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Abstract 

In an ultrasound-guided needle insertion, physicians should adjust a certain insertion angle and 

the position of the transducer to ensure that the initial point and final target are in-plane inside 

the imaging plane. One of the crucial problems in this interventional procedure is poor and 

inconsistent needle visibility in B-mode ultrasound. In this research, some potential physical 

parameters, i.e., ultrasound frequency, the incident angle of the ultrasound beam, needle density, 

and dimension, are investigated through analytical modeling based on the resonance scattering 

model to understand their behavior in affecting needle visibility. 25G non-echogenic needle is 

used as a model object and assumed as stainless-steel hollow cylinder insonified by oblique 

incident plane wave varied within the frequency of 0–10 MHz and incident angle of 0°–45°. The 

results suggest that those physical parameters simultaneously affect the occurrence possibility of 

the resonant modes, which eventually affect the total scattering pressure field 
S

P  in a non-linear 

way. These observed behaviors in the form of the spectrum map of resonance scattering pressure 

amplitude can be used to adapt a more beneficial combination of those physical parameters to 

obtain a higher possibility of good needle visibility through practical insertion application and 

potential echogenic technology or adaptive beamforming. 

Keywords: Analytical modeling, interventional procedure, needle visibility, resonance 

scattering, ultrasound 

1. Introduction 

In the medical world, the minimally invasive interventional procedure is defined as a treatment 

or diagnostic procedure involving the insertion process of tools into the body or body cavity, 

which emphasizes minimizing injury. This procedure usually involves a needle in its application, 

e.g., in anesthesia and biopsy. For ensuring a successful procedure, visual feedback for physicians 

is strongly needed. One of the imaging modalities that is used for guiding the needle is 

ultrasonography. This modality is chosen because it has high temporal resolution and no radiation 
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risk, relatively small transducer and equipment, and the availability of multiple imaging planes 

of approach. 

In ultrasound imaging for needle guiding application, the physicians must adjust a certain 

insertion angle and the position of the transducer to ensure the initial point of insertion and final 

target of the needle in order for it to be in-plane in the imaging plane. 

In an ideal condition, the visibility of the needle is expected to be clearly visualized in the 

defined imaging plane with the variation of depth and insertion angles relative to the initial point 

of insertion and transducer type. However, in clinical application, the advantage of ultrasound 

also comes with another consequence, i.e., poor, and inconsistent needle visibility in the B-mode 

image. In previous studies, poor needle visibility has been reported to hinder the performance of 

needle insertion procedures (de Jong et al. 2018; Susanti et al. 2018). Some technical factors, e.g., 

ultrasound frequency and insertion angle, affect it, but no linearity has been found. For example, 

in Fig. 1, at 15°, the needle shaft can be imaged fully, but at 25°, only the middle part is visualized 

more clearly. 

 

Fig. 1. Inconsistency of needle visibility in B-mode image in various insertion angles. 

1.1 Works related to needle visibility 

Previously, the inconsistency of needle visibility encountered in clinical application encourages 

the studies of the quantification of needle visibility in the B-mode images. A relative contrast of 

needle image is evaluated based on the scoring system through direct visual observation by 

physicians (Rominger et al. 2017). The assessment of scoring data is evaluated and justified by 

applying statistics to evaluate the significance of imaging strategies, needle type, and the relative 

position of the needle to the ultrasound beam on the quality of needle visibility. However, those 

scoring systems have limitations in combining physical parameters in the experimental settings 

to give a general conclusion in needle visibility problems.  

Other methods have been developed to quantify needle visibility through post-image 

processing strategies (van de Berg et al. 2019; Xu et al. 2018). The main idea behind mentioned 

methods is to identify some points along the needle shaft with good contrast relative to the 

background. These points are viewed as featured data sets of needles. Using supporting 

information, e.g., the tail effect contrast on needle tip and needle insertion angle, image 

processing algorithms have been proposed to visualize “virtual needle” as interpolation of 

featured data set that have a close correlation with the needle in the B-mode ultrasound. Then, 

the “virtual needle” is superimposed with a measured B-mode image. Real-time application of 

this post-processing approach is still limited. It works well in a specific condition and often 

requires a high computation load.   
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After quantifying needle visibility, studies related to needle visibility are then carried out 

with re-engineering approaches to increase needle visibility. Generally, those researches can be 

categorized into three categories regarding the aspects of the system, i.e., the source (the imaging 

strategy), the object (the needle), and the interaction between the source and the object (the 

relative position of the needle to the ultrasound beam). 

In the first category, the engineering is performed in the imaging strategy. Using a phased 

array transducer, some researchers attempt to develop beamforming strategies (Prabhakar et al. 

2018) to maximize received beams from the backpropagation of the needle. Another imaging 

strategy called compound imaging is also investigated (Wiesmann et al. 2013). The 3D ultrasound 

is also used to solve the inconsistency of needle visibility (Arif et al. 2018). 

In the second category, the engineering is carried out on the needle as the object to be imaged, 

including the modification of acoustic characteristics, geometry, and the needle’s surface. The 

echogenic technology belongs to this category by dimpling, roughening, coating, or their 

combinations on the outer surface of the needle (Brookes et al. 2015; Tang et al. 2016) to 

maximize the amount of backpropagation received by the transducer through specular reflection. 

In the third category, the engineering is performed on the interaction parameters between the 

wave source and the object, i.e., the relative position of the needle to the ultrasound beam, 

including the incident angle of the ultrasound beam and the depth of insertion. An example of 

this interaction category is the utilization of a needle-guide kit to stabilize the needle (Ueshima 

and Kitamura 2015; Yoshmimura et al. 2016), and the technique of needle insertion, including 

in-plane and out-of-plane insertion technique (Maddali et al. 2017). 

2. Methodology 

2.1 Modelling concepts and objective 

A better understanding of the problem of needle visibility can be achieved if backpropagation is 

only due to the needle being isolated. Immersing needles in the water is one approach to obtain a 

homogeneous and anechoic background environment. The modeling concepts of this system are 

shown in Fig. 2. Recalling the basic principle of ultrasound imaging, when m -element of the 

transducer is triggered, an ultrasound wave propagates through the water and eventually arrives 

on the needle’s surface (Fig. 2a). Due to the interaction between the incident wave and the needle, 

the backpropagation pressure field is received by the transducer and converted into A-mode in 

each scan line (Fig. 2b). The maximum amplitude of the signal received by each element is 

proportional to the amount of backpropagation. Using information from m -element of the 

transducer, reconstruction of the needle on a B-mode image can be obtained (Fig. 2c). 
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Fig. 2. The modeling concept of the system: (a) pulse-echo process, where m -element 

transducer transmits and receives ultrasound signal to and from the media (water and needle), 

(b) A-mode for each scan-line, (c) B-mode image of the needle. 

Based on this imaging concept, the inconsistency of needle visibility closely relates to the 

amplitude of the backpropagation pressure field received by the transducer. From previous related 

works, we can summarize that the amplitude of the backscattering pressure field is influenced by 

several physical parameters, i.e., the frequency of ultrasound wave as the source parameter, the 

material properties and dimension of the needle as object parameters, and the incident angle of 

ultrasound beam as the parameter of interaction between the source and the object.  

A comprehensive evaluation of the needle visibility problems using an experimental 

approach is tricky because it needs a tremendous number of measurements to variate every 

possibility of combining the system’s parameters.  

Although acoustic wave propagation through an elastic cylindrical object has been 

investigated extensively in the literature considering many different cases, its application for 

ultrasound-guided needle insertion is still limited. Previous studies approached this case with 

modeling approaches, such as finite element modeling (Bigeleisen et al. 2016; Kuang et al. 2016), 

which suggests that computational load requires a more significant number of grid points per 

wavelength to avoid numerical dispersion.  

In this research, we propose an alternative evaluation approach to understand better the 

fundamental physics that underlie the inconsistency of needle visibility through analytical 

modeling of ultrasound wave propagation. Compared to finite element modeling, this analytical 

model requires less computational load. From this approach, the physical parameters that 

influence backscattering pressure amplitude will be evaluated. The model is developed based on 
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the phenomenon of resonance scattering response from a stainless-steel hollow cylinder 

insonified by an oblique incident plane wave.  

Compared to our proposed model, the model proposed by Kuang et al (Kuang et al. 2016) is 

employed to an ultrasound-actuated needle, while in our model, the needle is assumed to be static 

or vibrationless. The ultrasound-actuated needles can cause tissue motion beyond the needle shaft 

and tip, making it challenging to locate the tip precisely. Therefore, a static or vibrationless needle 

is preferably used in clinical applications. Another modeling approach proposed by Bigeleisen et 

al (Bigeleisen et al. 2016) is applied to the echogenic needle, while in our case the needle is non-

echogenic and is used more commonly than the echogenic needle. 

The analytical model is designed to take the whole aspects of the system into account to 

support the research’s objectives, i.e., the source, the object, and the interaction parameter 

between the source and the object. In the proposed analytical model, each scattering amplitude 

from each scan-line due to the interaction between the incident wave and the needle contributes 

to the total scattering pressure amplitude. Numerical simulation is performed to obtain the 

solution of the analytical model of resonance scattering with the parameters mimicking the 

condition in clinical application. 

2.2 Mathematical model 

The spinal needle has two main parts, i.e., stylet and the needle shaft. The object used in the 

proposed model is the needle shaft (Fig. 3b) which can be approximated as a stainless-steel 

hollow cylinder.  

 

Fig. 3. 25G standard non-echogenic spinal needle and its parts: (a) the stylet (rigid cylinder), (b) 

the needle shaft (hollow cylinder), (c) the stylet attached to the needle shaft (rigid cylinder). 

From the modeling concept illustrated in Fig. 2, the transducer is assumed to generate a plane 

wave insonifying a stainless-steel hollow cylinder obliquely to the object’s axis.  

2.3 Works related to acoustic wave propagation through the elastic cylindrical object 

The theory of acoustic scattering response from cylindrical objects has been introduced in 

previous works (Fan et al. 2003; Flax et al. 1978; Leon et al 1992). Those works have laid the 

fundamental theory on how the acoustic wave behaves through a cylindrical object (rigid or 

hollow) by responding in resonance scattering in specific wave modes. A stainless-steel hollow 

cylinder can be viewed as an elastic medium; therefore, mechanical properties, i.e., Young’s 

modulus, Poisson’s ratio, density, and dimension, must be considered in the acoustic 

characteristics of wave propagation in it. 
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2.4 Analysis of mathematical model 

To derive a rigorous analytical model supporting the research’s objectives, the modeling concept 

that focused on the immersed needle in a water chamber is illustrated in Fig. 4. In this case, the 

system is divided into three media, i.e., water as medium 1, stainless-steel shell as medium 2, and 

air inside the needle as medium 3.  

Suppose that the P₀ is the amplitude of the plane wave as the incident wave, the pressure 

field at a point in medium 1 is the sum of the incident wave 
i

P  and scattering wave 
S

P  represented 

by 
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Where n  is order number, 
n

  is Neumann factor, which is 1 ( 0)
n

n    or 2 ( 0)
n

n   ; 

n
J  is Bessel function of the first kind and 

(1)

n
H  is Hankel function of the first kind with order n

, and k  is wave number. 
i

P  hits the surface of the needle and interacts with the solid material of 

the stainless-steel cylindrical shell resulting in an outgoing scattering pressure field 
S

P . 

S
P  represents the total scattering pressure field received by the transducer. Water as a 

background medium is considered as an anechoic medium, so backpropagation received by the 

transducer is assumed to be only from the scattering pressure field 
S

P  of the needle.   

 

Fig. 4. The modeling concept that focuses on an immersed needle in a water chamber. 

The solutions of the governing of wave equations must be solved at each domain of the 

system (see the cross-section of the cylinder and background media in Fig. 5) to determine 
n

g  as 

the unknown scattering coefficient of 
S

P . The governing of wave equations for medium 1, 

medium 2, and medium 3 are summarized in Table 1. 
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Fig. 5. Cross-section of a hollow cylinder and background media, with the distribution of 

pressure fields. 

Medium Governing equations 

Medium 1: Water 

1
c : sound speed in the water 

1
 : water density 

2
2 1

1 2

1

1
0

tc





  


              (3) 

1
 : scalar potential  

Medium 2: Stainless-steel shell 

L
c : sound speed of the longitudinal wave in 

steel  

T
c : sound speed of the transversal wave in 

steel 

2
 : steel density 

2
2 2

22 2

1
0

L
tc





  


     (4) 

2
2

22

1
0

T
tc

    


           (5)  

2
 : scalar potential 

 : vector potential 

r z                      (6) 

Medium 3 

3
c : sound speed in the air 

3
 : air density 

2
2 3

23 2

3

1
0

tc





  


            (7) 

3
 : scalar potential 

Table 1. The governing wave equations at each domain of the system. 

At medium 1 (water), the resultant pressure field at a certain point 1 is the function of scalar 

displacement potential 
1
  as the solution of Eq. 3. At medium 2 (stainless-steel shell), the 

interaction between the incident wave and the material of the cylinder causes the excitation of the 

vibrational displacement u  formulated as (Morse and Feshbach 1953): 

 
2

u     (8) 

Eq. 8 are satisfied if 
2

  and   verify the Eq. 4-5. In medium 3 (air), the pressure field at a 

certain point 3 is the function of scalar displacement potential 
3
  as the solution of Eq. 7. The 

general solution of 
1
 , 2

 ,  r
 ,

 , 
z

  and 
3
  can be expressed as:  
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where, 
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The solutions include the terms 
n

U  and 
n

V  which represent the Bessel function of the first 

kind (
n

J ), and second kind (
n

N ), or the modified Bessel function of the first kind (
n

I ) and 

second kind (
n

K ). They depend on the angle of incident, affecting the solution of Eq. 16-17, 

which can be real or imaginary.  

The total solutions of the whole system consist of 6 general solutions (Eq. 9-14) with 8 

unknown coefficients 
n

a , 
n

b , 
n

c , 
n

d , 
n

e , 
n

f , 
n

g  and 
n

q . These solutions are then substituted 

into the boundary conditions at the interface of the domains r a  and r b : 

 Continuity of the radial displacements: 

 
1 2

,
r r

r a u u   (18) 

 
2 3

,
r r

r b u u   (19) 

 Continuity of the radial stresses: 

 
1 2

,
rr rr

r a T T   (20) 

 
2 3

,
rr rr

r b T T   (21) 

 Nullity of the tangential and shear stresses: 
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1 2

, 0
r rz

r a T T    (22) 

 
2 2

, 0
r rz

r b T u    (23) 

By substituting those solutions into the boundary conditions at r a  and r b , the system 

of 8 linear homogeneous equations can be represented as: 

 .M A B  (24) 
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The expressions for element 
ij

M  and 
i

B  can be found in Leon et al. (Leon et al. 1992). 

2.5 Numerical simulation 

The physical parameters of each medium are given in Table 2. Those parameters are required to 

calculate the elements of ij
M  and 

i
B . The solution of scalar potential 

1
  can be determined 

entirely by solving Eq. 24-25 using specific frequency (
2




) of incident plane wave and angle 

of the incident wave ( ). 

 1
A M B


  (26) 

Furthermore, scattering coefficient 
n

g  is related to the element 
7

A of the matrix A in the 

solution.  
 

Medium Physical parameters 

Medium 1: water 
1

c = 1492 m/s; 
1
 = 1000 kg/m3 

Medium 2:  

stainless-steel  

type 316  

(Standard non-echogenic spinal needle) 

size: 25G 

Young’s modulus E = 200 GPa 

Shear modulus   = 78.14 GPa 

2
  = 8027 kg/m3 

L
c = 5664 m/s 

T
c = 3120 m/s 

Outer radius b = 0.51 mm 

Inner radius a = 0.26 mm 

Length  L = 90 mm 

Medium 3: air 
3

c =330 m/s; 
3

 =1.2 kg/m3 

Table 2. Physical parameter of each medium. 
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Based on the acoustic properties of the needle, in the specific incident angles ( ), the matrix 

M becomes nearly singular. The roots of the determinant of the matrix M are eigenvalues related 

to the hollow cylinder’s circumferential resonance frequencies. The term critical angles are 

introduced based on the acoustic properties of the needle, which will characterize the behavior of 

specific circumferential wave modes that are responsible for the generation of resonances. The 

whispering gallery wave associated with helical waves is excited up to the critical angle 
l

 , 

called the angle of a longitudinal wave in thin rods. The second type of whispering gallery wave 

is helical guided waves which are excited up to the critical angle 
T

 . (Fan et al. 2003) 

 

1
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l

steel

c

E

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The scattering pressure field 
S

P  received by the transducer is assumed to be present in the 

far-field of the cylinder ( r a ) at a specific incident angle  and frequency range f . Far-field 

scattering pressure field can be expressed as: 
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2
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Leon et al (Leon et al. 1992) introduce the far-field form function as the resulting far-field 

amplitude spectrum by keeping the definition used by Flax et al (Flax et al. 1978): 

 

1
22 S

i

Pr
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 (30) 

The far-field form function can be written as the sum of the modeling normal modes: 

 
0

2
cos( )

n n

n

f g n
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





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Recalling the modeling concept illustrated in Fig. 2, the far-field scattering amplitude f


 

at a specific incident angle   and frequency range f  is proportional to the backscattering 

pressure field received by each transducer element. 

The total scattering pressure field 
S

P  consists of the resonance component and non-resonant 

background. In this case, only the resonance component will be evaluated because it primarily 

causes the inconsistency of needle visibility (Dencks et al. 2014). The spectrum of the resonance 

scattering pressure field can be determined by removing the non-resonant background. The 

scattering coefficient of rigid or non-resonant background is defined as follows (Flax et al 1978): 
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'

(1) '

( )
( )

( )

rigid n

n

n

J ka
g ka

H ka
  (32) 

Here, 
'

n
J  is the derivative of the Bessel function of the first kind, while 

(1) '

n
H  is the derivative 

of the Hankel function of the first kind. 

In clinical application, the spectrum of resonance scattering pressure amplitude is represented 

as the areas on B-mode images with good needle visibility. Therefore, the potential physical 

parameters that can be modified to enhance the possibility of resonance are needed to be observed. 

2.6 Algorithm of the simulation 

The calculation of resonance component of far-field form function f


 will be divided into the 

following steps: 

Step 1 Input parameters 
n

  and n  

Step 2 Input parameters of background media: 
water

 , 
water

c , 
air

 ,
air

c  

Step 3 Input parameters of stainless-steel needle: L , a , b , 
steel

 ,  , E , 
L

c , 
T

c , 

  

Step 4 Calculate critical angles 
l

  and 
T

  

Step 5 Discretization of f  frequency  ( idx ). Resolution: 0.1 MHz 

Step 6 Discretization of incident angle  ( idy ). Resolution: 0.1° 

Step 7 Calculate angular frequency   and  h , K  

Note: h  and K  are different for each condition of incident angle that affect 

the elements of matrix M and B  (see Eq. 24-25): 

Condition 1 (
l

  ); Condition 2 (
l T

   ); Condition 3 (
T

  ) 

Step 8 Calculate elements of matrix M and B  of Eq. 24-25 

Step 9 Calculate elements of matrix  A : 1
A M B


  

Step 10 Calculate resonance component of far-field form function of each frequency: 

f


 ( idx ) 

Step 11 Calculate resonance component of far-field form function of each incident 

angle within the frequency range: f


 ( :, idy ) 

The simulation is run in MATLAB® (R2016b, The MathWorks, Natick, USA). The calculation of the element of matrix A in step 9 

involves the inversion process of matrix M  with the LU decomposition method. This method is used to invert nearly singular matrix M , 

where MATLAB® displays a warning message but performs the calculation to obtain the solution 

regardless. All values of resonance component of far-field form function f


 for every couple 

of   and f are then depicted in the given range of incident angle   and frequency f . 
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3. Results and discussion 

The spectrum of resonance scattering pressure amplitude distribution is then observed within the 

frequency range of 0–10 MHz and incident angle of 0°–45°. For general observation, the 

simulation is performed for a 25G standard non-echogenic spinal needle.  

Based on the acoustic properties of the needle (stainless-steel type 316), the two critical 

angles are 
l

  = 17.4° and 
T

  = 27.8°. These two critical angles determine certain circumferential 

waves that are responsible for the generation of resonances. At the critical angle, a specific 

resonance mode can reach its maximum value. At 
l

 , the wave’s longitudinal component which 

propagates on the needle’s surface, while at 
T

 , the resonance mode is associated with the 

transversal component of the wave, which propagates into the solid shell of the needle.  

The resonance modes that associate with whispering gallery waves (helical waves type) are 

excited up to the angle of 
l

  = 17.4°, while the whispering gallery waves (helical guided waves 

type) are excited up to the angle of 
T

  = 27.8°. Leon et al. (Leon et al. 1992) discussed another 

wave mode: the transition between whispering gallery wave and guided wave, i.e., the Scholte-

Stoneley helical wave. At 
l

  , the Scholte-Stoneley waves and the guided waves appear, 

while the whispering gallery waves disappear. At 
T

  , the guided waves disappear, and the 

Scholte-Stoneley waves remain.  

 

Fig. 6. The spectrum of resonance scattering pressure amplitude for n  = 1–5. 

From Fig. 6, at  = 28.5° that is approaching the second critical angle 
T

 , there are strong 

resonance peaks within the entire range of frequencies between 0–10 MHz. At 0 3f  MHz, 

within the entire range of incident angles between 0°–45°, lower resonance peaks tend to decrease 

with increasing frequency gradually. At f   7 MHz and f   9 MHz, there are resonance peaks 

in the higher range of incident angle, i.e.,  30°. Other resonance peaks vary within the middle 

range of frequency and lower range of incident angle until approaching the second critical angle 

T
 . 

The simulation is performed by varying the parameters, i.e., inner radius, outer radius, and 

density, to observe the effect of variation of some potential physical parameters which can be 

modified to enhance needle visibility. The influences of those parameters are evaluated within 

the same range of frequency of 0–10 MHz and incident angle of 0°–45°. 
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3.1 Variation of the inner radius 

The inner radius is simulated for the value of 0.40 mm, 0.26 mm, and 0.01 mm, while the outer 

radius is constant at 0.51 mm (size 25G). These variations simulate the condition of the hollow 

dimension, ranging from thinner wall to thicker wall approaching the condition of an approximate 

rigid cylinder when the stylet is inserted into the needle.  

 

Fig. 7. The spectrum of resonance scattering pressure amplitude for n  = 1; variation of the 

inner radius ( )b . 

By varying the inner radius, both for the order n  = 1 (Fig. 7) and n  = 1–5 (Fig. 8), within 

the same range of frequency and incident angle, the distribution of resonance peaks tends to be 

broader if the inner radius shrinks until the condition approaching the approximate rigid cylinder. 

The ripples also tend to be smoother and more crowded for the smaller inner radiuses. In other 

words, the possibility to obtain a broader area of good needle visibility within a specific range of 

frequency and incident angle is higher for the needle with a smaller inner radius and approximate 

rigid cylinder than a hollow cylinder with a bigger inner radius. This result makes it more 

beneficial for physicians or sonographers for clinical application to image the spinal needle while 

the stylet is still attached to the hollow cylinder. If the position of the needle relative to the target 

is already correct, then the stylet can be removed from the hollow cylinder to flow the fluid. 

Specifically, for the parameters of outer radius and density, the influences of those 

parameters to the distribution of resonance scattering pressure amplitude in the mean of their 

amplitudes and frequency-dependent are evaluated for three representative incident angles, i.e., 

10° (
l

  ), 25° (
l T

   ), and 35° (
T

  ) within the same range of frequency of 0–10 

MHz. 
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Fig. 8. The spectrum of resonance scattering pressure amplitude for n  = 1–5; variation of the 

inner radius ( )b . 

3.2 Variation of the outer radius 

The outer radius is simulated for the value of 0.51 mm (original value of size 25G (real)), 0.46 

mm (original value –10% (min10)), and 0.56 mm (original value +10% (plus10)), while the inner 

radius is maintained to be constant at 0.26 mm (size 25G) and 0.01 mm (approaching the 

condition of approximate rigid cylinder). 

Evaluated from Fig. 9 and Fig. 10, by varying the outer radius, the resonance peaks tend to 

shift in frequency and fluctuate in amplitude. Both for the inner radius of 0.26 mm and 0.01 mm, 

the resonance peaks for the outer radius of 0.56 mm lie in the lowest frequency range compared 

to the resonance peaks for the outer radius of 0.51 mm and 0.46 mm.  

 

Fig. 9. The spectrum of resonance scattering pressure amplitude, variation of the outer radius

( )a ; b = 0.26 mm. 
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In terms of the amplitude, for the inner radius of 0.26 mm, the amplitude of the resonance 

for the outer radius of 0.46 mm tends to be the highest among the others. While for the inner 

radius of 0.01 mm, the resonance amplitude for the outer radius of 0.56 mm tends to be the highest 

among the others. In other words, the outer radius affects the spectrum of resonance scattering 

pressure amplitude almost, in the same way, both for standard hollow spinal needle and 

approximate rigid cylinder. 

 

Fig. 10. The spectrum of resonance scattering pressure amplitude, variation of the outer radius 

( )a ; b = 0.01 mm. 

3.3 Variation of the density 

The density of the needle is simulated for the value of 8027 kg/m3 (original value of stainless-

steel type 316 (real)), 7224.3 kg/m3 (original value –10% (min10)), and 8829.7 kg/m3 (original 

value +10% (plus10)), while the inner radius is maintained to be constant at 0.26 mm (size 25G) 

and 0.01 mm (approaching the condition of approximate rigid cylinder). 

 

Fig. 11. The spectrum of resonance scattering pressure amplitude, variation of the density ( ) ;

b = 0.26 mm. 
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Evaluated from Fig. 11 and Fig. 12, by varying the density, the resonance peaks tend to 

fluctuate in amplitude. Both for the inner radius of 0.26 mm and 0.01 mm, the resonance 

amplitude for the density of 8829.7 kg/m3 tends to be the highest compared to the resonance peaks 

for density of 8027 kg/m3 and 7224.3 kg/m3.  

 

Fig. 12. The spectrum of resonance scattering pressure amplitude, variation of the density ( ) ; 

b = 0.01 mm. 

While in terms of frequency, both for the inner radius of 0.26 mm and 0.01 mm, the resonance 

peaks lie in the same frequency for all density values. In other words, the density affects the 

spectrum of resonance scattering pressure amplitude in the same way, both for the standard 

hollow spinal needle and approximate rigid cylinder. 

3.4 Overall discussion 

The observation of the spectrum of resonance scattering pressure amplitude within the range of 

frequency between 0–10 MHz and incident angle of 0°–45° shows that the resonances associated 

with specific wave modes vary broadly within the range with the tendency of slight variation 

above the frequency of 4 MHz. The behavior of specific circumferential wave modes concerning 

critical angles 
l

  and 
T

  depends not only on the frequency and incident angle but also on the 

radius and density of the needle, where physical interactions occur among the waves generated 

on the surface and within the solid shell. 

As the source parameter, the frequency f  of the incident wave 
i

P  affects the angular 

frequency   which eventually affects the waves’ phase, i.e., the incident wave itself, the scalar 

potential in the water 
1
 , and in the air inside the needle 

3
 . Within the solid shell of the needle, 

frequency f  affects the parameters 
n

 , h , and K  for the scalar potential 
2

  and vector 

potential  .  

Similar to the frequency f , as the parameter of interaction between the source and the object, 

the incident angle   affects the wavenumber of the waves represented by the parameters k


 and  

z
k  which eventually affects the phase of the waves, i.e., the incident wave itself, the scalar 

potential in the water 
1
 , and in the air inside the needle 

3
 . Within the solid shell of the needle, 
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the angle of incident 𝛼 affects the parameters 
n

 , h , and K  for the scalar potential  
2

 and 

vector potential  .  

While, as the object parameter, the dimension of the cylinder, i.e., the proportion between 

inner b and outer radius a  affects the acoustic path passed by the waves. The thicker the wall of 

the cylinder, the larger the acoustic path, so the resonance interactions occur more intensely, 

represented by the presence of more crowded resonance peaks (Fig. 7 and Fig. 8). This interaction 

was also observed in a rigid cylinder, where the bigger the outer radius of the rigid cylinder, the 

higher the chance to find the peak of the resonances (Susanti et al 2018). The outer radius and the 

density of the needle affect the distribution of the resonance spectrum pressure field in terms of 

frequency and amplitude, almost in the same way.  

4. Conclusions 

The accumulation of the influence of those three representative parameters, i.e., the frequency, 

the incident angle of the ultrasound beam, and the density and dimension of the needle, affects 

the occurrence possibility of the resonant modes in a non-linear way which eventually affects the 

total scattering pressure field 
S

P  received by the transducer as backpropagation. In other words, 

those parameters play essential roles in the generation of visibility of the needle.  

Extracted from the 
S

P  by removing non-resonant background, the spectrum of resonance 

scattering pressure amplitude allows one to observe a specific range of frequency range and 

incident angle in practical application to adapt a more beneficial combination of those parameters 

to obtain a higher possibility of good needle visibility using practical insertion application or 

adaptive beamforming. While the object parameters of the needle, i.e., the inner radius, the outer 

radius, and the density, can be modified in such a way (echogenic technology) to enhance needle 

visibility in the B-mode image.  
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