the traditional ballistic Taylor test. In this 

extensively utilized computational setup, the slender nanoscale projectiles collide with a rigid 

wall with hypersonic striking velocities ranging from 3 km/s to 30 km/s. The projectiles used in 

these simulations are flat-ended, monocrystalline, nanoscale bars prepared at zero temperature. 

The Poisson hyper-exponential distribution with the logarithmic binning is used to capture the 

fragment mass (size) distribution under the constraint of the relatively small specimen size 

15×100 nm. The objective is to highlight the occurrence of certain discreteness of the fragment 

mass distribution observed both in time (during the fragment debris evolution) and across the 

striking velocity field (for the final fragmentation states that correspond to the stationary 

distributions). 

Keywords: Taylor test, impact fragmentation, discreteness, fragment mass distribution 

1. Introduction 

The ballistic Taylor test is a classic method for investigation of dynamic behavior of materials 

subjected to the extreme levels of plastic distortion (Fig. 1). For the range of striking velocities 

used in the present study, the extremity of the loading powers involved and the corresponding 

plastic distortion (schematically represented by Fig. 1b) results in the dynamic fragmentation of 

the nanoprojectile (Fig. 1c, Fig. 2 and Fig. 3b). A series of two-dimensional (2D) classic MD 

(molecular dynamics) simulations of the ballistic Taylor test (Fig. 1a) is performed with a main 

objective to explore a certain aspects of discreteness of the fragment mass distribution observed 

in these MD simulations. The slender, flat-ended nanoprojectiles utilized in the present 

investigation are made of a monocrystalline Lennard-Jones solid with an implicit supposition that 

the simplicity of this generic model does not impede the qualitative investigation of this unique 

and intriguing feature of the nanoscale fragmentation. The striking velocities (v) vary in a wide 

hypervelocity range from 3 km/s to 30 km/s. The lower bound of this range corresponds to the 

onset of the complete fragmentation (just sufficient to fully fragment the projectile without a 

residual stump, Fig. 2b) as established in a previous study (Mastilović 2015). The upper bound 

of this range comfortably exceeds the current speed of man-made projectiles but not necessarily 

those encountered by space structures.  
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Fig. 1. Schematics of the ballistic Taylor test: the flat-nosed slender nanoprojectile impacting 

the rigid wall: (a) initial (the depicted four circular areas mimic the “virtual” measurement 

gages), and (b) severely distorted configuration. (c) Detail of the atomistic connectivity in the 

damage process zone attached to the contact region in the early stage of fragmentation at 

v = 15 km/s. Note the high connectivity in spite of the extreme damage level (reflected by the 

number of broken bonds). The dashed lines outline the fragments whose chainlike appearance 

vividly illustrate that the snapshot corresponds to a state far from equilibrium.  

 

Fig. 2. Fragmentation snapshots corresponding to: (a) the moment of projectile arrest at 

v = 1 km/s, and (b) the full fragmentation at v = 3 km/s. Note how the projectile at striking 

velocity approaching the hypervelocity impact threshold dissolves in a cloud of fragment debris 

without the residual stump. 

From the standpoint of Solid Mechanics, the key mechanisms of fragmentation are the 

nucleation, evolution, interaction, and coalescence of cracks and voids at various spatial scales 

(Wang et al., 2021). These “ingredients” combined account for irreversible kinetic processes 

inherent to numerous physical phenomena that cover a truly vast range of spatial and temporal 

scales. The ultrafast flat-end collision of the projectile with the rigid target is an akrological event 

characterized by extremely steep gradients of state variables (e.g. Mastilović 2016), well 

documented by shock experiments (e.g. Trunin et al. 1989). By playing the role of a “virtual 

microscope”, MD offers a unique ability to study the dynamic fragmentation induced by strong, 

rapidly changing, and spatially non-uniform fields. The enormous buildup of pressure results in 

sequential fractures and cooperative phenomena among outcomes of these damage events that 

culminate eventually in energetic expulsion of fragment debris. Since the shock wave excitation 

is inherently ultrafast, the present MD method requires a time resolution of the order of 

femtosecond to observe the collective dynamics of the nanosystem. Moreover, the necessity to 

reach the stationary fragment distribution renders simulations extremely computationally 

expensive. 

Traditionally, the fragmentation process was considered statistically well posed if any point 

of the fragmentation domain was equally likely to fracture. Such problems were easier to attack 

by conventional methods of mathematical physics, prior to and in the infancy stage of 

computational mechanics. An emblematic example of such tacit assumption of statistical 
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homogeneity is the uniform expansion of a ring analyzed in the Mott’s seminal paper (1947). 

Needless to say, in engineering applications, the homogeneous fragmentation is rarely achieved 

due to complexity of the device geometry and the dynamic loading itself that cause the fracture 

intensity and, consequently, the average fragment size to be a function of position. An attempt 

was made by Mastilovic (2016) to explore a transition from statistically heterogeneous to 

homogeneous impact fragmentation by verifying to what extent the classic results of the MD 

simulations of the homogeneous adiabatic expansion of Holian and Grady (1988) remained valid 

for a highly unidirectional fragmentation process caused by application of a nonuniform transient 

strain-rate field. The basic premise was that given sufficient energy any point of the fragmentation 

domain was equally likely to fracture even in the latter case. It was demonstrated that the 

multilinear exponential fragment mass distribution is useful equally well for the highly 

nonuniform fragmentation as for the uniform one. Grady and Winfree (2001) demonstrated that 

the cumulative exponential fragment mass distribution follows from statistical mechanics 

principles. 

The extensive theoretical, experimental and computational investigations of the fundamental 

principles of dynamic fragmentation resulted in a vast literature, which is systematically reviewed 

in Grady (2005), Elek and Jaramaz (2009), Ramesh et al. (2015). Computational techniques 

utilized in the last three decades in the dynamic fragmentation investigations start with the old 

war horse of the computational mechanics – the finite element method, sweep over the extensive 

area of the computational mechanics of discontinua, and include the meshfree methods; a rather 

extensive set of selected references concerning these techniques is available in references 

(Mastilović 2015, 2019a; Myagkov 2021).  

The projectile-wall impact configuration used in this investigation (illustrated in Figs. 1-3) 

is the classic Taylor model arrangement allowing for the fully unconstrained lateral motion of 

matter upon right-angle collision with a flat target. This configuration is, due to the small 

dimensions, expected to be strongly influenced by surface effects.  

The multilinear exponential fragment mass distribution was used extensively in previous 

studies in conjunction with a logarithmic binning (Mastilović 2015), as an expedient approach to 

explore the MD simulation results obtained by the present computational setup. Namely, it has 

been established that this approach was a convenient first approximation for modeling of the key 

features of the fragment mass distribution for the relatively small specimen size such as the one 

used herein. The aim of the current article is focused on an intriguing observation of a certain 

receptiveness and regularity emerging, fortuitously or not, from the fragment mass distributions 

(Mastilović 2015). Specifically, as an example, the evolution of the dominant part of the fragment 

distribution in the course of 30-km/s impact appeared to be characterized by a set of well-defined 

discrete distribution coefficients (μ2) (refer to Fig. 3b for the clarification of notation). Moreover, 

the seemingly well-defined discrete μ2 levels apparently reduce by factor of two in the course of 

the fragment distribution evolution. (For more details consult Mastilovic (2015), Table 2 and Fig. 

4.) Interestingly, the same discreteness re-emerges from the stationary fragment mass 

distributions across the whole hypervelocity impact velocity range (3 km/s ≤ v ≤ 30 km/s) explore 

in the present investigation. 

The outline of the paper organization is as follows: in Section 2 the basic method of the 

traditional MD is succinctly presented with emphasis on the fundamental relations, used to 

evaluate the parameters of state within the given simulation framework. This is followed by the 

brief introduction of the computational setup well known from the previous work. Section 3 

outlines the main observations pertinent to the limited investigation objective to explore the 

apparent discreteness of the fragment mass distribution. It is shown, in the same section, that the 

repetitiveness and discreteness observed in the fragment mass distribution cannot be explained 
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by similar observations of the time histories of the selected state parameters. Finally, the 

conclusions are presented in the closing section.  

2. Fundamental relations 

The present investigation is based on the traditional MD in which the dynamic state of the atomic 

system is defined by laws of classical mechanics with atomic motions being uniquely determined 

by an empirical potential (Mastilović 2019a). A monatomic system is comprised of atoms of 

equal masses (m0) that form an ideal defect-free lattice of hexagonal unit cell free of quenched 

disorder (Fig. 3a). The problem is deterministic since the individual atomic positions (ri; i = 1, 

Nat) and momenta (pi = m0 ri) completely describe the interatomic interactions (e.g. the 

interatomic force fij).1 The Lennard-Jones model parameters, selected to match as close as 

possible the physical properties of tungsten (74W), are: the atomic mass 3.1×10-25 kg (183.85 u), 

the atomic radius 1.4 Å, and the depth of the potential well (the strength of the attraction) 

7.5×1020J. The monocrystalline nanoprojectile is set to zero temperature prior to the impact which 

implies that “the jigglings and wigglings of atoms” (Feynman 1963) are nonexistent initially (Fig. 

3a). The rough rigid target is represented by a set of immovable atoms. 

 

Fig. 3. (a) A portion of an ideal defect-free lattice of hexagonal unit cell that mimics a 

monatomic nanoprojectile prior to collision with the rigid wall. The nodal points represent 

atoms while the solid lines among them represent interatomic forces. (Note that the size of the 

projectile detail is significantly reduced in the lateral direction in this plot to improve visibility 

for illustrative purposes.) (b) A detail of a highly distorted nanoprojectile configuration in the 

early stages of the 15-km/s impact. (Note the nicely visualized shock wave front that separates 

the highly compressed, distorted and damaged part of the projectile from the undisturbed one.) 

(c) Schematic representation of the trimodal exponential fragment mass distribution used 

throughout this study. 

The dynamics of the present atomic system approximation is completely defined by 

interatomic forces. These are, in turn, defined by the interatomic potential. In MD simulations 

from the 1950s to the 1980s, a couple of pair potentials were used almost exclusively due to the 

                                                 
1 The alphabetic indices, hereinafter, refer to a particular atom, while the Greek letter subscripts 

are reserved for tensorial notation. 
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modest computer capabilities. These simplified potentials define the interatomic forces 

exclusively in terms of interatomic distance. Therefore, they cannot provide a quantitative 

description of system dynamics in more complex systems (Ercolessi1997) such as, for example, 

strongly covalent systems, most ceramics characterized by fully populated orbitals, metals 

characterized by delocalized “sea of electrons”, or semiconductors. Significant progress was 

made during the 1980s with the development of many-body potentials for metals based on the 

concept of atomic density (e.g. Mishin et al. 1999). The crucial experimental observation that 

needed to be captured was that interatomic bonds become weaker when nested in a "dense" local 

atomic environment. Accordingly, a force acting on an atom depends not only on the distance 

separating its nucleus from nuclei of its neighbors (rij), but also on the local atomic density (
i ). 

Among these, so called many-body, potentials, the most popular is the embedded atom method 
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developed to approximate the interaction between ions in metals. The various forms of (1) differ 

from each other only in the forms of functions: φ (pairwise term depending entirely on the mutual 

distance of the interacting particles), ψ (density-dependent contribution - the embedding energy 

necessary to insert the i-th atom into the background of the electron density), and ρij (atomic 

density function) (Mishin et al. 1999). 

1.1 Evaluation of the instantaneous kinetic temperature 

The estimate of temperature evolution during extreme dynamic events, which is of crucial 

analytical importance, gives rise to some fundamental questions related to basic thermostatic 

concepts such as entropy and absolute temperature of a system that is far from equilibrium. At 

some point, these issues were discussed in details. The excerpts of these discussions and some of 

the key references that pertain to it are available in (Mastilović 2019a). Herein it is deemed 

sufficient just to echo the Callen’s (1961) assertion that the alternative nonequilibrium entropy 

definitions are dependent upon uncertain premises. Therefore, a consensus was established finally 

within the MD community that the most prudent approach was to use the Gibbs’ temperature 

definition, familiar from the kinetic theory 
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where H is Hamiltonian, D is the dimensionality of the problem (e.g. 2D ↔ D ≡ 2 and the square 

brackets omitted), kB is the Boltzmann’s constant, Ni is the number of atoms of mass m0 

(belonging to the whole sample or to one of the averaging area (Fig. 1a)), while vx, vy and vz are 

the vibrational velocity components obtained by subtracting the velocity of correlative motion 

from the total particle velocity. The 2D-MD counterpart of Eq. (2)2 is discussed in detail by 

Mastilovic (2016), thus, only a brief summary is presented herein. The total velocity follows 

directly from the solution of Newton’s equations of motion while the velocity of correlative 

motion is obtained as the spatial average of total velocities of all atoms belonging to one of the 

averaging area illustrated schematically in Fig. 1a.  The temperature definition (2) has the firm 

statistical-mechanics foundations since it follows from the canonical ensemble maximum-

probability distribution (Hoover 1985). It has been verified by the statistical hypothesis testing 

that the vibrational velocities obtained from these MD simulations represent a random sample 

corresponding to Maxwell-Boltzmann distribution (Mastilović 2017). Hoover and coworkers 

(1993) argued that the standard temperature definition (2) could be applied to any stable 

configuration regardless weather in equilibrium or not. Indeed, “in nonequilibrium situations, the 
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instantaneous kinetic temperature is the only meaningful definition” (Callen 1961). The 

instantaneous kinetic temperature (2) is averaged in both time (in accordance with the ergodic 

hypothesis) and space. The averaging area is commonly assumed to be the same circular region 

used for calculation of the velocity of correlative motion (Fig. 1a). 

1.2 Evaluation of the stress, strain and effective stiffness 

The expression for the components of the mechanical stress tensor at the scale of small sets of 

atoms is obtained as the linear (second) term in the Taylor series expansion of the potential energy 

of the system (e.g. Mastilovic 2019a). Notably, the stress tensor, thus obtained, is a general 

thermodynamic relation independent of the applicability of Hooke's law. For the embedded atom 

method (1), the stress tensor components are 

 
   

, ,

1 1

2 2

ij ij

ij ij ij

iji j i j
j i j i

r r
d d

f
N d N r d

 
    

 

 
     

   
 r f  (3) 

where Ω is the average volume per atom, symbol   denotes the tensor product of two vectors, 

while (rij)α and (rij)β  are corresponding (α and β) projections of the distance vectors rij (Vitek, 

1996; Egami, 2011). Since the stress definition (3) is inherently related to the static equilibrium 

state, it is rigorously applicable only to (quasi-)static deformation where the resultant force acting 

on each atom are (“close enough” to) zero. On the other hand, dynamic deformation implies wave 

propagation (Fig. 3b) and, in order for stress expression (3) to be applicable, it must be tacitly 

assumed that the nonequilibrium process can be represented by a successive series of equilibrium 

processes. (The dilemma already encountered in the temperature discussions that yielded Eq. (2).) 

This concept is routinely used, out of necessity, in thermodynamics of nonequilibrium processes. 

It should be noted that the mechanical stress, defined by interatomic forces and atomic positions 

(3), becomes physically ill-defined as a measure for the mean mechanical force between material 

points when the averaging area, in the course of fragmentation, becomes incompletely occupied 

by atoms. 

The strain is calculated by comparing the lattice current configuration with the reference 

configuration. Since the information about the atomic position is readily available in both 

configurations, the calculation of the strain is straightforward. For example, the components of 

the left Cauchy-Green strain tensor of atom i in 2D systems are commonly defined by 
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The other strain measures can be obtained from Eq. (4). It should be noted that, unlike the 

stress counterpart (3), the virial strain (4) is valid instantaneously in time and space. Note also 

that Eq. (4) represents meaningful strain definition with respect to the reference state only as long 

as neighbors do not enter or leave the “list of neighbors” for any particular atom (the list is 

presented, for example, by Mastilovic 2019a), which is a rather severe limitation in the present 

circumstances that requires carefull scrutiny. In the case of extremely large deformations 

followed by large mass transport, it is more advisable to use a natural, Seth-Hill definition of 

relative deformation (Mastilovic 2019a).  

Finally, the third term in the Taylor series expansion of the potential energy (1) defines the 

elastic stiffness tensor 
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 (5) 

Obviously, for the pair potentials Ψ = 0, as in the case of results presented herein, and only 

the first terms of Eqs. (3) and (5) remain. When the embedded-atom (1) or related methods are 

used to model interatomic interactions, it is necessary to use the complete Equations (3) and (5) 

that take into account the density (the average volume per atom) dependence of the potential. 

1.3 The closing remarks on the MD fragmentation model 

The conversion of simulation data generated at the nanoscale level (r, v, a) to macroscopic 

observables (σ, ε, C, T), summarized above, is firmly established nowadays. As for the fragment 

definition for the current model, an interatomic bond ruptures when the distance between the 

corresponding atoms exceeds a predetermined critical value Ṟ. Consequently, a fragment is 

defined as a self-bound cluster of atoms with interatomic distance less than the cut-off distance 

(r ≤ Ṟ ≈ 1.7 r0). The critical distance is arbitrarily selected to be between the first and second 

nearest neighbors in the reference triangular configuration of the perfect crystal (Mastilovic 2015, 

2016). 

As elaborated in detail in preceding articles (Mastilovic 2015, 2017), this fragmentation 

model is generic in the sense that it aims to capture the underlying nanoscale-fragmentation 

physics. Its simplicity rests primarily on the 2D geometry, the elementary potential, and nanoscale 

projectile dimensions. Although the dimensionality of the system is known to influence shock 

physics and the universality classes of fragmentation phenomena, the 2D choice is necessitated 

by computational economy and justified by a qualitative nature of the study. Furthermore, it has 

been demonstrated not so long ago that for a similar MD simulation technique “the fragmentation 

features of the system are not sensitive to the number of particles” and that fragmenting systems 

seemingly share the same generic behaviors regardless of the details of their interaction potentials 

(Sator et al. 2008). Although the size of the current model exceeds those used by Sator and 

coauthors (2010), similarly utilizing 2D-MD to investigate generic behavior in the impact 

fragmentation, it goes without saying that the present study would benefit from the model size 

increase resulting in the fragment sample increase and, consequently, the more robust 

postprocessing. Finally, it is indicative for the present study that its author previously 

demonstrated (Mastilovic 2019a) that the kinetic energy associated with shattering fragmentation 

is insensitive either to the initial temperature of the nanoprojectile (0 vs. 1000 K) or the choice of 

the interatomic potential (Lennard-Jones vs. embedded atom method). 

3. Observations 

With reasonable generality, it can be asserted that the kinetic energy K0 of the impacting projectile 

is partitioned among the kinetic energy of the fragment debris expulsion and the various forms of 

the dissipation energy absorbed by the projectile 

 0 1 p th fK K E E E     (6) 
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In Eq. (6), K1 is the kinetic energy of the motion of fragments upon the impact, Ep is the 

energy of plastic dissipation, Eth is the energy of shock-induced heating, and Ef is the fracture 

energy dissipated through creation of new surfaces and ensuing fragmentation. 

If the fragment mass, m, is considered a scalar variable, the random statistically non-uniform 

fragmentation for the striking velocities barely exceeding the threshold of complete projectile 

fragmentation (i.e., v = {3, 4, 5} [km/s] for the present system) can be represented by the trimodal 

form of the Poisson hyper-exponential distribution: 
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where: N is number of the n-atom fragments of mass m = n · m0, M = N ·m = N · (n · m0) – total 

mass of all n-atom fragments, and (μ1, μ2, μ3) – a set of distribution coefficients representing 

slopes in the semilogarithmic space (Fig. 3c).  

The trimodal-exponential form (7), illustrated in Fig. 3c, includes the following three 

distribution regions: 

(i) The small tail (narrow shoulder; μ1) of the distribution defined by the miniscule (for the 

present MD simulation framework, largely monatomic and biatomic) fragments the most 

numerous by far;  

(ii) The medium-fragment distribution region (μ2) encompassing the overwhelming number 

of existing fragment classes and the most representative part of the fragment population (away 

from the distribution tails), which is in the focus of the present investigation; and 

(iii) The large tail (wide shoulder; μ3) of the distribution defined by the largest fragments.  

In general, for the fragmentation on the mesoscale and macroscale, the small tail of the 

distribution is, in the experimental (and consequently, analytical) analyses often disregarded due 

to both the detection limits of experimental techniques and the negligible importance. On the 

other hand, the large tail is, more often than not, of substantial interest. (As an example, the largest 

fragments provide inputs for design basis events such as the secondary impacts for the space 

structures.) Accordingly, a large amount of work is dedicated to the analytical description of the 

large tail. 

 

Fig. 4. Schematic representation of the effect of increase of the energy dissipated in a shock-

compression process on the fragment distribution. The energy increase indicated by the arrow 

could be either due to the increase of the striking velocity (Fig. 3) or the duration of the 

fragmentation process (given sufficient energy) at the fixed striking velocity (Fig. 5). (Adopted 

from (Mastilović 2015)). 



Sreten Mastilović: MOLECULAR DYNAMICS OBSERVATION OF DISCRETENESS… 

 

18 

The impact energy delivered to the fragmenting system depends on the striking velocity and 

the duration of the fragmentation process. The increase of this imparted energy, designated with 

K0 in Eq. (1), results in the fragment-distribution transformation captured by the trend 

μ3 → μ2 → μ1 depicting the gradual reduction of the maximum fragment mass (Mastilović 2015). 

According to the MD simulation results presented in Fig. 5a, for the striking velocities exceeding 

5 km/s, the trimodal-exponential fragment distribution transforms into the bimodal. 

Consequently, the large tail of the distribution—important as it may be for the moderate 

hypervelocity impacts—merges with the medium-fragment region for all v > 5 km/s and the most 

representative set of fragments (all but the smallest) is captured completely by the fragment 

distribution region defined by μ2. 

A continuing trend toward the linear exponential distribution, μ2 → μ1, is apparent from 

Fig. 5a for all other striking velocities v > 5 km/s. Finally, for the pair of ultrahigh striking 

velocities v = {20, 30} [km/s], the two distribution modes are barely distinguishable on the 

semilogarithmic plot indicating the transformation from the bimodal-exponential to the linear-

exponential distribution. This trend of the maximum fragment mass reduction with the energy 

increase, finally results in the asymptotic approach to the shattering transition characterized by a 

deterministic monatomic fragment distribution (mmax ≡ 1) (Mastilović 2019b). 

 

Fig. 5. (a) Semilogarithmic plot of stationary cluster statistics—the normalized bin mass vs. the 

fragment mass (m=n·m0)—emphasizing (b) the evolution of μ2 coefficients in the hypersonic 

striking velocity range. 

The present investigation is focused on this, arguably, the most representative, part of the 

fragment distribution and the corresponding distribution coefficient μ2. Specifically, as noted in 

Introduction, it has been observed that: 

i. the evolution of the fragment mass distribution in time (Mastilovic 2015), and 

ii. the stationary fragment mass distribution for various striking velocities in the hypersonic 

range (Fig. 5a),  

are not defined by an arbitrary spectrum of μ2 coefficients but rather a discrete set of 

reoccurring values. In other words—given sufficient impact energy— μ2 evolves in cascading 

manner by making “discrete leaps” between the seemingly “admissible” values. Furthermore, the 
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same set of μ2 coefficients emerges in the stationary distributions for the entire hypervelocity 

impact range. 

The observed set of values of μ2 coefficient, illustrated in Fig. 5b, could be captured by the 

following expression: 

 2

2
, ( 1, 2, 3, 4, 5, 6)

k

k


   (8) 

where the lowest exponent value (k = 1) corresponds to the pair of ultrahigh striking velocities 

v = {20, 30} [km/s]. 

An attempt is made to relate the discrete and seemingly well-defined change of μ2 coefficient 

(8) to some feature of the state parameters time history. The state parameters explored include 

the instantaneous kinetic temperature (2), the stress (3) and strain (4) components, the effective 

strain, the pressure ((σxx + σyy)/2) and the stress difference ((σyy – σxx)/2). An example of this 

postprocessing effort is illustrated by the results presented in Fig. 6 that are limited to temperature 

and pressure in two measurement areas corresponding to the middle section of the nanoprojectile 

(C and D according to the notation of Fig. 1a). The time histories of Fig. 6 reveal the continuous 

change of both temperature/pressure levels and are rated for the three striking velocities, which 

is according to our intuitive expectation. Consequently, the exploration of time histories of the 

enumerated state parameters offers no hint at the physical cause of the discrete character of 

μ2 coefficient (8) of the fragment mass distribution (7). 

 

Fig. 6. Example of time histories of two selected state parameters: (a) temperature recorded at 

the measurement areas C and D, (b) pressure, (σxx + σyy)/2 at D, and (c) pressure at C. The 

measurement area designation refers to Fig. 1a. The striking velocities v = {8, 9, 10}[km/s] 

correspond to μ2 = {5.2, 2.5, 2.5}, respectively. 
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4. Conclusions 

A simple generic 2D-MD model of the rigid-anvil impact is used in this study to address an 

intriguing observation of an apparent discreteness of the fragment distribution at the nanoscale, 

which emerged from preceding work. The striking velocities used in this investigation cover the 

hypervelocity range (3 km/s ≤ v ≤ 30 km/s) corresponding to projectiles being fully fragmented 

upon impact. The Poisson hyper-exponential distribution with the logarithmic binning is used to 

capture the fragment mass distribution under the constraint of a small sample size. Specifically, 

the fragment population is approximated by a trimodal form of this distribution for the striking 

velocities v ={3, 4, 5} [km/s], which are slightly in excess of the threshold velocity of the 

complete projectile fragmentation. For the remaining striking velocities (v ≥ 7 km/s), the bimodal 

form of the approximation suffices. Under these circumstances, μ2 (and μ3, when applicable) 

coefficients of the Poisson distribution capture the majority of the fragment classes; that is, all 

but the smallest fragments captured by μ1, which are frequently disregarded in fragmentation 

studies.  

The gist of the present investigation is that the observed values of μ2 coefficients suggest 

certain repetitiveness and discreteness. This peculiar “quantization” of μ2 values occurs both 

during the time evolution of the fragment mass distribution and in the stationary state across the 

striking velocity field. In other words, given sufficient impact energy, μ2 evolves in cascading 

manner by making “discrete leaps” between “admissible” values until it settles into the final 

steady state. The same set of μ2 values emerges from the stationary distributions for the entire 

hypervelocity impact range. This implies that μ2 coefficients (describing all but the smallest 

fragment classes in the hypervelocity impact range) are not defined by an arbitrary spectrum of 

values but rather a discrete set. This discrete set obtained from MD simulations {0.60, 1.3, 2.5, 

5.2, 10.3, 19.6}, exhibits a simple regularity: the values could be approximated by various 

successive powers of 2. Consequently, an empirical expression, 2k/π, (k = 1, 2, 3, 4, 5, 6), is 

offered that captures the above discrete set.  

An attempt is made to relate the observed repetitiveness and discreteness to some feature of 

the time histories of the selected state parameters in the early stages of the nanoprojectile 

deformation and fragmentation. This effort proved futile since no repetitiveness and discreteness 

in those time histories was revealed, which would hint at the observed repetitiveness and 

discreteness of μ2 values. The time history features were as intuitively expected: namely, the 

continuous increase of the kinetic energy imparted to the fragmenting system resulted in 

continuous increase of the parameter levels and rates observed in the time histories. Therefore, 

since the physical explanation for this peculiar observation is lacking at present, the mere 

existence of the phenomenon must be brought into question. Consequently, to begin with, it 

would be beneficial to verify these simulation results on substantially larger systems (e.g., one 

order of magnitude), which would ensure more representative sample size and, consequently, 

more reliable results. This averment is based on a long-established rule that every statistical 

analysis benefits from the sample size increase. In that case, it would be possible to judge more 

confidently whether the femtosecond fragmentation process at the nanoscale truly exhibits this 

unique and interesting feature. Be it as it may, no matter how large the nanoprojectile, the “wide-

shoulder” bins would nonetheless be relatively sparsely populated, especially for the higher 

striking velocities. 
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