
Journal of the Serbian Society for Computational Mechanics / Vol. 15 / No. 1, 2021 / pp 81-97

(10.24874/jsscm.2021.15.01.06)

IMPROVEMENT OF THE SPARSE MATRICES STORAGE

ROUTINES FOR LARGE FEM CALCULATIONS

Dragoljub Stevanović1, Marko Topalović2*, Miroslav Živković1

1 Faculty of Engineering, University of Kragujevac, Serbia

e-mail: dragoljub.stevanovic.kg@gmail.com, zile@kg.ac.rs
2 Institute for Information Technologies, University of Kragujevac, Serbia

e-mail: topalovic@kg.ac.rs

* corresponding author

Abstract

Efficient memory handling is one of the key issues that engineers and programmers face in

developing software for numerical analysis such as the Finite Element Method. This method

operates on huge matrices that have a large number of zero coefficients which waste memory, so

it is necessary to save it and to work only with non-zero coefficients using so called "SPARSE"

matrices. Analysis of two methods used for the improvement of "SPARSE" matrix creation is

presented in this paper and their pseudo code is given. Comparison is made on a wide range of

problem sizes. Results show that "indexing" method is superior to "dotting" method both in

memory usage and in elapsed time.

Keywords: Memory usage optimization, Matrix handling, SPARSE matrix, Matrix notation,

Finite Element Method

1. Introduction

The Numerical analysis of the ever increasing and more complex problems presents challenges

for engineers and software developers primarily in the field of optimal utilization of the large

number of processors and storage of required data in the memory. Increasing the size of the model

leads to an exponential increase of the required memory, sometimes even beyond the available

amount on brand new machines. Therefore, it is necessary to optimally store only the necessary

data. This problem will be addressed in this paper. Solving the system of equations (for any kind

of the problem) can be written in the matrix form  A x r , where A represents the coefficient

matrix, vector r is a vector of solutions and x is a vector of unknown values.

In real life problems there are a large number of coefficients that are equal to zero that

unnecessarily occupy memory position according to Gilbert et al. (1992), and therefore engineers

and programmers sought ways to avoid the storage of these coefficients using various approaches

(Amestoy et al. 2002), (Armstrong et al. 2010) and (Mofrad et al. 2013). In this paper, we will

focus on one of the most popular numerical methods - Finite Element Method (FEM), described

in detail by Bathe (2007), and ways to improve its matrix handling in terms of memory

requirements and computer processing time. The main motive to investigate this issue, was an

analysis of dams, which required a large number of elements to accurately represent dam as well

Dragoljub Stevanović et al.: IMPROVEMENT OF THE SPARSE MATRICES STORAGE ROUTINES…

82

as surrounding area which resulted in a model which was too big to handle with the Finite Element

solver. In this paper, we show two approaches that we tried out in FEM solver in order to make

a large dam model more memory efficient, so it could be analyzed using the only computer RAM

memory (64 GB) without a need for additional memory allocation on hard drive which would

greatly increase analysis time.

According to Bathe (2007), in the FEM coefficient matrix A represents the relation between

stress and strain and is called "stiffness matrix". This term is much older than FEM itself, with

first mentioning in two papers by Duncan and Collar (1934), (1935) regarding a method called

Matrix Structural Analysis (MSA), which, according to Felippa (2000) is a discrete, analog direct

ancestor of FEM. This method was used in aero-elasticity, as the airplane maximum speeds

increased, so did the wing flutter (Felippa 2000). FEM Analysis is characterized by problems

which have symmetrical model, and very often symmetrical stiffness matrix. For symmetric

stiffness matrices following statement is true jiaa jiij ,, . On the other hand, symmetric

models are defined as those systems in which, if any element B affects element C then at the same

time element C affects element B. Effect of B to C and effect of C to B can be with the same or

different intensity
ij ji ij ji

a a a a   . According to Felippa (2000), aero-elastic analysis

stiffness matrices are generally unsymmetrical, being the sum of a symmetric elastic stiffness and

an unsymmetrical aerodynamic stiffness.

In the FEM evolution, according to Felippa (2000), the next big step is a Direct Stiffness

Method introduced by Turner (1959) featuring the assembly procedure, in which the stiffness

matrix for the whole model is generated by direct addition of element matrices.

Considering the symmetric matrix with large number of zero coefficients, there are several

ways to save memory, out of which SPARSE matrices are the most effective and commonly

implemented solution, which were developed by Wilson (1963) for his PhD. dissertation.

Algorithms and matrix operations developed for regular, dense matrices are slow and

inefficient when applied to large SPARSE matrices, because a lot of processing time and memory

are wasted on the zero elements; hence, over the years, specialized solvers/libraries were

developed for these problems. In our PAK program for FEM analysis (Živković 2005), we use

MUltifrontal Massively Parallel sparse direct Solver (MUMPS) which, according to Amestoy et

al. (2001), represents the state of the art solution for solving SPARSE matrix problems. Also,

according to Amestoy et al. (2003) using non-blocking communication primitives improves the

performance and robustness in comparison to the simple Message Passing Interface (MPI) point-

to-point communication primitives. MUMPS requires information where the non-zero members

are located, a task that can be accomplished in several ways.

Traditional SPARSE matrix storage formats are: Coordinate Format (COO), Compressed

Sparse Column (CSC), Compressed Sparse Row (CSR) and Blocked Compressed Sparse Row

(BCSR). Armstrong et al. (2010) used these formats, and focused their research on development

of algorithm for optimum format selection based on runtime parameters. More recently, Borštnik

et al. (2014) developed Distributed Block-Compressed SPARSE row library.

Over the years, there were numerous approaches to the optimization of SPARSE matrix

assembly and solving. For example, Gilbert et al. (1992) used pattern recognition for

identification of recurring blocks of non-zero elements, while Romero and Zapata (1995) used

storage by row of blocks implemented in their sparse matrix vector multiplication solution for

distributed memory multiprocessors. Kaveh and Ghaderi (1997) dealt with ill-conditioned

stiffness matrices that had large off-diagonal entries, which increased sparsity of the columns,

while Adle et al. (2005) analyzed automatic parallelization of sparse matrix computations. Pichel

et al. (2012) evaluated some of the most successful reordering techniques and tested a number of

Journal of the Serbian Society for Computational Mechanics / Vol. 15 / No. 1, 2021

83

sparse matrix storage formats. Mofrad et al. (2013) used bit flipping algorithm to solve sparse

systems of linear equations. As the hardware progress shifted more to the field of graphics cards,

researchers also begun focusing more on GPU solvers rather than the CPU, like Oyarzun et al.

(2014) for instance, who researched MPI-CUDA sparse matrix–vector multiplication using

hybrid parallelization strategy, or Ashari et al. (2015) who developed a novel model-driven

blocking strategy for load balanced sparse matrix–vector multiplication on GPUs, that reduces

thread divergence and improves the load balance. However, since the PAK program (Živković

2005) solves balance equations on the CPU, we will focus on the state of the art for the traditional

CPU implementation of SPARSE matrix computation.

According to Hiemstra et al. (2019), traditional FEM solvers have element subroutines that

generate the specific element matrices, that are afterwards assembled in the system stiffness

matrix, but, Hiemstra et al. (2019) have also shown that row-by-row or column-by-column

assembly of the stiffness matrix is far superior to the element by element implementation.

However, Hiemstra et al. (2019) also concluded that these new approaches would require a lot of

FEM subroutines to be completely rewritten and that many quantities need to be precomputed for

the use in the sum factorization which is the crucial part of their newly proposed algorithms.

Implementation and testing of these new algorithms in PAK solver may be the topic of our further

research, and comparison/combination with our own solutions could lead to further

improvements of matrix assembly subroutines.

In this paper, we present two improved variants of element by element matrix assembly,

"dotting" and "indexing", which can be selected for any particular problem or any SPARSE

storage format. These enhanced methods main feature is storing of Boolean True/False values

within the signed or unsigned integers, thus greatly reducing required memory for the matrix

assembly.

Both methods are described and compared and pseudo codes which demonstrate the

functionality of these methods in finding row indexes are given. Methods do not depend on

whether the model is symmetric or has symmetric matrices because the arrays at the same time

indicate the column of the lower triangular matrix. Examples of the "dotting" and "indexing"

procedures used on a showcase matrix are given in appendices A, B and C.

2. Methods

The issue of SPARSE matrix implementation in numerical analysis of the large problems that we

investigated in this paper is a problem of choosing appropriate method for determining the row

index of the members, which would not take a lot of memory space. All standard (formats)

notifications according to Armstrong et al. (2010) use 3 arrays – row Rk, column Ck and value

Vk, while some like Kojić et al. (1998) use help auxiliary array Hn for faster search of elements

in those arrays. The length of three standard arrays is equal to the number of nonzero elements in

the matrix, while the length of the helper auxiliary array is equal to size of matrix+1. An example

of the regular full matrix and its equivalent SPARSE matrix representation is given in Appendix

A. In the following sections two methods for the SPARSE matrix generation that we used are

described in detail.

2.1 Dotting method

This method is based on a concept that we can know positions of non-zero elements in stiffness

matrix even before that matrix is created. This is achieved by representing every matrix member

with True or False, with the value being evaluated based on the fact that a particular member

holds non-zero value or not. Because the stiffness matrix is very large, we used shortened

Dragoljub Stevanović et al.: IMPROVEMENT OF THE SPARSE MATRICES STORAGE ROUTINES…

84

equivalents - Upper Triangular Matrix with diagonal elements (UTM) or contour matrix (all

elements from the diagonal element to furthest nonzero element in row/column). Because many

programming languages (FORTRAN, for example) use bytes for storing Boolean True/False

values, we can reduce the memory requirements of True/False matrix storage if we use integers

instead of Boolean values. This way every integer holds the values for 7 or 8 Boolean values,

depending on chosen signed or unsigned integer type. This procedure (using signed and unsigned

integers) is shown in Fig. 1.

Fig. 1. Graphical representation of dotting process, for matrix given in Appendix A. (a) Storing

True/False values in signed integers; (b) Storing True/False values in unsigned integers; (c)

diagonal element indexes.

As can be seen from Fig. 1, Boolean arrays for signed (a), or unsigned integer type (b), are

used to store information on whether the certain element of the matrix has a non-zero value or

not. Array (c) contains the serial numbers of the elements that are the first in the appropriate

column and which are the diagonal elements in UTM. Values in arrays (a) or (b) are saved and

read using the Boolean algebra. At the beginning, all of the values in array (a) or (b) are 0. Then

in order to enter the value TRUE (1) to the corresponding bit operation OR () is used on

corresponding byte in (a) or (b) array and Boolean value of the position of the particular bit. For

reading the value TRUE from the appropriate position in Boolean array operation AND () is

used in the same way as it is done for saving in the appropriate array position.

For the following pseudo code that describes the dotting method, a more detailed description

of the process of forming Boolean (integer) array is given in Appendix B.

Dotting method pseudo code:

Journal of the Serbian Society for Computational Mechanics / Vol. 15 / No. 1, 2021

85

For k = 1 to number of elements

 Load equations array // element influence to equations

 For e = 1 to element size

 For m = e + 1 to element size

 I = equations(e) // column

 J = equations(m) // row

 If I >= J then // upper triangular matrix

 KK = c(I) + I - J

 Elem = (KK + D - 1) div D

 Pos = D - (Elem * D – KK)

 SET_DOT(Elem, Pos)

 End if

 Next m

 Next e

Next k

K = 0

E = 0

col = 1

S = 1

For I = 1 to size of TEMP array

 For J = 1 to D

 K = K+1

 If GET_DOT(I,J) = 1 or K = C(col) then

 E = E + 1

 If K = C(col) then

 Row(E) = col

 C(col) = E

 S = K

 Else

 Row(E) = col + S – K

 End if

 End if

 Next J

Next I

C(col+1) = E + 1

For example, the first bit in a byte is used to store information (in array (a) or (b) in Fig. 1.)

if the corresponding element of the matrix is non-zero element using the number 128 in binary

notation (10000000)(2) for (b) and 64 in binary notation (01000000)(2) for (a). For the second bit

64 is used for (b) and 32 in binary notation (00100000)(2) for (a) and so on. For 7th bit number 2

is used in binary notation (00000010)(2) for (b) or 1 in binary notation (00000001)(2) for array (a).

For unsigned array (b) for 8th bit number 1 (00000001)(2) is used.

Dotting method requires the auxiliary array to be created with information, whether a

particular place holds a non-zero element ((a) or (b) in Fig. 1). This is done in the first loop in

pseudo code. The size of auxiliary array is determined, using the size of UTM or the size of

contour matrix. In the case of UTM, it is relatively easy to determine the position of element Ax

= Ai,j when x = i * (i - 1) + j is true. In the case of contour matrix, which is smaller than a UTM,

there are some challenges in the determination of the correct position of element in that array,

and because of these challenges we use a helper array of starting row/column index in auxiliary

array. Also, there can be differences in size of contour matrix if elements of the matrix are packed

row by row or column by column from stiffness matrix. Creation of a row index array from

auxiliary array is shown in the second loop of pseudo code. Depending on which method is used

in the subroutines for writing and reading value of 1 (logical true) into auxiliary array, significant

difference in consumed time may occur. The row index array is formed by taking each member

of the auxiliary array and calculating the row index if the member is equal to 1.

Element and a member of the auxiliary array are two different concepts. For example, if you

access 893rd member, it means accessing 128th element and the 4th bit of that element (values

Dragoljub Stevanović et al.: IMPROVEMENT OF THE SPARSE MATRICES STORAGE ROUTINES…

86

of variables Elelm and Pos in pseudocode respectively). Or, in other words, 128th element carries

information about the members 890, 891, 892, 893, 894, 895 and 896. After the auxiliary array

is fully assigned, we can create an index array which is created dynamically by accessing each

member of the auxiliary array continuously (Fig. 1).

2.1 Indexing method

This method as well as dotting method is based on a concept that we know in advance where the

non-zero elements in the stiffness matrix are. Unlike dotting method that checks every position

in the stiffness matrix, this method takes a different approach. First the possible number of non-

zero members in each column/row is determined. Once this number is determined, this method

goes through all the possible positions where non-zero elements are and places corresponding

indexes into the auxiliary index array. Because the same non-zero member may appear multiple

times for indexing, it means that auxiliary index array contains the number of extra indexes of

non-existent members. In order to have a compact index array, the auxiliary index array is reduced

by removing non-existent indexes. Since the non-existent members are located at the end of each

block of the index in the same column/row this means that this array does not have to be

destroyed, but it will become an array of row/column indexes. Hence, the total memory required

for the determination of the index array is equal to the memory usage of the auxiliary index array.

Indexing method pseudo code:

For k=1 to number of equations + 1

С(k)=1

Next k

For k = 1 to number of elements

 Load equations array // element influence to equations

 For e = 1 to size of element

 I= equations(e) // column

 J= equations(k) // row

 If I>J then

 С(I) = С(I)+1

 End if

 Next e

Next k

R(1) = 1

For k = 2 to number of equations + 1

 If C(k) > k then C(k) = k

 С(k) = С(k-1) + С(k)

 R(C(k)) = k

Next k

N = C(number of equations + 1) - 1

For k = 1 to number of elements

 Load equations array // element influence to equations

 For e = 1 to size of element

 I = equations(e) // column

 J = equations(k) // row

 If I>J then

 P = C(I) + 1

 While (R(P) <> J) and (R(P) > 0) P = P + 1

 R(P) = J

 End if

 Next e

Next k

Journal of the Serbian Society for Computational Mechanics / Vol. 15 / No. 1, 2021

87

k = 2

While ((R(C(k+1)-1) > 0) and (k< number of equations)) do k = k + 1

p = C(k) + 1

while (R(p) > 0) do p = p + 1

while k < number of equations

 k = k + 1

 temp = p

 for i = C(k) to C(k+1) - 1 do

 if R(i) = 0 then exit loop

 R(p) = R(i)

 p = p + 1

 next i

 C(k) = temp

End while

Additional usage of memory by the auxiliary index array can be neglected for large examples,

because the number of non-existing indexes will be less than the number of non-zero elements

and hence the required memory to store the stiffness matrix will take the same amount of memory

that is used for the storage of non-existing elements in the auxiliary index array. The indexing

method, which is shown in the pseudo code, uses only addition and subtraction as logical

operations in comparison to dotting method, which was discussed in the previous section.

The first loop counts diagonal elements of the matrix. In the second loop theoretical maximal

number of non-zero elements above the main diagonal is determined. In the third loop the array

that contains starting columns in row index array is created. N represents the number of non-zero

elements in the matrix. In the fourth loop row index array is filled. After forth loop it is

represented shortening of a row index array.

For the pseudo code that describes the indexing method, a more detailed description of the

process of forming Boolean (integer) array is given in Appendix C.

3. Results and Discussion

Regardless of whether the stiffness matrix is symmetric or not, the amount of memory that is

required for an array of row indexes is the same. On the other hand, memory requirements and

time consumption for the search for the index array depend on the method used. In both methods,

the three arrays (C, M, and R) are used.

Array R contains row indexes grouped by column, while array C contains starting indexes of

the corresponding column blocks in array R. Array M contains stiffness matrix elements and

depending on whether it is symmetrical or not its length is equal to the length of the array R or

twice the length.

In the case when the stiffness matrix is non-symmetric, array M occupies twice the size of

an array R because storage of another set of diagonal elements is redundant and hence the

utilization of memory is reduced. This issue can be neglected because of the ease of access to

members that are located below the main diagonal.

For each x belonging to [Ci, Ci+1], it applies: j = Rx, Ai,j = Mx. In the case of the symmetrical

model it applies Aj,i = Mx, while for the unsymmetrical model it applies Aj,i = Mx+N, where N is

the total number of non-zero elements that are found in the stiffness matrix on and above the main

diagonal. In order to have detailed, objective results to compare these two methods implemented

in PAK solver over a wide range of model sizes, we created a simple 1m3 cube that was

constrained at the bottom and with prescribed displacement at the top. This cube is then divided

Dragoljub Stevanović et al.: IMPROVEMENT OF THE SPARSE MATRICES STORAGE ROUTINES…

88

into finite elements with increasing mesh density with number of elements along the edge ranging

from 1 to 50 as it's shown in Table 1.

Model size

Number of

equations

The number of

"contour" elements

Number of

non-zero

elements in UTM

Number of elements in

the auxiliary array

needed for indexing

Number of

SPARSE element in

regards to the number of

"contour" elements

Cube 1 12 78 78 78 100.000%

Cube 5 540 74,982 14,670 28,830 19.565%

Cube 10 3,630 2,669,717 120,390 254,310 4.509%

Cube 15 11,520 21,903,952 409,410 885,690 1.869%

Cube 20 26,460 96,760,437 973,980 2,132,220 1.007%

Cube 25 50,700 304,584,422 1,906,350 4,203,150 0.626%

Cube 30 86,490 774,583,657 3,298,770 7,307,730 0.426%

Cube 35 136,080 1,701,328,392 5,243,490 11,655,210 0.308%

Cube 40 201,720 3,358,251,377 7,832,760 17,454,840 0.233%

Cube 45 285,660 6,111,147,862 11,158,830 24,915,870 0.183%

Cube 50 390,150 10,431,675,597 15,313,950 34,247,550 0.147%

Table 1. Dependence between number of elements in stiffness matrix and number of elements

in cube model.

As the size of the model increases, the number of contour elements also increases, as a power

function with power in the range of 1.75 – 1.81. The number of non-zero elements also increases,

but not as fast as a number of contour elements, so the share of non-zero elements in total number

of contour elements decreases, which means that the matrix is getting more and more sparse,

which is shown in Table 1.

The superiority of indexing method over dotting method is more and more evident as the size

of the model increases, both in terms of the required memory and in terms of the elapsed time,

which is shown in Table 2.

Model size

Required memory Elapsed time [s]

Dotting Indexing Unit Size Dotting Indexing

Cube 1 0.37 0.36 kB 0.001 0.001

Cube 5 305.47 114.73 kB 0.005 0.009

Cube 10 10.56 0.98 MB 0.080 0.023

Cube 15 86.59 3.42 MB 0.415 0.080

Cube 20 382.40 8.23 MB 1.793 0.190

Cube 25 1,203.59 16.23 MB 5.586 0.372

Cube 30 3,060.66 28.21 MB 14.135 0.644

Cube 35 6,722.36 44.98 MB 39.954 1.007

Cube 40 13,269.01 67.35 MB 61.299 1.525

Cube 45 24,145.85 96.14 MB 111.377 2.168

Cube 50 41,216.38 132.13 MB 189.436 3.221

Table 2. Required memory and elapsed time for creating an index array.

Although the "dotting" method has only two steps, while "indexing" method has four, it can

be seen that the "indexing" method is much faster, because in the "dotting" method we used

multiplication, division and modulus which are the slowest basic mathematical operations that

are executed by a computer, while "indexing" does not utilize these operations.

The advantages of "indexing" method can be clearly seen in Fig. 2. and 3. which show

elapsed time and memory usage respectively.

Journal of the Serbian Society for Computational Mechanics / Vol. 15 / No. 1, 2021

89

Fig. 2. Comparison of elapsed time of dotting and indexing methods.

Fig. 3. Graphical Comparison of total memory required to store SPARSE matrix relative to the

amount of memory required or the determination of the index array, for indexing and dotting

methods.

Dragoljub Stevanović et al.: IMPROVEMENT OF THE SPARSE MATRICES STORAGE ROUTINES…

90

4. Conclusions

Due to the large number of zero elements in the matrices in numerical methods such as the Finite

Element Method, it is necessary to pay special attention to the processes of their storage and

usage. The best solution is to save only non-zero elements in specialized SPARSE matrices using

one of the several storage formats. This process must be efficient in terms of elapsed time and

used memory. Two methods, "dotting" and "indexing" are explained and compared on a wide

range of model sizes. The main idea behind "dotting" method was to save memory using bits (or

so called dots) to mark positions of non-zero elements while determining arrays that store

SPARSE matrix. This method needed to overcome imperfection of bit data saving in many

programming languages using bytes which resulted in very inefficient memory usage. Another

drawback of "dotting" method was the usage of multiplication, division and modulus which are

the slowest basic mathematical operations.

The main disadvantage of the "indexing" method is that it has four steps, in comparison to

the "dotting" method which has only two steps. But on the other hand, due to utilization of

mentioned slow mathematical operations, "dotting" is inferior to "indexing" method regarding

consumed time. As for the memory usage, "indexing" method also outperforms "dotting" method

especially in large examples. The only advantage of "dotting" in terms of memory is with a model

size 2 as it can be seen in Figure 2, but this can be neglected because of generally low memory

usage.

This paper showed two diverse methods for SPARSE matrix creation and it showed the way

to implement both methods. It is shown that indexing method performs better in large examples.

This proposed approach can be very helpful in the implementation of software based on Finite

Element Method, because it can help reduce the execution time and the utilized amount of

memory. That way it would be possible to perform simulations with larger number of nodes and

more complex geometries, that was either not possible or very time and memory consuming

without the proposed approach.

Acknowledgements The part of this research is supported by the Ministry of Education and

Science, Republic of Serbia, Grants TR32036 and 451-03-68/2020-14/200378.

References

Adle R, Aiguier M, Delaplace F (2005). Toward an automatic parallelization of sparse matrix

computations, Journal of Parallel and Distributed Computing, 65, 313-330.

Amestoy P, Duff I, L'excellent J, Li X (2001). Analysis and comparison of two general sparse

solvers for distributed memory computers, ACM Transactions on Mathematical Software

(TOMS), 27, 388-421.

Amestoy P, Duff I, L’Excellent J, Li X (2003). Impact of the implementation of MPI point-to-

point communications on the performance of two general sparse solvers, Parallel Computing,

29, 833-849.

Armstrong W, Rendell A (2010). Runtime sparse matrix format selection, Procedia Computer

Science, 1, 135-144.

Ashari A, Sedaghati N, Eisenlohr J, P. Sadayappan P (2015). A model-driven blocking strategy

for load balanced sparse matrix–vector multiplication on GPUs, Journal of Parallel and

Distributed Computing, 76, 3-15.

Bathe K J (2007). Finite Element Procedures, Klaus-Jurgen Bathe

Borštnik U, Vondele J V, Weber V, Hutter J (2014). Sparse matrix multiplication: The distributed

block-compressed sparse row library, Parallel Computing, 40, 47-58.

Journal of the Serbian Society for Computational Mechanics / Vol. 15 / No. 1, 2021

91

Duncan W, Collar A (1934). A method for the solution of oscillations problems by matrices,

Philosophical Magazine, 7, 865.

Duncan W, Collar A (1935). Matrices applied to the motions of damped systems Philosophical

Magazine, 7, 197.

Felippa C (2001). A historical outline of matrix structural analysis: a play in three acts, Computers

& Structures, 79, 1313-1324.

Gilbert J, Moler C, Schreiber R (1992). Sparse matrices in matlab: design and

implementation, SIAM Journal on Matrix Analysis and Applications, 13, 333-356.

Hiemstra R, Sangalli G, Tani M, Calabrò F, Hughes T (2019). Fast formation and assembly of

finite element matrices with application to isogeometric linear elasticity, Computer Methods

in Applied Mechanics and Engineering, 355, 234-260.

Kaveh A, Ghaderi I (1997). Conditioning of structural stiffness matrices, Computers &

Structures, 63, 719-725.

Kojić M, Slavković R, Živković M, Grujović N (1998). Metod konačnih elemenata I (linearna

analiza), Mašinski fakultet u Kragujevcu, Kragujevac, Serbia.

Mofrad A, Sadeghi M, Panario D (2013). Solving sparse linear systems of equations over finite

fields using bit-flipping algorithm, Linear Algebra and its Applications, 439, 1818-1824.

Oyarzun G, Borrell R, Gorobets A, Oliva A (2014). MPI-CUDA sparse matrix–vector

multiplication for the conjugate gradient method with an approximate inverse preconditioner,

Computers & Fluids, 92, 244-252.

Pichel J, Rivera F, Fernández M, Rodríguez A (2012). Optimization of sparse matrix–vector

multiplication using reordering techniques on GPUs, Microprocessors and Microsystems,

36, 65-77.

Romero L, Zapata E (1995). Data distributions for sparse matrix vector multiplication, Parallel

Computing, 21, 583-605.

Turner M (1959). The direct stiffness method of structural analysis, Structural and Materials

Panel Paper, AGARD Meeting, Aachen, Germany.

Wilson E (1963). Finite element analysis of two-dimensional structures, Ph. D. Dissertation,

Department of Civil Engineering, University of California at Berkeley, USA.

Živković M (2005). Nelinearna analiza konstrukcija, Mašinski fakultet u Kragujevcu,

Kragujevac, Serbia.

Appendix A - saving notifications of sparse matrix

For example, matrix is defined as AN, N = [(15, 13, 7, 0, 8, 0), (13, 1, 0, 2, 7, 0), (7, 0, 5, 3, 0, 0),

(0, 2, 3, 9, 0, 8), (8, 7, 0, 0, 11, 0), (0, 0, 0, 8, 0, 15)], N = 6.

For this matrix values of row Rk, column Ck and Vk, as well as auxiliary array Hn are:

RK = (1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6), K = 20

CK = (1, 2, 3, 5, 1, 2, 4, 5, 1, 3, 4, 2, 3, 4, 6, 1, 2, 5, 4, 6)

VK = (15, 13, 7, 8, 13, 1, 2, 7, 7, 5, 3, 2, 3, 9, 8, 8, 7, 11, 8, 15)

HN+1 = (1, 5, 9, 12, 16, 19, 21), H(N+1) = K + 1

For all values for I=H(P) to H(P+1)-1 R(I) = P

When there is symmetric matrix some notifications save only upper/lower triangular matrix. For

this matrix those arrays have values:

RCK = (1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6), K = 13

CRK = (1, 2, 3, 5, 2, 4, 5, 3, 4, 4, 6, 5, 6)

VK = (15, 13, 7, 8, 1, 2, 7, 5, 3, 9, 8, 11, 15)

HN+1 = (1, 5, 8, 10, 12, 13, 14), H(N+1) = K + 1

Dragoljub Stevanović et al.: IMPROVEMENT OF THE SPARSE MATRICES STORAGE ROUTINES…

92

In PAK software we used short symmetric notation for both symmetric and non-symmetric

matrices. When saving non-symmetric matrix values array is twice longer than rows / columns

array. That way values array has N more values than standard notifications, but memory is saved

because we do not save whole row /column arrays.

In our notation for this matrix we have these arrays:

HN+1 = (1, 2, 4, 6, 9, 12, 14), H(N+1) = K + 1

CRK = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1, 6, 4), K = 13

VK = (15, 1, 13, 5, 7, 9, 3, 2, 11, 7, 8, 15, 8)

For the purpose of explaining non-symmetric matrix saving, we will assume that the values in the

lower triangular matrix are different than in the upper triangular matrix (Aij != Aji) even they are

same in this example.

HK = (1, 2, 4, 6, 9, 12, 14), H(N+1) = K + 1

CRK = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1, 6, 4), K = 13

V2K = (15, 1, 13, 5, 7, 9, 3, 2, 11, 7, 8, 15, 8, 0, 0, 13, 0, 7, 0, 3, 2, 0, 7, 8, 0, 8)

To know the position of element Vp, where p is greater than K column is the same as a row of

element p-K (RCp = CRp-K) and row is the same as the column of element p-K (C, HC < p-K and

HC+1 > p-K). Zeroes in V2K array are in positions of diagonal elements and these too can be

omitted which would increase memory efficiency, but on the down side this would cause less

efficiency in the solving of the problem because more mathematical operations would be needed

to access elements below the diagonal elements.

Appendix B - forming of the auxiliary Boolean array

Let's assume that elements in the example matrix from Appendix A influence certain equations

Element 1 equations (1, 3)

Element 2 equations (3, 4)

Element 3 equations (2, 4)

Element 4 equations (1, 2, 5)

Element 5 equations (4, 6)

HN+1 = (1, 2, 4, 7, 10, 15, 18)

For dotting method, we will use the example using unsigned type to store the Boolean array.

Dotting method process:

B = (0, 0, 0) // array b on Fig 1. That contains 3 elements

Element 1: equations 1 and 3:

- I = 1, J = 1 => K = H(1) + J – I = 1 + 1 – 1 = 1

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 1

B1 = B1 or POS1 = (00000000)(2) or (10000000)(2) = (10000000)(2) = 128

B = (128, 0, 0)

- I = 1, J = 3 => K = H(3) + J – I = 4 + 3 – 1 = 6

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 6

B1 = B1 or POS6 = (10000000)(2) or (00000100)(2) = (10000100)(2) = 132

B = (132, 0, 0)

- I = 3, J = 3 => K = H(3) + J – I = 4 + 3 – 3 = 4

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 4

B1 = B1 or POS4 = (10000100)(2) or (00010000)(2) = (10010100)(2) = 148

B = (148, 0, 0)

Journal of the Serbian Society for Computational Mechanics / Vol. 15 / No. 1, 2021

93

Element 2: equations 3 and 4

- I = 3, J = 3 => K = H(3) + J – I = 4 + 3 – 3 = 4

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 4

B1 = B1 or POS4 = (10010100)(2) or (00010000)(2) = (10010100)(2) = 148

B = (148, 0, 0)

- I = 3, J = 4 => K = H(4) + J – I = 7 + 4 – 3 = 8

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 8

B1 = B1 or POS8 = (10010100)(2) or (00000001)(2) = (10010101)(2) = 149

B = (149, 0, 0)

- I = 4, J = 4 => K = H(4) + J – I = 7 + 4 – 4 = 7

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 7

B1 = B1 or POS7 = (10010101)(2) or (00000010)(2) = (10010111)(2) = 151

B = (151, 0, 0)

Element 3: equations 2 and 4

- I = 2, J = 2 => K = H(2) + J – I = 2 + 2 – 2 = 2

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 2

B1 = B1 or POS2 = (10010111)(2) or (01000000)(2) = (11010111)(2) = 215

B = (215, 0, 0)

- I = 2, J = 4 => K = H(4) + J – I = 7 + 4 – 2 = 9

E = [(K + 7) / 8] = 2, P = 8 – (E * 8 – K) = 1

B2 = B2 or POS2 = (00000000)(2) or (10000000)(2) = (10000000)(2) = 128

B = (215, 128, 0)

- I = 4, J = 4 => K = H(4) + J – I = 7 + 4 – 4 = 7

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 7

B1 = B1 or POS7 = (11010111)(2) or (00000010)(2) = (11010111)(2) = 215

B = (215, 128, 0)

Element 4: equations 1, 2 and 5

- I = 1, J = 1 => K = H(1) + J – I = 1 + 1 – 1 = 1

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 1

B1 = B1 or POS1 = (10010111)(2) or (10000000)(2) = (11110111)(2) = 247

B = (247, 128, 0)

- I = 1, J = 2 => K = H(2) + J – I = 2 + 2 – 1 = 3

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 3

B1 = B1 or POS3 = (10010111)(2) or (00100000)(2) = (11110111)(2) = 247

B = (247, 128, 0)

- I = 1, J = 5 => K = H(5) + J – I = 10 + 5 – 1 = 14

E = [(K + 7) / 8] = 2, P = 8 – (E * 8 – K) = 6

B2 = B2 or POS6 = (10000000)(2) or (00000100)(2) = (10000100)(2) = 132

B = (247, 132, 0)

- I = 2, J = 2 => K = H(2) + J – I = 2 + 2 – 2 = 2

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 2

B1 = B1 or POS2 = (10010111)(2) or (01000000)(2) = (11110111)(2) = 247

B = (247, 132, 0)

- I = 2, J = 5 => K = H(5) + J – I = 10 + 5 – 2 = 13

E = [(K + 7) / 8] = 2, P = 8 – (E * 8 – K) = 5

B2 = B2 or POS5 = (10000100)(2) or (00001000)(2) = (10001100)(2) = 140

B = (247, 140, 0)

- I = 5, J = 5 => K = H(5) + J – I = 10 + 5 – 5 = 10

E = [(K + 7) / 8] = 2, P = 8 – (E * 8 – K) = 2

B2 = B2 or POS2 = (10001100) (2) or (01000000) (2) = (11001100) (2) = 204

B = (247, 204, 0)

Element 5: equations 4 and 6

- I = 4, J = 4 => K = H(4) + J – I = 7 + 4 – 4 = 7

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 7

B1 = B1 or POS7 = (11110111) (2) or (00000010) (2) = (11110111) (2) = 247

B = (247, 204, 0)

- I = 4, J = 6 => K = H(6) + J – I = 15 + 6 – 4 = 17

E = [(K + 7) / 8] = 3, P = 8 – (E * 8 – K) = 1

B3 = B3 or POS1 = (00000000) (2) or (10000000) (2) = (10000000) (2) = 247

B = (247, 204, 128)

- I = 6, J = 6 => K = H(6) + J – I = 15 + 6 – 6 = 15

Dragoljub Stevanović et al.: IMPROVEMENT OF THE SPARSE MATRICES STORAGE ROUTINES…

94

E = [(K + 7) / 8] = 2, P = 8 – (E * 8 – K) = 7

B2 = B2 or POS7 = (11001100)(2) or (00000010) (2) = (11001110) (2) = 206

B = (247, 206, 128)

B = (247, 206, 128) = (11110111, 11001110, 10000000)

B(2) = 1, 11, 101, 111, 10011, 101, 0000000 split by columns.

Now that we have fully created array B we can create array of row indexes. The row index

array is of unknown size for now and is created dynamically.

- S = 0

- E = 1, P = 1, K = 1, C = 1

U = BK and POSP = (11110111)(2) and (10000000)(2) = (10000000)(2) = 128

S = S + 1 = 1, RS = H(C) + C – K = 1 + 1 – 1 = 1

R = (1)

- E = 1, P = 2, K = 2, C = 2

U = BK and POSP = (11110111)(2) and (01000000)(2) = (01000000)(2) = 64

S = S + 1 = 2, RS = H(C) + C – K = 2 + 2 – 2 = 2

R = (1, 2)

- E = 1, P = 3, K = 3, C = 2

U = BK and POSP = (11110111)(2) and (00100000)(2) = (00100000)(2) = 32

S = S + 1 = 3, RS = H(C) + C – K = 2 + 2 – 3 = 1

R = (1, 2, 1)

- E = 1, P = 4, K = 4, C = 3

U = BK and POSP = (11110111)(2) and (00010000)(2) = (00010000)(2) = 16

S = S + 1 = 4, RS = H(C) + C – K = 4 + 3 – 4 = 3

R = (1, 2, 1, 3)

- E = 1, P = 5, K = 5, C = 3

U = BK and POSP = (11110111)(2) and (00001000)(2) = (00000000)(2) = 0

R = (1, 2, 1, 3)

- E = 1, P = 6, K = 6, C = 3

U = BK and POSP = (11110111)(2) and (00000100)(2) = (00000100)(2) = 4

S = S + 1 = 5, RS = H(C) + C – K = 4 + 3 – 6 = 1

R = (1, 2, 1, 3, 1)

- E = 1, P = 7, K = 7, C = 4

U = BK and POSP = (11110111)(2) and (00000010)(2) = (00000010)(2) = 2

S = S + 1 = 6, RS = H(C) + C – K = 7 + 4 – 7 = 4

R = (1, 2, 1, 3, 1, 4)

- E = 1, P = 8, K = 8, C = 4

U = BK and POSP = (11110111)(2) and (00000001)(2) = (00000001)(2) = 1

S = S + 1 = 7, RS = H(C) + C – K = 7 + 4 – 8 = 3

R = (1, 2, 1, 3, 1, 4, 3)

- E = 2, P = 1, K = 9, C = 4

U = BK and POSP = (11001110)(2) and (10000000)(2) = (10000000)(2) = 128

S = S + 1 = 8, RS = H(C) + C – K = 7 + 4 – 9 = 2

R = (1, 2, 1, 3, 1, 4, 3, 2)

- E = 2, P = 2, K = 10, C = 5

U = BK and POSP = (11001110)(2) and (01000000)(2) = (01000000)(2) = 64

S = S + 1 = 9, RS = H(C) + C – K = 10 + 5 – 10 = 5

R = (1, 2, 1, 3, 1, 4, 3, 2, 5)

- E = 2, P = 3, K = 11, C = 5

U = BK and POSP = (11001110)(2) and (00100000)(2) = (00000000)(2) = 0

R = (1, 2, 1, 3, 1, 4, 3, 2, 5)

- E = 2, P = 4, K = 12, C = 5

U = BK and POSP = (11001110)(2) and (00010000)(2) = (00000000)(2) = 0

R = (1, 2, 1, 3, 1, 4, 3, 2, 5)

- E = 2, P = 5, K = 13, C = 5

Journal of the Serbian Society for Computational Mechanics / Vol. 15 / No. 1, 2021

95

New H row that contains information on starting index in the rows array can be created

alongside a row index array R or with the help of it after its creation because when a new column

starts relation RX > RX-1 is true and starts always with R1 = 1.

NH7 = (1, 2, 4, 6, 9, 12, 14)

Appendix C - indexing method example

The first thing to do in this method is to calculate columns density – number of non-zero elements

in each column above diagonal similar to how it was done with determination where non-zero

element is in dotting method but instead of marking element as non-zero increase column density.

For example:

1.

2.CDN = (0, 0, 0, 0, 0, 0)

3.Element 1: eq 1 and 3

- I = 1, J = 1, I ≤ J => CD(J) = CD(J) + 1

4.CDN = (1, 0, 0, 0, 0, 0)

- I = 1, J = 3, I ≤ J => CD(J) = CD(J) + 1

5.CDN = (1, 0, 1, 0, 0, 0)

- I = 3, J = 3, I ≤ J => CD(J) = CD(J) + 1

6.CDN = (1, 0, 2, 0, 0, 0)

7. Element 2: eq 3 and 4

- I = 3, J = 3, I ≤ J => CD(J) = CD(J) + 1

8.CDN = (1, 0, 3, 0, 0, 0)

- I = 3, J = 4, I ≤ J => CD(J) = CD(J) + 1

9.CDN = (1, 0, 3, 1, 0, 0)

- I = 4, J = 4, I ≤ J => CD(J) = CD(J) + 1

10.CDN = (1, 0, 3, 2, 0, 0)

11.Element 3: eq 2 and 4

- I = 2, J = 2, I ≤ J => CD(J) = CD(J) + 1

12.CDN = (1, 1, 3, 2, 0, 0)

- I = 2, J = 4, I ≤ J => CD(J) = CD(J) + 1

13.CDN = (1, 1, 3, 3, 0, 0)

- I = 4, J = 4, I ≤ J => CD(J) = CD(J) + 1

14.CDN = (1, 1, 3, 4, 0, 0)

U = BK and POSP = (11001110)(2) and (00001000)(2) = (00001000)(2) = 8

S = S + 1 = 10, RS = H(C) + C – K = 10 + 5 – 13 = 2

R = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2)

- E = 2, P = 6, K = 14, C = 5

U = BK and POSP = (11001110)(2) and (00000100)(2) = (00000100)(2) = 4

S = S + 1 = 11, RS = H(C) + C – K = 10 + 5 – 14 = 1

R = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1)

- E = 2, P = 7, K = 15, C = 6

U = BK and POSP = (11001110)(2) and (00000010)(2) = (00000010)(2) = 2

S = S + 1 = 12, RS = H(C) + C – K = 15 + 6 – 15 = 6

R = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1, 6)

- E = 2, P = 8, K = 16, C = 6

U = BK and POSP = (11001110)(2) and (00000001)(2) = (00000000)(2) = 0

R = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1, 6)

- E = 3, P = 1, K = 17, C = 6

U = BK and POSP = (10000000)(2) and (10000000)(2) = (10000000)(2) = 128

S = S + 1 = 12, RS = H(C) + C – K = 15 + 6 – 17 = 4

R = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1, 6, 4)

Dragoljub Stevanović et al.: IMPROVEMENT OF THE SPARSE MATRICES STORAGE ROUTINES…

96

15.

16.

17.Element 4: eq 1, 2 and 5

- I = 1, J = 1, I ≤ J => CD(J) = CD(J) + 1

18.CDN = (2, 1, 3, 4, 0, 0)

- I = 1, J = 2, I ≤ J => CD(J) = CD(J) + 1

19.CDN = (2, 2, 3, 4, 0, 0)

- I = 1, J = 5, I ≤ J => CD(J) = CD(J) + 1

20.CDN = (2, 2, 3, 4, 1, 0)

- I = 2, J = 2, I ≤ J => CD(J) = CD(J) + 1

21.CDN = (2, 3, 3, 4, 1, 0)

- I = 2, J = 5, I ≤ J => CD(J) = CD(J) + 1

22.CDN = (2, 3, 3, 4, 2, 0)

- I = 5, J = 5, I ≤ J => CD(J) = CD(J) + 1

23.CDN = (2, 3, 3, 4, 3, 0)

24.Element 5: eq 4 and 6

- I = 4, J = 4, I ≤ J => CD(J) = CD(J) + 1

25.CDN = (2, 3, 3, 5, 3, 0)

- I = 4, J = 6, I ≤ J => CD(J) = CD(J) + 1

26.CDN = (2, 3, 3, 5, 3, 1)

- I = 6, J = 6, I ≤ J => CD(J) = CD(J) + 1

CDN = (2, 3, 3, 5, 3, 2)

Now we have column density, but in this array there is some issue – CD(I) cannot be greater

than I, so those elements will be decreased, and also some column density shows it is greater than

actual density. This occurs due to two (2) reasons.

The first is that some equations are calculated several times because of its occurrence in

several elements, this can be annulled by starting CD with 1 instead of 0 and increase only for I

<> J.

The second reason is that in real examples some group of equations appear in several

elements. This error cannot be annulled because in real problems we do not know how many of

those groups occur and in what elements.

After reduction column density is: CDN = (1, 2, 3, 4, 3, 2).

Now we create a new temporary HN+1 array with following rules:

H(1) = 1 and H(i+1) = H(i) + CD(i), for i from 1 to N.

Array H has the following values: HN+1 = (1, 2, 4, 7, 11, 14, 16).

Now that we know the maximum possible length (H(N + 1) - 1 = 15) of non-zero elements

in UTM we can create array R of row indexes. The first thing to do is to assign diagonal elements

so those elements can be skipped while assigning values of row indexes. This is achieved with

formula R(H(I)) = I, for each I between 1 and N. So at beginning we have:

R15 = (1, 2, 0, 3, 0, 0, 4, 0, 0, 0, 5, 0, 0, 6, 0)

With similar process as for creating column density we create row indexes:

Journal of the Serbian Society for Computational Mechanics / Vol. 15 / No. 1, 2021

97

27.Element 1: eq 1 and 3:

- I = 1 and J = 1, I=J – do nothing

- I = 1 and J = 3, I < J => insert row index I in column J

28.R15 = (1, 2, 0, 3, 1, 0, 4, 0, 0, 0, 5, 0, 0, 6, 0)

- I = 3 and J = 3, I=J – do nothing

29.

30.Element 2: eq 3 and 4:

- I = 3 and J = 3, I=J – do nothing

- I = 3 and J = 4, I < J => insert row index I in column J

31.R15 = (1, 2, 0, 3, 1, 0, 4, 3, 0, 0, 5, 0, 0, 6, 0)

- I = 4 and J = 4, I=J – do nothing

32.Element 3: eq 2 and 4:

- I = 2 and J = 2, I=J – do nothing

- I = 2 and J = 4, I < J => insert row index I in column J

33.R15 = (1, 2, 0, 3, 1, 0, 4, 3, 2, 0, 5, 0, 0, 6, 0)

- I = 4 and J = 4, I=J – do nothing

34.Element 4: eq 1, 2 and 5:

- I = 1 and J = 1, I=J – do nothing

- I = 1 and J = 2, I < J => insert row index I in column J

35.R15 = (1, 2, 1, 3, 1, 0, 4, 3, 2, 0, 5, 0, 0, 6, 0)

- I = 1 and J = 5, I < J => insert row index I in column J

36.R15 = (1, 2, 1, 3, 1, 0, 4, 3, 2, 0, 5, 1, 0, 6, 0)

- I = 2 and J = 2, I=J – do nothing

- I = 2 and J = 5, I < J => insert row index I in column J

37.R15 = (1, 2, 1, 3, 1, 0, 4, 3, 2, 0, 5, 1, 2, 6, 0)

- I = 5 and J = 5, I=J – do nothing

38.Element 3: eq 4 and 6:

- I = 4 and J = 4, I=J – do nothing

- I = 4 and J = 6, I < J => insert row index I in column J

39.R15 = (1, 2, 1, 3, 1, 0, 4, 3, 2, 0, 5, 1, 2, 6, 4)

I = 6 and J = 6, I=J – do nothing

Now we have completed array R, but it contains some 0 elements that should be removed,

and it is not sorted as it was with dotting method. The fastest way to do this is with the counting

sort, so after removing of 0 elements we have new values for array R and H:

R13 = (1, 2, 1, 3, 1, 4, 3, 2, 5, 1, 2, 6, 4)

H7 = (1, 2, 4, 6, 9, 12, 14)

If sorted:

R13 = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1, 6, 4)

