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Abstract 

Efficient memory handling is one of the key issues that engineers and programmers face in 

developing software for numerical analysis such as the Finite Element Method. This method 

operates on huge matrices that have a large number of zero coefficients which waste memory, so 

it is necessary to save it and to work only with non-zero coefficients using so called "SPARSE" 

matrices. Analysis of two methods used for the improvement of "SPARSE" matrix creation is 

presented in this paper and their pseudo code is given. Comparison is made on a wide range of 

problem sizes. Results show that "indexing" method is superior to "dotting" method both in 

memory usage and in elapsed time.  

Keywords: Memory usage optimization, Matrix handling, SPARSE matrix, Matrix notation, 

Finite Element Method 

1. Introduction 

The Numerical analysis of the ever increasing and more complex problems presents challenges 

for engineers and software developers primarily in the field of optimal utilization of the large 

number of processors and storage of required data in the memory. Increasing the size of the model 

leads to an exponential increase of the required memory, sometimes even beyond the available 

amount on brand new machines. Therefore, it is necessary to optimally store only the necessary 

data. This problem will be addressed in this paper. Solving the system of equations (for any kind 

of the problem) can be written in the matrix form  A x r , where A  represents the coefficient 

matrix, vector r  is a vector of solutions and x  is a vector of unknown values. 

In real life problems there are a large number of coefficients that are equal to zero that 

unnecessarily occupy memory position according to Gilbert et al. (1992), and therefore engineers 

and programmers sought ways to avoid the storage of these coefficients using various approaches 

(Amestoy et al. 2002), (Armstrong et al. 2010) and (Mofrad et al. 2013). In this paper, we will 

focus on one of the most popular numerical methods - Finite Element Method (FEM), described 

in detail by Bathe (2007), and ways to improve its matrix handling in terms of memory 

requirements and computer processing time. The main motive to investigate this issue, was an 

analysis of dams, which required a large number of elements to accurately represent dam as well 
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as surrounding area which resulted in a model which was too big to handle with the Finite Element 

solver. In this paper, we show two approaches that we tried out in FEM solver in order to make 

a large dam model more memory efficient, so it could be analyzed using the only computer RAM 

memory (64 GB) without a need for additional memory allocation on hard drive which would 

greatly increase analysis time. 

According to Bathe (2007), in the FEM coefficient matrix A  represents the relation between 

stress and strain and is called "stiffness matrix". This term is much older than FEM itself, with 

first mentioning in two papers by Duncan and Collar (1934), (1935) regarding a method called 

Matrix Structural Analysis (MSA), which, according to Felippa (2000) is a discrete, analog direct 

ancestor of FEM. This method was used in aero-elasticity, as the airplane maximum speeds 

increased, so did the wing flutter (Felippa 2000). FEM Analysis is characterized by problems 

which have symmetrical model, and very often symmetrical stiffness matrix. For symmetric 

stiffness matrices following statement is true jiaa jiij ,, . On the other hand, symmetric 

models are defined as those systems in which, if any element B affects element C then at the same 

time element C affects element B. Effect of B to C and effect of C to B can be with the same or 

different intensity 
ij ji ij ji

a a a a   . According to Felippa (2000), aero-elastic analysis 

stiffness matrices are generally unsymmetrical, being the sum of a symmetric elastic stiffness and 

an unsymmetrical aerodynamic stiffness.  

In the FEM evolution, according to Felippa (2000), the next big step is a Direct Stiffness 

Method introduced by Turner (1959) featuring the assembly procedure, in which the stiffness 

matrix for the whole model is generated by direct addition of element matrices.  

Considering the symmetric matrix with large number of zero coefficients, there are several 

ways to save memory, out of which SPARSE matrices are the most effective and commonly 

implemented solution, which were developed by Wilson (1963) for his PhD. dissertation.  

Algorithms and matrix operations developed for regular, dense matrices are slow and 

inefficient when applied to large SPARSE matrices, because a lot of processing time and memory 

are wasted on the zero elements; hence, over the years, specialized solvers/libraries were 

developed for these problems. In our PAK program for FEM analysis (Živković 2005), we use 

MUltifrontal Massively Parallel sparse direct Solver (MUMPS) which, according to Amestoy et 

al. (2001), represents the state of the art solution for solving SPARSE matrix problems. Also, 

according to Amestoy et al. (2003) using non-blocking communication primitives improves the 

performance and robustness in comparison to the simple Message Passing Interface (MPI) point-

to-point communication primitives. MUMPS requires information where the non-zero members 

are located, a task that can be accomplished in several ways.  

Traditional SPARSE matrix storage formats are: Coordinate Format (COO), Compressed 

Sparse Column (CSC), Compressed Sparse Row (CSR) and Blocked Compressed Sparse Row 

(BCSR). Armstrong et al. (2010) used these formats, and focused their research on development 

of algorithm for optimum format selection based on runtime parameters. More recently, Borštnik 

et al. (2014) developed Distributed Block-Compressed SPARSE row library.  

Over the years, there were numerous approaches to the optimization of SPARSE matrix 

assembly and solving. For example, Gilbert et al. (1992) used pattern recognition for 

identification of recurring blocks of non-zero elements, while Romero and Zapata (1995) used 

storage by row of blocks implemented in their sparse matrix vector multiplication solution for 

distributed memory multiprocessors. Kaveh and Ghaderi (1997) dealt with ill-conditioned 

stiffness matrices that had large off-diagonal entries, which increased sparsity of the columns, 

while Adle et al. (2005) analyzed automatic parallelization of sparse matrix computations. Pichel 

et al. (2012) evaluated some of the most successful reordering techniques and tested a number of 
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sparse matrix storage formats. Mofrad et al. (2013) used bit flipping algorithm to solve sparse 

systems of linear equations. As the hardware progress shifted more to the field of graphics cards, 

researchers also begun focusing more on GPU solvers rather than the CPU, like Oyarzun et al. 

(2014) for instance, who researched MPI-CUDA sparse matrix–vector multiplication using 

hybrid parallelization strategy, or Ashari et al. (2015) who developed a novel model-driven 

blocking strategy for load balanced sparse matrix–vector multiplication on GPUs, that reduces 

thread divergence and improves the load balance. However, since the PAK program (Živković 

2005) solves balance equations on the CPU, we will focus on the state of the art for the traditional 

CPU implementation of SPARSE matrix computation.  

According to Hiemstra et al. (2019), traditional FEM solvers have element subroutines that 

generate the specific element matrices, that are afterwards assembled in the system stiffness 

matrix, but, Hiemstra et al. (2019) have also shown that row-by-row or column-by-column 

assembly of the stiffness matrix is far superior to the element by element implementation. 

However, Hiemstra et al. (2019) also concluded that these new approaches would require a lot of 

FEM subroutines to be completely rewritten and that many quantities need to be precomputed for 

the use in the sum factorization which is the crucial part of their newly proposed algorithms. 

Implementation and testing of these new algorithms in PAK solver may be the topic of our further 

research, and comparison/combination with our own solutions could lead to further 

improvements of matrix assembly subroutines. 

In this paper, we present two improved variants of element by element matrix assembly, 

"dotting" and "indexing", which can be selected for any particular problem or any SPARSE 

storage format. These enhanced methods main feature is storing of Boolean True/False values 

within the signed or unsigned integers, thus greatly reducing required memory for the matrix 

assembly. 

Both methods are described and compared and pseudo codes which demonstrate the 

functionality of these methods in finding row indexes are given. Methods do not depend on 

whether the model is symmetric or has symmetric matrices because the arrays at the same time 

indicate the column of the lower triangular matrix. Examples of the "dotting" and "indexing" 

procedures used on a showcase matrix are given in appendices A, B and C. 

2. Methods 

The issue of SPARSE matrix implementation in numerical analysis of the large problems that we 

investigated in this paper is a problem of choosing appropriate method for determining the row 

index of the members, which would not take a lot of memory space. All standard (formats) 

notifications according to Armstrong et al. (2010) use 3 arrays – row Rk, column Ck and value 

Vk, while some like Kojić et al. (1998) use help auxiliary array Hn for faster search of elements 

in those arrays. The length of three standard arrays is equal to the number of nonzero elements in 

the matrix, while the length of the helper auxiliary array is equal to size of matrix+1. An example 

of the regular full matrix and its equivalent SPARSE matrix representation is given in Appendix 

A. In the following sections two methods for the SPARSE matrix generation that we used are 

described in detail. 

2.1 Dotting method 

This method is based on a concept that we can know positions of non-zero elements in stiffness 

matrix even before that matrix is created. This is achieved by representing every matrix member 

with True or False, with the value being evaluated based on the fact that a particular member 

holds non-zero value or not. Because the stiffness matrix is very large, we used shortened 
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equivalents - Upper Triangular Matrix with diagonal elements (UTM) or contour matrix (all 

elements from the diagonal element to furthest nonzero element in row/column). Because many 

programming languages (FORTRAN, for example) use bytes for storing Boolean True/False 

values, we can reduce the memory requirements of True/False matrix storage if we use integers 

instead of Boolean values. This way every integer holds the values for 7 or 8 Boolean values, 

depending on chosen signed or unsigned integer type. This procedure (using signed and unsigned 

integers) is shown in Fig. 1. 

 

Fig. 1. Graphical representation of dotting process, for matrix given in Appendix A. (a) Storing 

True/False values in signed integers; (b) Storing True/False values in unsigned integers; (c) 

diagonal element indexes. 

As can be seen from Fig. 1, Boolean arrays for signed (a), or unsigned integer type (b), are 

used to store information on whether the certain element of the matrix has a non-zero value or 

not. Array (c) contains the serial numbers of the elements that are the first in the appropriate 

column and which are the diagonal elements in UTM. Values in arrays (a) or (b) are saved and 

read using the Boolean algebra. At the beginning, all of the values in array (a) or (b) are 0. Then 

in order to enter the value TRUE (1) to the corresponding bit operation OR ( ) is used on 

corresponding byte in (a) or (b) array and Boolean value of the position of the particular bit. For 

reading the value TRUE from the appropriate position in Boolean array operation AND ( ) is 

used in the same way as it is done for saving in the appropriate array position. 

For the following pseudo code that describes the dotting method, a more detailed description 

of the process of forming Boolean (integer) array is given in Appendix B. 

Dotting method pseudo code: 
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For k = 1 to number of elements 

 Load equations array // element influence to equations 

 For e = 1 to element size 

  For m = e + 1 to element size 

   I = equations(e) // column 

   J = equations(m) // row 

   If I >= J then // upper triangular matrix 

    KK = c(I) + I - J 

    Elem = (KK + D - 1) div D 

    Pos = D - (Elem * D – KK) 

    SET_DOT(Elem, Pos) 

   End if 

  Next m 

 Next e 

Next k 

K = 0 

E = 0 

col = 1 

S = 1 

For I = 1 to size of TEMP array 

 For J = 1 to D 

  K = K+1 

  If GET_DOT(I,J) = 1 or K = C(col) then 

   E = E + 1 

   If K = C(col) then 

    Row(E) = col 

    C(col) = E 

    S = K 

   Else 

    Row(E) = col + S – K 

   End if 

  End if 

 Next J 

Next I 

C(col+1) = E + 1 

For example, the first bit in a byte is used to store information (in array (a) or (b) in Fig. 1.) 

if the corresponding element of the matrix is non-zero element using the number 128 in binary 

notation (10000000)(2) for (b) and 64 in binary notation (01000000)(2)  for (a). For the second bit 

64 is used for (b) and 32 in binary notation (00100000)(2) for (a) and so on. For 7th bit number 2 

is used in binary notation (00000010)(2) for (b) or 1 in binary notation (00000001)(2) for array (a). 

For unsigned array (b) for 8th bit number 1 (00000001)(2) is used. 

Dotting method requires the auxiliary array to be created with information, whether a 

particular place holds a non-zero element ((a) or (b) in Fig. 1). This is done in the first loop in 

pseudo code. The size of auxiliary array is determined, using the size of UTM or the size of 

contour matrix. In the case of UTM, it is relatively easy to determine the position of element Ax 

= Ai,j when x = i * (i - 1) + j is true. In the case of contour matrix, which is smaller than a UTM, 

there are some challenges in the determination of the correct position of element in that array, 

and because of these challenges we use a helper array of starting row/column index in auxiliary 

array. Also, there can be differences in size of contour matrix if elements of the matrix are packed 

row by row or column by column from stiffness matrix. Creation of a row index array from 

auxiliary array is shown in the second loop of pseudo code. Depending on which method is used 

in the subroutines for writing and reading value of 1 (logical true) into auxiliary array, significant 

difference in consumed time may occur. The row index array is formed by taking each member 

of the auxiliary array and calculating the row index if the member is equal to 1.  

Element and a member of the auxiliary array are two different concepts. For example, if you 

access 893rd member, it means accessing 128th element and the 4th bit of that element (values 
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of variables Elelm and Pos in pseudocode respectively). Or, in other words, 128th element carries 

information about the members 890, 891, 892, 893, 894, 895 and 896. After the auxiliary array 

is fully assigned, we can create an index array which is created dynamically by accessing each 

member of the auxiliary array continuously (Fig. 1). 

2.1 Indexing method 

This method as well as dotting method is based on a concept that we know in advance where the 

non-zero elements in the stiffness matrix are. Unlike dotting method that checks every position 

in the stiffness matrix, this method takes a different approach. First the possible number of non-

zero members in each column/row is determined. Once this number is determined, this method 

goes through all the possible positions where non-zero elements are and places corresponding 

indexes into the auxiliary index array. Because the same non-zero member may appear multiple 

times for indexing, it means that auxiliary index array contains the number of extra indexes of 

non-existent members. In order to have a compact index array, the auxiliary index array is reduced 

by removing non-existent indexes. Since the non-existent members are located at the end of each 

block of the index in the same column/row this means that this array does not have to be 

destroyed, but it will become an array of row/column indexes. Hence, the total memory required 

for the determination of the index array is equal to the memory usage of the auxiliary index array.  

Indexing method pseudo code: 

For k=1 to number of equations + 1 

С(k)=1 

Next k 

For k = 1 to number of elements 

 Load equations array // element influence to equations 

 For e = 1 to size of element 

  I= equations(e) // column 

  J= equations(k) // row 

  If I>J then 

   С(I) = С(I)+1  

  End if 

 Next e 

Next k 

R(1) = 1 

For k = 2 to number of equations + 1 

      If C(k) > k then C(k) = k 

 С(k) = С(k-1) + С(k) 

 R(C(k)) = k 

Next k 

N = C(number of equations + 1) - 1 

For k = 1 to number of elements 

 Load equations array // element influence to equations 

 For e = 1 to size of element 

  I = equations(e) // column 

  J = equations(k) // row 

  If I>J then 

   P = C(I) + 1  

   While (R(P) <> J) and (R(P) > 0 ) P = P + 1 

   R(P) = J 

  End if 

 Next e 

Next k 
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k = 2 

While ((R(C(k+1)-1) > 0) and (k< number of equations)) do k = k + 1 

p = C(k) + 1 

while (R(p) > 0) do p = p + 1 

while k < number of equations 

 k = k + 1 

 temp = p 

 for i = C(k) to C(k+1) - 1 do 

   if R(i) = 0 then exit loop 

   R(p) = R(i) 

   p = p + 1 

 next i 

 C(k) = temp 

End while 

Additional usage of memory by the auxiliary index array can be neglected for large examples, 

because the number of non-existing indexes will be less than the number of non-zero elements 

and hence the required memory to store the stiffness matrix will take the same amount of memory 

that is used for the storage of non-existing elements in the auxiliary index array. The indexing 

method, which is shown in the pseudo code, uses only addition and subtraction as logical 

operations in comparison to dotting method, which was discussed in the previous section. 

The first loop counts diagonal elements of the matrix. In the second loop theoretical maximal 

number of non-zero elements above the main diagonal is determined. In the third loop the array 

that contains starting columns in row index array is created. N represents the number of non-zero 

elements in the matrix. In the fourth loop row index array is filled. After forth loop it is 

represented shortening of a row index array.  

For the pseudo code that describes the indexing method, a more detailed description of the 

process of forming Boolean (integer) array is given in Appendix C. 

3. Results and Discussion 

Regardless of whether the stiffness matrix is symmetric or not, the amount of memory that is 

required for an array of row indexes is the same. On the other hand, memory requirements and 

time consumption for the search for the index array depend on the method used. In both methods, 

the three arrays (C, M, and R) are used.  

Array R contains row indexes grouped by column, while array C contains starting indexes of 

the corresponding column blocks in array R. Array M contains stiffness matrix elements and 

depending on whether it is symmetrical or not its length is equal to the length of the array R or 

twice the length. 

In the case when the stiffness matrix is non-symmetric, array M occupies twice the size of 

an array R because storage of another set of diagonal elements is redundant and hence the 

utilization of memory is reduced. This issue can be neglected because of the ease of access to 

members that are located below the main diagonal. 

For each x belonging to [Ci, Ci+1], it applies: j = Rx, Ai,j = Mx. In the case of the symmetrical 

model it applies Aj,i = Mx, while for the unsymmetrical model it applies Aj,i = Mx+N, where N is 

the total number of non-zero elements that are found in the stiffness matrix on and above the main 

diagonal. In order to have detailed, objective results to compare these two methods implemented 

in PAK solver over a wide range of model sizes, we created a simple 1m3 cube that was 

constrained at the bottom and with prescribed displacement at the top. This cube is then divided 
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into finite elements with increasing mesh density with number of elements along the edge ranging 

from 1 to 50 as it's shown in Table 1. 
 

Model size 

 

Number of 

equations 

The number of 

"contour" elements 

Number of 

non-zero 

elements in UTM 

Number of elements in 

the  auxiliary array 

needed for indexing 

Number of 

SPARSE element in 

regards to the number of 

"contour" elements 

Cube 1 12 78 78 78 100.000% 

Cube 5 540 74,982 14,670 28,830 19.565% 

Cube 10 3,630 2,669,717 120,390 254,310 4.509% 

Cube 15 11,520 21,903,952 409,410 885,690 1.869% 

Cube 20 26,460 96,760,437 973,980 2,132,220 1.007% 

Cube 25 50,700 304,584,422 1,906,350 4,203,150 0.626% 

Cube 30 86,490 774,583,657 3,298,770 7,307,730 0.426% 

Cube 35 136,080 1,701,328,392 5,243,490 11,655,210 0.308% 

Cube 40 201,720 3,358,251,377 7,832,760 17,454,840 0.233% 

Cube 45 285,660 6,111,147,862 11,158,830 24,915,870 0.183% 

Cube 50 390,150 10,431,675,597 15,313,950 34,247,550 0.147% 

Table 1. Dependence between number of elements in stiffness matrix and number of elements 

in cube model. 

As the size of the model increases, the number of contour elements also increases, as a power 

function with power in the range of 1.75 – 1.81.  The number of non-zero elements also increases, 

but not as fast as a number of contour elements, so the share of non-zero elements in total number 

of contour elements decreases, which means that the matrix is getting more and more sparse, 

which is shown in Table 1. 

The superiority of indexing method over dotting method is more and more evident as the size 

of the model increases, both in terms of the required memory and in terms of the elapsed time, 

which is shown in Table 2. 
 

Model size 

 

Required memory Elapsed time [s] 

Dotting Indexing Unit Size Dotting Indexing 

Cube 1 0.37 0.36 kB 0.001 0.001 

Cube 5 305.47 114.73 kB 0.005 0.009 

Cube 10 10.56 0.98 MB 0.080 0.023 

Cube 15 86.59 3.42 MB 0.415 0.080 

Cube 20 382.40 8.23 MB 1.793 0.190 

Cube 25 1,203.59 16.23 MB 5.586 0.372 

Cube 30 3,060.66 28.21 MB 14.135 0.644 

Cube 35 6,722.36 44.98 MB 39.954 1.007 

Cube 40 13,269.01 67.35 MB 61.299 1.525 

Cube 45 24,145.85 96.14 MB 111.377 2.168 

Cube 50 41,216.38 132.13 MB 189.436 3.221 

Table 2. Required memory and elapsed time for creating an index array. 

Although the "dotting" method has only two steps, while "indexing" method has four, it can 

be seen that the "indexing" method is much faster, because in the "dotting" method we used 

multiplication, division and modulus which are the slowest basic mathematical operations that 

are executed by a computer, while "indexing" does not utilize these operations. 

The advantages of "indexing" method can be clearly seen in Fig. 2. and 3. which show 

elapsed time and memory usage respectively. 
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Fig. 2. Comparison of elapsed time of dotting and indexing methods. 

 

Fig. 3. Graphical Comparison of total memory required to store SPARSE matrix relative to the 

amount of memory required or the determination of the index array, for indexing and dotting 

methods. 
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4. Conclusions 

Due to the large number of zero elements in the matrices in numerical methods such as the Finite 

Element Method, it is necessary to pay special attention to the processes of their storage and 

usage. The best solution is to save only non-zero elements in specialized SPARSE matrices using 

one of the several storage formats. This process must be efficient in terms of elapsed time and 

used memory. Two methods, "dotting" and "indexing" are explained and compared on a wide 

range of model sizes. The main idea behind "dotting" method was to save memory using bits (or 

so called dots) to mark positions of non-zero elements while determining arrays that store 

SPARSE matrix. This method needed to overcome imperfection of bit data saving in many 

programming languages using bytes which resulted in very inefficient memory usage. Another 

drawback of "dotting" method was the usage of multiplication, division and modulus which are 

the slowest basic mathematical operations. 

The main disadvantage of the "indexing" method is that it has four steps, in comparison to 

the "dotting" method which has only two steps. But on the other hand, due to utilization of 

mentioned slow mathematical operations, "dotting" is inferior to "indexing" method regarding 

consumed time. As for the memory usage, "indexing" method also outperforms "dotting" method 

especially in large examples. The only advantage of "dotting" in terms of memory is with a model 

size 2 as it can be seen in Figure 2, but this can be neglected because of generally low memory 

usage. 

This paper showed two diverse methods for SPARSE matrix creation and it showed the way 

to implement both methods. It is shown that indexing method performs better in large examples. 

This proposed approach can be very helpful in the implementation of software based on Finite 

Element Method, because it can help reduce the execution time and the utilized amount of 

memory. That way it would be possible to perform simulations with larger number of nodes and 

more complex geometries, that was either not possible or very time and memory consuming 

without the proposed approach. 
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Appendix A - saving notifications of sparse matrix 

For example, matrix is defined as AN, N = [(15, 13, 7, 0, 8, 0), (13, 1, 0, 2, 7, 0), (7, 0, 5, 3, 0, 0), 

(0, 2, 3, 9, 0, 8), (8, 7, 0, 0, 11, 0), (0, 0, 0, 8, 0, 15)], N = 6. 

For this matrix values of row Rk, column Ck and Vk, as well as auxiliary array Hn are: 

RK = (1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6), K = 20 

CK = (1, 2, 3, 5, 1, 2, 4, 5, 1, 3, 4, 2, 3, 4, 6, 1, 2, 5, 4, 6) 

VK = (15, 13, 7, 8, 13, 1, 2, 7, 7, 5, 3, 2, 3, 9, 8, 8, 7, 11, 8, 15) 

HN+1 = (1, 5, 9, 12, 16, 19, 21), H(N+1) = K + 1 

For all values for I=H(P) to H(P+1)-1 R(I) = P 

When there is symmetric matrix some notifications save only upper/lower triangular matrix. For 

this matrix those arrays have values: 

RCK = (1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6), K = 13 

CRK = (1, 2, 3, 5, 2, 4, 5, 3, 4, 4, 6, 5, 6) 

VK = (15, 13, 7, 8, 1, 2, 7, 5, 3, 9, 8, 11, 15) 

HN+1 = (1, 5, 8, 10, 12, 13, 14), H(N+1) = K + 1 
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In PAK software we used short symmetric notation for both symmetric and non-symmetric 

matrices. When saving non-symmetric matrix values array is twice longer than rows / columns 

array. That way values array has N more values than standard notifications, but memory is saved 

because we do not save whole row /column arrays. 

In our notation for this matrix we have these arrays: 

HN+1 = (1, 2, 4, 6, 9, 12, 14), H(N+1) = K + 1 

CRK = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1, 6, 4), K = 13 

VK = (15, 1, 13, 5, 7, 9, 3, 2, 11, 7, 8, 15, 8) 

For the purpose of explaining non-symmetric matrix saving, we will assume that the values in the 

lower triangular matrix are different than in the upper triangular matrix (Aij != Aji) even they are 

same in this example. 

HK = (1, 2, 4, 6, 9, 12, 14), H(N+1) = K + 1 

CRK = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1, 6, 4), K = 13 

V2K = (15, 1, 13, 5, 7, 9, 3, 2, 11, 7, 8, 15, 8, 0, 0, 13, 0, 7, 0, 3, 2, 0, 7, 8, 0, 8) 

To know the position of element Vp, where p is greater than K column is the same as a row of 

element p-K (RCp = CRp-K) and row is the same as the column of element p-K (C, HC < p-K and 

HC+1 > p-K). Zeroes in V2K array are in positions of diagonal elements and these too can be 

omitted which would increase memory efficiency, but on the down side this would cause less 

efficiency in the solving of the problem because more mathematical operations would be needed 

to access elements below the diagonal elements. 

Appendix B - forming of the auxiliary Boolean array 

Let's assume that elements in the example matrix from Appendix A influence certain equations 

Element 1 equations (1, 3) 

Element 2 equations (3, 4) 

Element 3 equations (2, 4) 

Element 4 equations (1, 2, 5) 

Element 5 equations (4, 6) 

HN+1 = (1, 2, 4, 7, 10, 15, 18) 

For dotting method, we will use the example using unsigned type to store the Boolean array. 

Dotting method process: 

B = (0, 0, 0) // array b on Fig 1. That contains 3 elements 

Element 1: equations 1 and 3: 

- I = 1, J = 1 => K = H(1) + J – I = 1 + 1 – 1 = 1 

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 1 

B1 = B1 or POS1 = (00000000)(2) or (10000000)(2) = (10000000)(2) = 128 

B = (128, 0, 0) 

- I = 1, J = 3 => K = H(3) + J – I = 4 + 3 – 1 = 6 

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 6 

B1 = B1 or POS6 = (10000000)(2) or (00000100)(2) = (10000100)(2) = 132 

B = (132, 0, 0) 

- I = 3, J = 3 => K = H(3) + J – I = 4 + 3 – 3 = 4 

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 4 

B1 = B1 or POS4 = (10000100)(2) or (00010000)(2) = (10010100)(2) = 148 

B = (148, 0, 0) 
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Element 2: equations 3 and 4 

- I = 3, J = 3 => K = H(3) + J – I = 4 + 3 – 3 = 4 

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 4 

B1 = B1 or POS4 = (10010100)(2) or (00010000)(2) = (10010100)(2) = 148 

B = (148, 0, 0) 

- I = 3, J = 4 => K = H(4) + J – I = 7 + 4 – 3 = 8 

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 8 

B1 = B1 or POS8 = (10010100)(2) or (00000001)(2) = (10010101)(2) = 149 

B = (149, 0, 0) 

- I = 4, J = 4 => K = H(4) + J – I = 7 + 4 – 4 = 7 

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 7 

B1 = B1 or POS7 = (10010101)(2) or (00000010)(2) = (10010111)(2) = 151 

B = (151, 0, 0) 

Element 3: equations 2 and 4 

- I = 2, J = 2 => K = H(2) + J – I = 2 + 2 – 2 = 2 

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 2 

B1 = B1 or POS2 = (10010111)(2) or (01000000)(2) = (11010111)(2) = 215 

B = (215, 0, 0) 

- I = 2, J = 4 => K = H(4) + J – I = 7 + 4 – 2 = 9 

E = [(K + 7) / 8] = 2, P = 8 – (E * 8 – K) = 1 

B2 = B2 or POS2 = (00000000)(2) or (10000000)(2) = (10000000)(2) = 128 

B = (215, 128, 0) 

- I = 4, J = 4 => K = H(4) + J – I = 7 + 4 – 4 = 7 

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 7 

B1 = B1 or POS7 = (11010111)(2) or (00000010)(2) = (11010111)(2) = 215 

B = (215, 128, 0) 

Element 4: equations 1, 2 and 5 

- I = 1, J = 1 => K = H(1) + J – I = 1 + 1 – 1 = 1 

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 1 

B1 = B1 or POS1 = (10010111)(2) or (10000000)(2) = (11110111)(2) = 247 

B = (247, 128, 0) 

- I = 1, J = 2 => K = H(2) + J – I = 2 + 2 – 1 = 3 

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 3 

B1 = B1 or POS3 = (10010111)(2) or (00100000)(2) = (11110111)(2) = 247 

B = (247, 128, 0) 

- I = 1, J = 5 => K = H(5) + J – I = 10 + 5 – 1 = 14 

E = [(K + 7) / 8] = 2, P = 8 – (E * 8 – K) = 6 

B2 = B2 or POS6 = (10000000)(2) or (00000100)(2) = (10000100)(2) = 132 

B = (247, 132, 0) 

- I = 2, J = 2 => K = H(2) + J – I = 2 + 2 – 2 = 2 

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 2 

B1 = B1 or POS2 = (10010111)(2) or (01000000)(2) = (11110111)(2) = 247 

B = (247, 132, 0) 

- I = 2, J = 5 => K = H(5) + J – I = 10 + 5 – 2 = 13 

E = [(K + 7) / 8] = 2, P = 8 – (E * 8 – K) = 5 

B2 = B2 or POS5 = (10000100)(2) or (00001000)(2) = (10001100)(2) = 140 

B = (247, 140, 0) 

- I = 5, J = 5 => K = H(5) + J – I = 10 + 5 – 5 = 10 

E = [(K + 7) / 8] = 2, P = 8 – (E * 8 – K) = 2 

B2 = B2 or POS2 = (10001100) (2) or (01000000) (2) = (11001100) (2) = 204 

B = (247, 204, 0) 

Element 5: equations 4 and 6 

- I = 4, J = 4 => K = H(4) + J – I = 7 + 4 – 4 = 7 

E = [(K + 7) / 8] = 1, P = 8 – (E * 8 – K) = 7 

B1 = B1 or POS7 = (11110111) (2) or (00000010) (2) = (11110111) (2) = 247 

B = (247, 204, 0) 

- I = 4, J = 6 => K = H(6) + J – I = 15 + 6 – 4 = 17 

E = [(K + 7) / 8] = 3, P = 8 – (E * 8 – K) = 1 

B3 = B3 or POS1 = (00000000) (2) or (10000000) (2) = (10000000) (2) = 247 

B = (247, 204, 128) 

- I = 6, J = 6 => K = H(6) + J – I = 15 + 6 – 6 = 15 
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E = [(K + 7) / 8] = 2, P = 8 – (E * 8 – K) = 7 

B2 = B2 or POS7 = (11001100)(2) or (00000010) (2) = (11001110) (2) = 206 

B = (247, 206, 128) 

 

B = (247, 206, 128) = (11110111, 11001110, 10000000) 

B(2) = 1, 11, 101, 111, 10011, 101, 0000000 split by columns. 

 

Now that we have fully created array B we can create array of row indexes. The row index 

array is of unknown size for now and is created dynamically.  

- S = 0 

- E = 1, P = 1, K = 1, C = 1 

U = BK and POSP = (11110111)(2) and (10000000)(2) = (10000000)(2) = 128 

S = S + 1 = 1, RS = H(C) + C – K = 1 + 1 – 1 = 1 

R = (1) 

- E = 1, P = 2, K = 2, C = 2 

U = BK and POSP = (11110111)(2) and (01000000)(2) = (01000000)(2) = 64 

S = S + 1 = 2, RS = H(C) + C – K = 2 + 2 – 2 = 2 

R = (1, 2) 

- E = 1, P = 3, K = 3, C = 2 

U = BK and POSP = (11110111)(2) and (00100000)(2) = (00100000)(2) = 32 

S = S + 1 = 3, RS = H(C) + C – K = 2 + 2 – 3 = 1 

R = (1, 2, 1) 

- E = 1, P = 4, K = 4, C = 3 

U = BK and POSP = (11110111)(2) and (00010000)(2) = (00010000)(2) = 16 

S = S + 1 = 4, RS = H(C) + C – K = 4 + 3 – 4 = 3 

R = (1, 2, 1, 3) 

- E = 1, P = 5, K = 5, C = 3 

U = BK and POSP = (11110111)(2) and (00001000)(2) = (00000000)(2) = 0 

R = (1, 2, 1, 3) 

- E = 1, P = 6, K = 6, C = 3 

U = BK and POSP = (11110111)(2) and (00000100)(2) = (00000100)(2) = 4 

S = S + 1 = 5, RS = H(C) + C – K = 4 + 3 – 6 = 1 

R = (1, 2, 1, 3, 1) 

- E = 1, P = 7, K = 7, C = 4 

U = BK and POSP = (11110111)(2) and (00000010)(2) = (00000010)(2) = 2 

S = S + 1 = 6, RS = H(C) + C – K = 7 + 4 – 7 = 4 

R = (1, 2, 1, 3, 1, 4) 

- E = 1, P = 8, K = 8, C = 4 

U = BK and POSP = (11110111)(2) and (00000001)(2) = (00000001)(2) = 1 

S = S + 1 = 7, RS = H(C) + C – K = 7 + 4 – 8 = 3 

R = (1, 2, 1, 3, 1, 4, 3) 

- E = 2, P = 1, K = 9, C = 4 

U = BK and POSP = (11001110)(2) and (10000000)(2) = (10000000)(2) = 128 

S = S + 1 = 8, RS = H(C) + C – K = 7 + 4 – 9 = 2 

R = (1, 2, 1, 3, 1, 4, 3, 2) 

- E = 2, P = 2, K = 10, C = 5 

U = BK and POSP = (11001110)(2) and (01000000)(2) = (01000000)(2) = 64 

S = S + 1 = 9, RS = H(C) + C – K = 10 + 5 – 10 = 5 

R = (1, 2, 1, 3, 1, 4, 3, 2, 5) 

- E = 2, P = 3, K = 11, C = 5 

U = BK and POSP = (11001110)(2) and (00100000)(2) = (00000000)(2) = 0 

R = (1, 2, 1, 3, 1, 4, 3, 2, 5) 

- E = 2, P = 4, K = 12, C = 5 

U = BK and POSP = (11001110)(2) and (00010000)(2) = (00000000)(2) = 0 

R = (1, 2, 1, 3, 1, 4, 3, 2, 5) 

- E = 2, P = 5, K = 13, C = 5 
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New H row that contains information on starting index in the rows array can be created 

alongside a row index array R or with the help of it after its creation because when a new column 

starts relation RX > RX-1 is true and starts always with R1 = 1. 

NH7 = (1, 2, 4, 6, 9, 12, 14) 

Appendix C - indexing method example 

The first thing to do in this method is to calculate columns density – number of non-zero elements 

in each column above diagonal similar to how it was done with determination where non-zero 

element is in dotting method but instead of marking element as non-zero increase column density. 

For example: 

1. 

2.CDN = (0, 0, 0, 0, 0, 0) 

3.Element 1: eq 1 and 3 

- I = 1, J = 1, I ≤ J => CD(J) = CD(J) + 1 

4.CDN = (1, 0, 0, 0, 0, 0) 

- I = 1, J = 3, I ≤ J => CD(J) = CD(J) + 1 

5.CDN = (1, 0, 1, 0, 0, 0) 

- I = 3, J = 3, I ≤ J => CD(J) = CD(J) + 1 

6.CDN = (1, 0, 2, 0, 0, 0) 

7. Element 2: eq 3 and 4 

- I = 3, J = 3, I ≤ J => CD(J) = CD(J) + 1 

8.CDN = (1, 0, 3, 0, 0, 0) 

- I = 3, J = 4, I ≤ J => CD(J) = CD(J) + 1 

9.CDN = (1, 0, 3, 1, 0, 0) 

- I = 4, J = 4, I ≤ J => CD(J) = CD(J) + 1 

10.CDN = (1, 0, 3, 2, 0, 0) 

11.Element 3: eq 2 and 4 

- I = 2, J = 2, I ≤ J => CD(J) = CD(J) + 1 

12.CDN = (1, 1, 3, 2, 0, 0) 

- I = 2, J = 4, I ≤ J => CD(J) = CD(J) + 1 

13.CDN = (1, 1, 3, 3, 0, 0) 

- I = 4, J = 4, I ≤ J => CD(J) = CD(J) + 1 

14.CDN = (1, 1, 3, 4, 0, 0) 

 

U = BK and POSP = (11001110)(2) and (00001000)(2) = (00001000)(2) = 8 

S = S + 1 = 10, RS = H(C) + C – K = 10 + 5 – 13 = 2 

R = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2) 

- E = 2, P = 6, K = 14, C = 5 

U = BK and POSP = (11001110)(2) and (00000100)(2) = (00000100)(2) = 4 

S = S + 1 = 11, RS = H(C) + C – K = 10 + 5 – 14 = 1 

R = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1) 

- E = 2, P = 7, K = 15, C = 6 

U = BK and POSP = (11001110)(2) and (00000010)(2) = (00000010)(2) = 2 

S = S + 1 = 12, RS = H(C) + C – K = 15 + 6 – 15 = 6 

R = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1, 6) 

- E = 2, P = 8, K = 16, C = 6 

U = BK and POSP = (11001110)(2) and (00000001)(2) = (00000000)(2) = 0 

R = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1, 6) 

- E = 3, P = 1, K = 17, C = 6 

U = BK and POSP = (10000000)(2) and (10000000)(2) = (10000000)(2) = 128 

S = S + 1 = 12, RS = H(C) + C – K = 15 + 6 – 17 = 4 

R = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1, 6, 4) 
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15. 

16. 

17.Element 4: eq 1, 2 and 5 

- I = 1, J = 1, I ≤ J => CD(J) = CD(J) + 1 

18.CDN = (2, 1, 3, 4, 0, 0) 

- I = 1, J = 2, I ≤ J => CD(J) = CD(J) + 1 

19.CDN = (2, 2, 3, 4, 0, 0) 

- I = 1, J = 5, I ≤ J => CD(J) = CD(J) + 1 

20.CDN = (2, 2, 3, 4, 1, 0) 

- I = 2, J = 2, I ≤ J => CD(J) = CD(J) + 1 

21.CDN = (2, 3, 3, 4, 1, 0) 

- I = 2, J = 5, I ≤ J => CD(J) = CD(J) + 1 

22.CDN = (2, 3, 3, 4, 2, 0) 

- I = 5, J = 5, I ≤ J => CD(J) = CD(J) + 1 

23.CDN = (2, 3, 3, 4, 3, 0) 

24.Element 5: eq 4 and 6 

- I = 4, J = 4, I ≤ J => CD(J) = CD(J) + 1 

25.CDN = (2, 3, 3, 5, 3, 0) 

- I = 4, J = 6, I ≤ J => CD(J) = CD(J) + 1 

26.CDN = (2, 3, 3, 5, 3, 1) 

- I = 6, J = 6, I ≤ J => CD(J) = CD(J) + 1 

CDN = (2, 3, 3, 5, 3, 2) 

 

Now we have column density, but in this array there is some issue – CD(I) cannot be greater 

than I, so those elements will be decreased, and also some column density shows it is greater than 

actual density. This occurs due to two (2) reasons.  

The first is that some equations are calculated several times because of its occurrence in 

several elements, this can be annulled by starting CD with 1 instead of 0 and increase only for I 

<> J.  

The second reason is that in real examples some group of equations appear in several 

elements. This error cannot be annulled because in real problems we do not know how many of 

those groups occur and in what elements. 

After reduction column density is: CDN = (1, 2, 3, 4, 3, 2). 

Now we create a new temporary HN+1 array with following rules: 

H(1) = 1 and H(i+1) = H(i) + CD(i), for i from 1 to N. 

Array H has the following values: HN+1 = (1, 2, 4, 7, 11, 14, 16). 

Now that we know the maximum possible length (H(N + 1) - 1 = 15) of non-zero elements 

in UTM we can create array R of row indexes. The first thing to do is to assign diagonal elements 

so those elements can be skipped while assigning values of row indexes. This is achieved with 

formula R(H(I)) = I, for each I between 1 and N. So at beginning we have: 

R15 = (1, 2, 0, 3, 0, 0, 4, 0, 0, 0, 5, 0, 0, 6, 0) 

With similar process as for creating column density we create row indexes: 
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27.Element 1: eq 1 and 3: 

- I = 1 and J = 1,   I=J – do nothing 

- I = 1 and J = 3,  I < J => insert row index I in column J 

28.R15 = (1, 2, 0, 3, 1, 0, 4, 0, 0, 0, 5, 0, 0, 6, 0) 

- I = 3 and J = 3,   I=J – do nothing 

 

 

29. 

30.Element 2: eq 3 and 4: 

- I = 3 and J = 3,   I=J – do nothing 

- I = 3 and J = 4,  I < J => insert row index I in column J 

31.R15 = (1, 2, 0, 3, 1, 0, 4, 3, 0, 0, 5, 0, 0, 6, 0) 

- I = 4 and J = 4,   I=J – do nothing 

32.Element 3: eq 2 and 4: 

- I = 2 and J = 2,   I=J – do nothing 

- I = 2 and J = 4,  I < J => insert row index I in column J 

33.R15 = (1, 2, 0, 3, 1, 0, 4, 3, 2, 0, 5, 0, 0, 6, 0) 

- I = 4 and J = 4,   I=J – do nothing 

34.Element 4: eq 1, 2 and 5: 

- I = 1 and J = 1,   I=J – do nothing 

- I = 1 and J = 2,  I < J => insert row index I in column J 

35.R15 = (1, 2, 1, 3, 1, 0, 4, 3, 2, 0, 5, 0, 0, 6, 0) 

- I = 1 and J = 5,  I < J => insert row index I in column J 

36.R15 = (1, 2, 1, 3, 1, 0, 4, 3, 2, 0, 5, 1, 0, 6, 0) 

- I = 2 and J = 2,   I=J – do nothing 

- I = 2 and J = 5,  I < J => insert row index I in column J 

37.R15 = (1, 2, 1, 3, 1, 0, 4, 3, 2, 0, 5, 1, 2, 6, 0) 

- I = 5 and J = 5,   I=J – do nothing 

38.Element 3: eq 4 and 6: 

- I = 4 and J = 4,   I=J – do nothing 

- I = 4 and J = 6,  I < J => insert row index I in column J 

39.R15 = (1, 2, 1, 3, 1, 0, 4, 3, 2, 0, 5, 1, 2, 6, 4) 

I = 6 and J = 6,   I=J – do nothing 

 

Now we have completed array R, but it contains some 0 elements that should be removed, 

and it is not sorted as it was with dotting method. The fastest way to do this is with the counting 

sort, so after removing of 0 elements we have new values for array R and H: 

R13 = (1, 2, 1, 3, 1, 4, 3, 2, 5, 1, 2, 6, 4) 

H7 = (1, 2, 4, 6, 9, 12, 14) 

If sorted: 

R13 = (1, 2, 1, 3, 1, 4, 3, 2, 5, 2, 1, 6, 4) 




