
Journal of the Serbian Society for Computational Mechanics / Vol. 15 / No. 1, 2021 / pp 149-166 

(10.24874/jsscm.2021.15.01.10) 

 

NUMERICAL ANALYSIS OF REINFORCED CONCRETE BEAM-

COLUMN JOINT UNDER ACCIDENTAL IMPACT 

Sergey Savin 

 Department of Reinforced Concrete and Masonry Structures, Moscow State University of Civil 

Engineering, Moscow, Russian Federation 

e-mail: suwin@yandex.ru 

Abstract 

The purpose of this study is to build a universal computational model of a plane-stressed joint 

element, which could be implemented as a special finite element of the interface node and 

integrated into the standard finite element analysis procedure to improve the accuracy of its 

results when assessing the structural behavior of 2D stressed frame nodes. In order to simulate 

the force resistance of monolithic reinforced concrete units of building frames, the article uses a 

combination of the finite element method and the finite difference method. The finite difference 

method is used directly to study the stress-strain state of a plane stressed element of a monolithic 

joint, and the FEM is used to obtain the boundary conditions of the problem. A distinctive feature 

of the proposed model is the ability to take into account the discrete nature of the reinforcement, 

as well as the violation of the adhesion of the reinforcement to concrete along the contact surface. 

For the purposes of implementing the model, an algorithm for calculating the stress-strain state 

of the beam-column joint is proposed. An example of calculating an experimental frame unit 

based on the proposed approach is considered. 

Keywords: finite difference method, reinforced concrete, beam-column joint, plane stress state, 

progressive collapse 

1. Introduction 

When assessing the resistance of reinforced concrete frame-tie frames of buildings and structures 

to progressive collapse, taking into account the possibility of local destruction in them, in any 

section of the bearing system, researchers and design engineers mainly use a spatial rod, plate, or 

plate-rod finite element (FE) models such as considered by Gudmundsson and Izzuddin (2010), 

Izzuddin et al. (2008), Kolchunov et al. (2019); Kolchunov and Savin (2018), Li et al. (2016), 

Marjanishvili and Agnew (2006), Shan, Petrone and Kunnath (2019), Wang et al. (2014) or 

similar models of the Applied Element Method investigated by Alanani, Ehab and Salem (2020), 

Tagel-Din and Meguro (2000). For a more detailed analysis of the features of deformation and 

the destruction of nodal joints, substructures, fragments of frames of buildings and structures 

under special influences caused by structural rearrangements of their bearing systems due to the 

sudden removal of one of the elements, using the decomposition method, such elements are 

separated from the spatial design model of the entire structure. A computational analysis of their 

3D or 2D finite element models is performed after the separation, as it was carried out by 
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Fedorova and Vu (2019), Kai and Li (2012); Sasani, Werner and Kazemi (2011), Yu, Luo and Li 

(2018). 

The results of such numerical modeling, in combination with the data of experimental 

studies, demonstrated the need to take into account the peculiarities of the operation of nodal 

connections of load-bearing structures, such as beam-column, slab-column, etc., to ensure overall 

resistance to the progressive collapse of the load-bearing systems of buildings and structures. In 

the listed types of nodal connections and sections of bar structures (beams, columns), directly 

adjacent to such nodes, a biaxial or volumetric stress state is realized, which requires taking into 

account additional components of stresses and deformations. In this regard, for a more accurate 

evaluation of the stress-strain state of the bearing structures under loads, it is advisable to combine 

two approaches listed above: finite element analysis of spatial bar models and advanced analysis 

of nodal joint simulated by 3D finite elements or assessment based on simplified semi-empirical 

models. 

The combination of such approaches in addition to taking into account the variation of 

scenarios of design load combinations leads to a high laboriousness of solving the problem under 

consideration. In this regard, high requirements are imposed on the qualifications of the designer-

constructor, who, on the one hand, must be able to correctly select the most unfavorable scenarios 

of possible impacts, and on the other hand, exclude minor variants, obviously not posing a threat 

to the structural safety of the structure. However, even in this case, due to the presence of a human 

factor, one of the scenarios of an emergency design situation can slip out of sight, which can 

subsequently be realized during the life cycle of the structure. Therefore, to reduce the complexity 

of computations when enumerating a large number of possible variants of initial local fractures, 

computational models can be used, which, by analogy with the method of applied elements, 

would consist of bar elements of columns and beams interconnected by elastic-yielding bonds. 

The parameters of such bonds would be refined by solving a plane or volumetric problem of the 

nonlinear theory of elasticity of an anisotropic body. Analysis of the calculated models of the 

beam-column joints presented in the scientific literature shows that most of them are based on a 

simplified representation of a 3D or 2D stressed element by replacing stresses with generalized 

forces. Thus, highlighting two characteristic resistance mechanisms, truss and compressed 

inclined strip, Hwang and Lee (2000) evaluate the possibility of their implementation separately. 

A similar approach to the analysis of the operation of the girder and column interface nodes, 

which are slightly different in their design, can be found in the works of Hayati and Hamid (2015), 

Tsonos (2008); Yu and Tan (2013). Ahmadi et al. (2016), Feng et al. (2019), Feng, Wu and Lu 

(2018) modeled the structural behavior of a flat joint element using elastic ties (springs). The 

introduction of such elastic-yielding springs between elements into the design model allowed 

Feng et al. (2019) to achieve better quantitative and qualitative convergence with experimental 

data than the traditional bar models of the finite element method with rigid nodal connections. 

However, this approach does not allow assessing the resistance of the nodal joint separately. 

When investigating a 2D fragment of a multi-story building frame, Fedorova, Vu Ngoc 

Tuyen, and Yakovenko (2020) applied a shell FE model to assess the structural behavior of the 

beam-column nodal joint. They performed strength analysis of nodal joint on the bases of yield 

surface of concrete under two-dimensional stress-strain state suggested by Geniyev, Kisyuk, and 

Tyupin (1974). The use of strength criterion according to the yield surface in combination with 

the use of shell FE models of 2D stressed nodal joint leads to time-consuming computations when 

we describe a large number of impact scenarios. At the same time, it seems that the approach to 

strength assessment applied by Fedorova, Vu Ngoc Tuyen, Yakovenko (2020) is quite effective 

and can be supplemented with a model of a special element that simulates a nodal joint. Such an 

element could be integrated into the spatial bar and plate-bar FE computational models to improve 

their accuracy. 
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Summarizing the results of approaches for structural behavior simulation of buildings and 

structures, taking into account the peculiarities of deformation and destruction of their beam-

column nodal joints, it can be concluded the absence of simplified design models which allow 

evaluation of strength, both of bar member and 2D and 3D, stressed nodal joints of this bar 

members during unified calculation procedure. In this regard, the purpose of this study is the 

construction of a 2D stressed nodal joint computational model that could be implemented into the 

standard procedure of finite element analysis as a special finite element to improve the accuracy 

of structural analysis. 

2. Models and methods 

2.1 Strength criteria for composite 2D stressed structural member 

In order to assess the deformation and destruction of nodal joints of the reinforced concrete frame, 

as presented in Figure 1a, in this study we used a model of a load-bearing system consisting of 

universal physically nonlinear bar finite elements of beams and columns and special elements 

which simulate the joint presented in Figure 1b and Figure 1c. In this case, the stress-strain states 

of the sections at the ends of the bar members are the boundary conditions for calculating the 

node. Further, the solution to the problem of estimating the stress state of a node is carried out in 

the plane stresses formulation, neglecting the stresses out of the plane of the load action. We 

suppose that they are small in comparison with the stresses acting in the plane. In this paper, the 

contour of the reinforced concrete beam-column joint has a rectangular form as it is shown in 

Figure 1d. However, it should be noted that boundaries of the 2D stressed zone spread on the 

parts of beams and columns adjacent to the node. Therefore, T, Γ and + shaped nodes should be 

considered for a more accurate assessment of joint stress-strain state. 

In contrast to the traditional approaches that use super elements, in this study, the general 

solution to the problem of the plane stress state of a monolithic beam-column nodal joint is based 

on the finite differences’ method in displacements’ form. The usage of the finite-difference 

method allows us to construct a simplified algorithm for assessing the convergence of the 

calculation results and adjusting the density of the region partitioning to achieve the required 

accuracy. Also, it provides the ability to take into account cracks’ formation and drift between 

reinforcement bars and concrete matrix. On the other hand, the displacements’ formulation to the 

problem makes it possible to avoid searching for stress function on the contour of the joint area. 

To assess the strength of a monolithic beam-column joint under design load action, we apply 

the strength condition for a plane-stressed concrete member, which following the theory of 

concrete plasticity proposed by Geniyev, Kisyuk and Tyupin (1974) can be written as follows: 

   2 2 2
3 ,

x y x y xy c t x y c t
R R R R              (1) 

where σx, σy, τxy are normal and tangent stresses acting along with the faces of an elementary 

parallelepiped outlined in the vicinity of a certain point of the beam-column joint; Rc, Rt are the 

standard ultimate strength of concrete under uniaxial compression and tension respectively. 

The graphical interpretation of inequality (1) is an ellipse displayed in the coordinate axes of 

the principal stresses σ1 - σ2. The strength of the elementary volume of the beam-column nodal 

joint under consideration is ensured when the point corresponding to the current stress-strain state 

lies inside the ellipse described by inequality (1). 

Here, condition (1) is written for concrete, since the distance between the reinforcing bars at 

the beam-column joint of the reinforced concrete frame is comparable to the dimensions of the 

nodal joint itself. In this regard, the usage of the strength condition for reinforced concrete when 
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the reinforcement is "smeared" over the entire element, can lead to unjustified errors. Therefore, 

when constructing a general solution, we assume that at the nodes intersected by the reinforcing 

bars, the material is structurally orthotropic with the given deformability parameters, and at other 

mesh nodes, it is isotropic if the strength condition (1) is satisfied. 

 

Fig. 1. Design schemes of a reinforced concrete frame. (a) Spatial bar model of the entire 

building frame; (b) Primary computational model of a 2D fragment of the frame in the area of 

expected accidental impact; (c) Secondary computational model of a 2D fragment of the frame 

under accidental impact; (d) Beam-column joint model. 

2.2 Equilibrium equations of the finite-difference method for 2D stressed composite nodal joint 

In accordance with the two-dimensional formulation of the problem, the equilibrium equations 

for an infinitesimal volume of an orthotropic body can be written in displacements as follows: 
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where u, v are displacements of grid nodes along the orthogonal coordinate axes X and Y, 

respectively; 

Ex, Ey are reduced elasticity moduli of material along orthogonal coordinate axes X and Y, 

respectively; 

μ is Poisson's ratio, taken as for concrete μ = 0.2; 

  2 1 ; ; .
xy x y x x y y y x

G E E E E E E         (3) 

In equations (2), we neglected the components of the volumetric forces from the self-weight 

of the material, since they do not make a significant contribution to the general stress state of the 

element at the loading stages under consideration. 

We divide the area of the joint by a grid with the same horizontal and vertical spacing so that 

the centers of gravity of the reinforcing bars coincide with the grid lines as Figure 2a shows. 

Let us write down the derivatives in the equations (2) in the finite-differences taking into 

account the rule of numbering grid nodes in Figure 2b: 
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where Δ is the step of the grid lines in accordance with Figure 2b. 

For the mixed derivative, we additionally write an expression in one-sided differences, which 

will allow us to relate the equilibrium equations (2) for the corner points of the contour of the 

element under consideration to the boundary conditions: 
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Fig. 2. Scheme for the calculation of a joint element using the finite-difference method.  

(a) General view; (b) Accepted rule of numbering grid nodes. 
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corner points and taking into account (4) can be rewritten as: 

 

                        

                    

        

            

1 1 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2

1 1 1 1

4 2

4 8 4

0;

4 2

i i i i i i i n i n i n i n i n i n

i ii n i n i n i n i n i n i n i n i n i n

i n i n i n i n

i ii n i n i n i n i n i n i

a u a u a u b v b v b v

b v d u d u d u d v d v

d v d v

c v c v c v b u b

             

                 

     

          

     

      

  

   
       

                    

        

2 2 2 2

1 1 1 1 2 2

2 2

4 8 4

0.

n i n i n i n

i ii n i n i i i i i n i n i n i n

i n i n i n i n

u b u

b u d v d v d v d u d u

d u d u

      

           

     

 

      

  

 (6) 

For the corner points of the contour, expressions (5) should be substituted into equations (2) 

instead of expressions (4). 

When deriving equations (6), the following designations that were adopted: ai, bi, ci, di are 

the coefficients of reduction of the deformability parameters of materials at the nodes intersected 

by the reinforcing bars, as well as the arbitrary nodes of the element under consideration in the 

deformed state and determined from the relations: 
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where Ec, Es are secant elasticity moduli of concrete and reinforcement, respectively. 

Asx, Asy are a cross-sectional area of reinforcing bars along the X and Y axes, respectively, 

which axes pass through the i-th grid node; 
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bcol is the column cross-sectional width; 

Δ is the step of the grid lines dividing the area of the considered joint; 

k is a coefficient that takes into account the drift between reinforcement bars and concrete 

due to shear forces’ action. This coefficient takes the value in the range from 0 to 1, where 1 

corresponds to the complete transfer of forces between reinforcement and concrete, and 0 

corresponds to the complete absence of adhesion between the reinforcement and concrete. 

2.3 Method for assessment the structural behavior of 2D beam-column joint of reinforced 

concrete frame 

In order to algorithmize the solution of equations (6) in finite differences, we specify the rules for 

numbering points inside the area, on the contour of the area and beyond the contour of the area 

under consideration. In accordance with Figure 2, the following conditions will be met for points 

on the contour: 

- for the top edge of the contour: i ϵ [n +3, 2n + 1]; 

- for the bottom edge of the contour: i ϵ [(n +1)(m - 1)+2, (n + 1)(m – 1) + n]; 

- for the left edge of the contour: i = (n + 3) + j(n + 1); 

- for the right edge of the contour: i = (2n + 1) + j(n + 1); 

- corner points of the contour: i = n + 3; 2n + 1; (n + 1)(m – 1) + 2; (n + 1)(m – 1) + n. 

The conditions for the location of the grid nodes behind the contour of the beam-column joint 

member under consideration is as follows: 

- over the contour: i ϵ [1, n + 1]; 

- under the contour: i ϵ [(n + 1)m + 1, (n + 1)(m + 1)]; 

- to the left of the contour: i = 1 + l(n + 1); 

- to the right of the contour: i = (n + 1)(l + 1). 

Above, we adopted the following designations: n, m are respectively the number of horizontal 

and vertical steps of the grid, which split the joint member; j = 0, 1, ..., (m - 2); l = 0, 1,…, m. 

Taking into account the accepted rules for the numbering of grid nodes, the algorithm for 

calculating the stress-strain state of the crossbar and column interface will consist of the following 

stages: 

Stage 1. Construction of a spatial bar FE model, setting boundary conditions, stiffnesses, 

loads, and actions. 

Stage 2. Structural analysis of the frame for the design combination of loads; determination 

of the deformed state of the bars adjacent to the monolithic beam-column joint. 

Stage 3. Dividing the area of the beam-column joint with a grid of nodes, drawing up the 

equations of the grid method in matrix form: 

 0,K q P    (8) 

where K is the matrix of coefficients for unknown displacements ui, vi of the system of equations 

(6) or, in other words, stiffness matrix; 

q is the vector of the unknown displacements ui, vi from the equations (6); 
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P is the load vector or the vector of the free terms of the equations (6). 

As the boundary conditions for solving equations (8), the values of stresses σx, σy, τxy at the 

corresponding points of the contour calculated at stage 2 are used: 

 

           

           

        

, , , ,1 1 1 12

, , , ,1 1 1 12

, 1 1 1 1

1
,

2 1

1
,

2 1

.
2

x i x i y i x ii i i n i n

y i y i x i y ii n i n i i

xy

xy i i n i n i i

E u u E v v

E v v E u u

G
u u v v

     

     

     

    
  

    
  

   


 


 




 (9) 

Stage 4. Calculation of the stress-strain state of the beam-column joint according to (8), (9) 

with the grid density n, m at the first iteration and 2n, 2m at the second iteration. Assessing the 

convergence of the first and second iteration results. If the discrepancy between the stress-strain 

state parameters for a given partition density for the first and second iterations exceeds the 

required accuracy, then the mesh of nodes is refined until the difference in the calculation results 

for two successive iterations is within acceptable limits. 

Stage 5. Refinement of the deformed state of the entire frame, taking into account the 

obtained calculation results for stage 4. If there are discrepancies in the parameters of the stress-

strain state of the bar cross-sections adjacent to the beam-column joint, then we return to stage 4 

and recalculate the stress-strain state of the beam-column joint until the required accuracy is 

achieved. 

Stage 6. Calculation of a reinforced concrete frame for an accidental impact caused by the 

sudden removal of one of the structural members. The sequence of calculation is similar to steps 

2-5. 

Stage 7. Checking the strength criterion (1) for the beam-column joint at all grid nodes. If 

according to the results of the calculation, the strength condition is violated at any node of the 

mesh, then this one is considered as lying on the interior contour of the region when performing 

subsequent calculations. 

2.4 Implementation of the proposed special element into FEA procedure 

In the Eq. (8), the matrix K is an analogue of the FE stiffness matrix presented in the manual book 

by Gorodetskiy A. et al. (2019). The load vector P can be calculated based on the force boundary 

conditions on the contour of the 2D stressed beam-to-column joint presented in Fig. 1d. In this 

case, the equilibrium conditions should be satisfied for the components of the forces in the nodes 

of the 2D stressed joint and the nodes of the bar FE of the columns and beams adjacent to it. This 

study focuses on the 2D problem only. Therefore, the bar FE nodes have three degrees of freedom 

X, Z, Uy: two linear displacements and rotation about the Y axis. However, the nodes of the 2D 

'beam-column' joint have only 2 degrees of freedom: X, Z. The rotational degree of freedom of 

nodes of the 2D joint is replaced by the introduction of a perfectly rigid body including the end 

node of the bar FE as a principal node. The perfectly rigid body nodes have been linked with 

nodes of the 2D stressed joint by connectors (spring FE) for linear and shear deformation 

transmission. A scheme of such a connection is shown in Figure 3. 

During the calculation, the deformations are determined along with the depth of the beam or 

column cross-section at the end nodes adjacent to the 2D joint. Using the stress-strain relationship 

σ = f (ε), we find the components of normal stresses in the contour nodes of a special joint element. 

Shear stresses are determined based on the formula of D. Zhuravsky: 
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where V is the shear force in the bar FE node adjacent to the 2D stressed beam-to-column joint; 

Sred, Ired are static (first order) moment and moment of inertia (second order moment) of 

transformed cross section for the beam or column; 

d is the cross-section depth in the frame plain. 

Since the program code of the Lira-CAD software is closed, the analysis of the stress-strain 

state of a 2D stressed 'beam-column' joint was carried out in MathCAD Prime 4.0 based on the 

relations proposed in Sec. 2.3. For the calculation purpose, the parameters of the load vector P on 

the contour of the special element and the original FE model were refined using the obtained 

displacement vector q. 

 

Fig. 3. Connection of the proposed 2D beam-to-column joint special element with bar FE. 

3. Numerical simulation 

3.1 Parameters of the test reinforced concrete frame and physical simulation of the accidental 

impact 

For the purpose of the study of the stress-strain state of a 2D stressed joint "beam-column", the 

reinforced concrete frame considered by Savin, Kolchunov and Korenkov (2020) was chosen. Its 

reinforcement scheme and the general view is shown in Figure 4 (a,b) respectively. The materials 

of the frames were accepted in accordance with the Building Code of Russian Federation SP 

63.13330.2018 (2019) as followed: concrete of compression strength class B25/ C20/25 (an 

equivalent designation is indicated after a slash in accordance with EN 1992-1-1 (2004)). The 

value of concrete prism compressive strength is Rb,n = 18.5 MPa (or characteristic compressive 

cylinder strength of concrete at 28 days fck = 20 MPa in accordance with EN 1992-1-1 (2004)), 

and the tangent modulus of elasticity is Ec(28) = 30000 MPa. The columns and girders are 

reinforced by spatial reinforcement cages with axial steel wire of class Bp500 (yield strength of 
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reinforcement fy = 500 MPa, the value of modulus of elasticity of reinforcing steel Es = 200000 

MPa) and transverse reinforcing steel (stirrups) of class А300 (yield strength of reinforcement fy 

= 300 MPa, the value of modulus of elasticity of reinforcing steel Es = 200000 MPa). At the stage 

of normal operation, axial forces P1 = 4 kN, P2 = 20 kN, P3 = 16 kN have been applied to the 

upper nodes of the frame as Figure 5a shows.  

 

(a) 

 

(b) 

Fig. 4. 2D scale model of RC moment frame investigated by Savin, Kolchunov and Korenkov 

(2020). (a) Reinforcement scheme; (b) General view of the frame (mirrored to the 

reinforcement scheme). 
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The accidental impact caused by the sudden column removal scenario was physically 

modeled using a special device proposed by Klyueva N.V. and Korenkov P.A. (2018). The device 

consists of a three-pivot rack and rigid support connected by an additional tie (bar with thread) 

as presented in Fig. 5 a. The tie (switch off member) ensures the geometric invariability of the 

device at the stage of loading with an operating load. When simulating the sudden column 

removal scenario, the additional tie of the device was unscrewed. As a result, the three-pivot rack 

turned into an instantly changeable system, which is equivalent to the instant removal of the 

support. The restrain conditions for the bottom nodes of the frame columns can be considered as 

a hinge with limited linear displacements along the X, Y, Z axes. The device for accidental impact 

modeling prevents the vertical displacement of the "beam-column" joint. Also, the upper frame 

nodes were fastened against displacement out of the plane of the structure. 

 

Fig. 5. Calculation scheme of the experimental scale model of the RC frame. (a) Primary 

calculation scheme; (b) Secondary calculation scheme. 

3.2 Finite element model for the test RC frame and simulation of loads and actions 

For the purpose of numerical simulation of the test, reinforced concrete frame structural behavior, 

the Lira-CAD software was applied. This software allows the finite element analysis of building 

structures. The functions and capabilities of the LIRA-CAD software, theoretical provisions, and 

design prerequisites are presented in the manual by Gorodetskiy A. et al. (2019). 

The columns and beams of the reinforced concrete frame were modeled by physically 

nonlinear 2D frame bar elements (FE type 202). The relationship between stress and strain was 

approximated by an exponential law for concrete and reinforcing steel. The general view of the 

strain-stress curves for the materials are shown in Figures 6a and 6b for concrete and steel 

respectively. Transverse reinforcement (stirrups) was not considered in the bar FE model. The 

frame model was restrained against displacement along X, Z at the bottom column nodes at the 

first floor, and against vertical displacement under the beam-to-column joint placed on the design 

axis 'C' as it is shown in Figure 5a. 

For comparison purposes, a shell-bar FE model was also created, in which the beam-to-

column joint of a reinforced concrete frame was modeled using a physically nonlinear rectangular 

FE of a 2D problem for wall-beam structures (FE type 221). The size of the finite elements of 

type 221 was taken equal to 1 cm. This is identical to the size of the mesh step of the finite 

difference method presented in Figure 2a. 
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(a) 

 

(b) 

Fig. 6. Stress-strain diagrams and their main parameters (a) for concrete; (b) for reinforcing 

steel. 

The frame structural behavior under sudden support removal was modeled by a static method 

based on the approach proposed by Geniev G.A. (1999). Following this approach, the forces 

acting in the support or structural member at the stage of normal operation should be replaced 

with a force of the same absolute value but opposite direction in a new design scheme after sudden 

structural transformation. In the original formulation, the approach proposed by Geniyev G.A.,the  

was carried out for linearly deformable systems. Therefore, when calculating reinforced concrete 

structures that allow the development of plastic deformations in the members, Almazov V.O., 

Plotnikov A.I. and Rastorguev B.S. (2011) proposed the use of the dynamic amplification factor 

kd, which can be determined by the formula (11): 

 ,
0.5

pl

d

pl

k
k

k



 (11) 

where kpl is plasticity factor determined as a full strain to elastic one ratio. 

In relation with the formula (11) and the approach proposed by Geniyev G.A. (1999), the 

force P4 applied to the "beam-column" node to simulate the dynamic effect of the force flows 

redistribution along alternative load paths can be calculated by the formula (12): 
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where N4 is a vertical reaction or axial force in the suddenly removed support (member) that acts 

before accidental impact. 

Almazov V.O., Plotnikov A.I., and Rastorguev B.S. noted that dynamic amplification factor 

(DAF) for reinforced concrete frames takes values in the range from 1.15 to 1.33. In this paper, 

DAF was taken equal to 1.33 as for the upper boundary of the range. 

3.3 Numerical analysis of the 2D stressed RC joint structural behavior according to the proposed 

method and FEA 

Using the relations obtained in Sec. 2.3, we calculated the deformed state of the 2D stressed frame 

beam-to-column joint placed between the first and the second floors at the "A" axis of the 

reinforced concrete frame. The calculation results for structural analysis of the 2D beam-column 

joint exposed to the accidental impact are presented in figure 7, where (a) shows a general view 

of the considered joint after accidental impact, (b), (c), (d) demonstrate stress contour plot for σx, 

σy and τxy. 

For comparison purposes, FE analysis of this 2D stressed joint was performed in Lira-CAD 

software too. Stress contour plots for σx, σy and τxy as well as equivalent stresses Ne calculated as 

the left part of the inequality (1) presented in figure 8 (a), (b), (c), (d) respectively. 

 

Fig. 7. ‘Beam-column’ joint under consideration and its numerical analysis results by proposed 

method. (a) View of the beam-to-column joint. The area under consideration highlighted yellow 

rectangle; (b) Stress contour plot for σx, MPa; (c) Stress contour plot for σy, MPa; (d) Stress 

contour plot for τxy, MPa. 
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Fig. 8. FEA results for the ‘beam-column’ joint. (a) Stress contour plot for σx, MPa; (b) Stress 

contour plot for σy, MPa; (c) Stress contour plot for τxy, MPa. 

In addition, P – delta analysis of the considered frame was performed for the operational and 

accidental loads. Thus, Fig. 9 presents relations axial force vs. horizontal displacement for loading 

points in upper nodes of the reinforced concrete frame. And Fig. 10 shows force diagrams (axial 

force, bending moment, and shear force) for the operational stage and the accidental impact. 

 

Fig. 9. Axial Force vs. Horizontal Displacement for Loading Points in Upper Nodes  

of the Reinforced Concrete Frame. 
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Fig. 10. Force diagrams in bar FE: (a) Axial forces N, kN for primary calculation scheme; (b) 

Bending moment M, kNm for primary calculation scheme; (c) Shear force V, kN for primary 

calculation scheme; (d) Axial forces N, kN after structural transformation; (e) Bending moment 

M, kNm after structural transformation; (f) Shear force V, kN after structural transformation. 

4. Discussion 

Comparison of stress contour plots obtained with the proposed method and the standard 

procedure of finite element analysis in the Lira-CAD software shows the following. The 

distribution of stress contours for σx, σy and τxy according to the proposed method and FEM have 
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some quantitative differences. Such differences are most noticeable in the connection zone where 

bars connect with a 2D element. The observed effect is expressed as a gradient increase of stresses 

in the corners of the joint FEM. This can be explained by the significant influence of perfectly 

rigid bodies. However, in qualitative terms, the stress contour plots obtained by the two methods 

are nevertheless similar and in the middle of the investigated 2D area have comparable numerical 

values. In this area, a relatively high level of shear stresses is observed for both methods. That 

leads to the shear failure of the 2D stressed joint. The calculation results according to the proposed 

method indicate the destruction of the node through the inclined cross-section in relation to the 

criterion (1). This is confirmed by the general view of the test model joint: in the middle part of 

the investigated area, a crack that extends beyond the boundaries of the area has formed. 

The calculation results for the bar model presented in Sec. 3.3 shows the change in the 

direction of bending moments in the structural elements of the frame for both cases: before and 

after accidental impact. That is shown in Figures 10 (b), (e). There is also a significant increase 

in shear forces in the beam and columns, as evidenced by Figures 10 (c), (f). The diagrams of 

axial forces show that the central column of the second floor is additionally loaded by 26.5%, and 

the conner column along the 'A' axis is unloaded by 15.5%. However, this effect, together with 

an increase in the shear force and bending moment in the column, is rather negative for a 

reinforced concrete frame. 

P-delta finite element analysis provided in the Sec. 3.3 indicates almost simultaneous 

buckling of three frame columns under accidental impact. However, such a result was not 

observed during the tests of a reinforced concrete frame, destruction which was characterized by 

the formation of cracks in the girders and the failure of the central column only. After that, the 

dynamic effect quickly decays. These results of the finite element analysis confirm its limited 

capabilities for the post-critical structural behavior simulation previously noted by Tagel-Din H 

and Meguro K (2000). Besides, the nonlinear model of reinforcing steel adopted in Section 3.2 

did not take into account the hardening of the steel and the possibility of the stress reaching its 

ultimate values. 

5. Conclusions 

Summarizing the results of the research carried out, we can conclude the following: 

1. The paper proposes a computational model for evaluation of the force resistance of plane-

stressed beam-column joint of the monolithic reinforced concrete frame under accidental impact. 

A distinctive feature of this model is the ability to take into account the discrete reinforcement, 

as well as an incomplete adhesion of the reinforcement to concrete along the contact surface. 

2. As a criterion for assessing the strength of the beam-column joint, it was proposed to use 

the condition of concrete strength for the plane stress state suggested by Geniyev, Kisyuk and 

Tyupin. 

3. To implement the proposed model, an algorithm for calculating the stress-strain state of 

the 2D stressed beam-column joint has been developed, which makes it possible to control the 

convergence of the results. 

4. An example of calculating an experimental frame unit based on the proposed approach is 

considered. 
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