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Abstract 

The Prognostic and Health Management (PHM) becomes a research topic in its own right and 
tends to be more and more visible within the scientific community such as in Nasa Society, which 
has provided datasets for experiments. The purpose of this paper is to evaluate the performance 
of a data-driven prognostic technique used for predicting Remaining Useful Life (RUL). The 
methodological support of the proposed approach integrates all data-driven prognostic sequential 
steps merged in offline and online part. To design the predictive degradation model on the offline 
part, the Relevance Vector Machine (RVM) algorithm was applied. On the online part, prediction 
of the RUL is based on the Similarity-Based Interpolation (SBI) algorithm. The different steps of 
the methodology are described and their implementation undertaken through a case study 
involving the degradation dataset of turbofan engines from the Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS). Finally, results are compared with other techniques 
applied on the same dataset. 

Keywords: Data-driven prognostic, prognostic and health management, relevance vector 
machine, remaining useful life, similarity-based interpolation. 

1. Introduction and Literature Review 

In order to maintain systems in operating condition and ensure their reliability while guaranteeing 
their high performance, maintenance strategies have evolved from corrective and/or traditionally 
preventive to predictive, and more specifically to Prognostic and Health Management (PHM). In 
the literature, many classifications of prognostic have been proposed, the first ones being Lebold 
and Thurston (2001) and Byington (2001). This classification has been adopted in many works 
and is classified in pyramidal form into three approaches according to their complexity of labor, 
cost, and precision of obtained results and applicability of approaches. Fig. 1 summarizes 
different prognostic approaches. 

This paper focuses on data-driven prognostic approach for RUL prediction of industrial 
systems. This approach is suitable for any type of instrumented application in which the 
knowledge of degradation mechanisms is directly included in the data. No knowledge of 
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analytical degradation models is thus required. This approach is based on the following 
observation: measurements are often the strongest and most reliable source of information for 
understanding degradation phenomena. This type of approach aims to learn through the 
degradation phenomenon and to capture the subtle relationships between data, even if these 
relationships are unknown or difficult to describe. They are, therefore, based on the use of 
monitoring data from sensors called Physics Health Index (PHI) which are processed in order to 
extract characteristics reflecting the behavior of the system and its degradation. The use of PHI 
has become increasingly difficult with its multitude of heterogeneous sensory signals. To 
overcome this complexity of PHI, Synthesized Health Index (SHI) construction is an imperative 
as developed in certain papers (Khelif et al. 2014, Malhotra et al. 2016, Wang et al. 2012, Xi et 
al. 2014). 
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Fig. 1. Prognostic approaches classification. 

Developing a good predictive degradation model is of major concern in a data-driven 
prognostic approach for RUL prediction of mechanical and industrial systems. Several techniques 
are spotted in different interesting relevant applications. Support Vector Machine (SVM) is a 
technique based on statistical learning theory proposed by Vapnik (1997). Soualhi (2014) used 
the SVM method to create a bearings degradation model. Ordóñez (2019) used the results of the 
Auto-Regressive Integrate Moving Average (ARIMA) method, which estimates the values of the 
predictor variables to create a model with the SVM method of aircraft turbofan engine. 
Benkedjouh (2013) and Saidi (2015) used the Support Vector Regression (SVR) to estimate the 
RUL of bearings in a mechanical application. The SVR is a regression algorithm that allows using 
continuous values, instead of SVM classification. Rabiei (2016) also used the SVR method to 
define a correlation between input variables. Their aim was to estimate damage and to predict the 
appearance of cracks in a metal alloy subject to fatigue crack. Benkedjouh (2015) applied this 
method to estimate the wear increase in a high-speed milling machine and predict the RUL. Khelif 
(2017) designed a health index and support vector regression to build a turbofan engine model. 
Relevance Vector Machine (RVM): is a machine learning technique that uses Bayesian inference 
to obtain parsimonious solutions for regression. The RVM has an identical functional form to the 
support vector machine. Tzikas (2006) and Saha and Goebel (2008) applied the RVM method to 
design the predictive degradation model of battery data, and Wang (2012) used it to estimate 
engine RUL with PHM’08 NASA challenge dataset. Di Maio (2012) estimated the RUL of 
partially degraded thrust ball bearings by combination of the exponential regression and RVM. 
Hu and Tse (2013) proposed an RVM-based model to predict the RUL of pump impellers. Voisin 
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(2013) used this method to create a predictive model based on records of similar units of a fleet 
of heterogeneous units. Aye and Heyns (2017) proposed the Gaussian Process Regression (GPR) 
to estimate the RUL of slow speed Bearings. Goebel (2008) and Saha (2010) also applied this 
method for RUL prediction of batteries. Trappey (2014) applied logistic regression based on the 
Weibull distribution to estimate lifespan of a power transformer. Zheng (2017) and Elsheikh 
(2019) proposed Long-Short Term Memory (LSTM) approaches to create a LSTM degradation 
model using C-MAPSS dataset. Jayasinghe (2018) also used these data to build the model by 
applying the Temporal Conventional Memory Network. Babu (2016) applied a Convolutional 
Neural network (CNN) to estimate the RUL of turbofan engine. Li (2018) proposed Deep 
Convolution Neural Networks (DCNN) and Li (2020) also proposed Multi-Scale Deep 
Convolutional Neural Network (MS-DCNN) using C-MAPSS dataset. Lim (2016) used the 
Multi-Layer Perceptron (MLP) method and Trinh & Kwon (2018) applied neural networks using 
the C-MAPSS dataset. Ghorbani and Salahshoor (2020) used data-level and feature-level fusion 
approaches to characterize the degradation process of turbofan engine system. 

The contribution of this paper is to develop a data-driven prognostic algorithm by proposing 
a methodological support based on the RVM-SBI techniques. The aim of the work is to predict 
Remaining Useful Life of turbofan engines and to evaluate the used algorithms performance using 
adequate metrics. The obtained results are compared with three studies using the same dataset, 
but applying different data-driven prognostic techniques. 

The paper is organized as follows: Section 2 describes the data-driven prognostic sequential 
steps constituting the methodological support. Then, Section 3 is devoted to implementing all 
these steps through industrial turbofan engine data treatment using C-MAPSS dataset. In Section 
4, calculated performance metrics of RVM-SBI algorithm used are compared with those of 
TCMN, Deep LSTM, CNN, MLP, SVR, and RVR algorithms, respectively Temporal 
Convolutional Memory Networks, Deep Long Short-Term Memory, Conventional Neural 
Network, Multi-Layer Perceptron, Support Vector Regression, and Relevance Vector Regression. 
Finally, after discussing of these results, a conclusion ends this article.  
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Fig. 2. Methodological support. 
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2. Methodological Support 

Data-driven prognostic relies on the exploitation of training and test datasets to predict the RUL. 
The proposed methodological support is shown in Fig. 2 where RUL of a turbofan engine from 
C-MAPSS is used to evaluate the results. 

2.1 Generation of the Synthesized Health Index (SHI) 

Several methods can be used within data-driven prognostic to build the SHI and manage different 
types of signals, such as continuous, discrete or binary sensory data. The linear data 
transformation method is adapted continuously to obtain sensory signals, as in Huang et al. 2015 
and Wang 2012. 

Suppose that there are two groups of multi-dimensional sensory data representing the system 
in faulty and healthy condition; the matrix 𝐹𝐹 of (𝑀𝑀0 × 𝑁𝑁) and the matrix 𝐻𝐻 of (𝑀𝑀1 × 𝑁𝑁) where 
𝑀𝑀0 and 𝑀𝑀1 are respectively the numbers of data for the system in faulty and healthy state and N 
is the dimension of each given set. With these two matrices, a transformation matrix 𝑇𝑇 (N × 1) 
can be obtained to transform the multi-dimensional sensory signal into a one-dimensional SHI: 

 1( )T T
offT Q Q Q S−=   (1) 

Where 𝑄𝑄 = [𝐹𝐹;𝐻𝐻], 𝑆𝑆𝑜𝑜𝑛𝑛𝑛𝑛  = [𝑆𝑆0, 𝑆𝑆1] , 𝑆𝑆0 is a null vector (1 × 𝑀𝑀0) and 𝑆𝑆1 is a unit vector 
(1 × 𝑀𝑀1). This transformation matrix 𝑇𝑇 can transform a set of sensory signals at time t from 
offline learning, 𝑄𝑄𝑜𝑜𝑛𝑛𝑛𝑛 or from the online prediction process 𝑄𝑄𝑜𝑜𝑖𝑖, into respectively normalized 
offline and online synthetized health index: 

 .off offSHI Q T=  or .on onSHI Q T=   (2) 

The SHI varies between 0 and 1. It contains health signatures extracted from the multi-
dimensional sensory signals, which make it possible to construct a predictive degradation model 
in the offline learning process. 

2.2 Elaboration of Predictive Degradation Model 

Sparse Bayesian Learning (SBL) is used to design a predictive degradation model of a 
knowledge-based system, such as the evolution of the degradation model of the studied 
components. The SBL is a generalized linear model in Bayesian form. It shares the same 
functional form as the RVM. The conceptual dispersion is obtained by means of a Bayesian 
treatment in which a prior distribution is set up above the weightings controlled by a set of 
hyperparameters. 

Compared to an SVM (see Li et al. 2020), the non-zero RVM weights represent more 
prototypical class examples, called relevance vectors. This formed RVM uses far fewer basic 
functions than the corresponding SVM and generally shows higher test performance. 

The unknown value of the real health index function, namely 𝑓𝑓(𝑡𝑡), must be predicted at an 
arbitrary point t with a set of SHI values, ℎ1, . . . ,ℎ𝑁𝑁, measured at points created at learning 𝑡𝑡 =
 {𝑡𝑡1, … , 𝑡𝑡𝑁𝑁}. 
 ( ) ( ) ( )h t f t tε= +  (3) 

Where ɛ (t) is the measurement of noise. The RVM, (see Williams & Rasmussen 2006), is a 
special case of a sparse linear model:  
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Where 𝜔𝜔 =  {𝜔𝜔1. . .𝜔𝜔𝑁𝑁}, the weight of vector functions is formed by the kernel functions 
𝛷𝛷(𝑡𝑡, 𝑡𝑡𝑖𝑖 ) centered at the learning points 𝑡𝑡 =  {𝑡𝑡1, … , 𝑡𝑡𝑁𝑁}. The sparse property allows the automatic 
selection of a suitable kernel at each location by the size of all irrelevant kernels. 

2.3 Identification Model 

The model identification step is adapted to each online health state with the suitable predictive 
degradation model and carried out with Root Mean Square Error (RMSE) method. In the 
beginning, 𝜀𝜀𝑖𝑖 is calculated by minimizing the RMSE between the online 𝑆𝑆𝐻𝐻𝑆𝑆𝑜𝑜𝑖𝑖(𝑡𝑡𝑗𝑗) and each point 
of predictive models throughout the time axis ℎ𝑖𝑖(𝑗𝑗), see equation (6). Each online unit then 
identifies its appropriate model where 𝜀𝜀𝑖𝑖 attains its smallest value, see equation (5). For an online 
turbofan engine, the Identification Model (IM) is given by: 

 ( )arg min iIM ε=   (5) 

with 

 ( ) ( )( )
2

1

1 onL

i on j i j
jon

min SHI t h t
L

ε
=

= −∑  (6) 

where Lon is the online lifetime. 

2.4 System Initial State Determination 

Degradation time initialization 𝑇𝑇0 is a very important point to specify the predictive 𝑅𝑅𝑅𝑅𝑅𝑅 value 
using 𝑆𝑆𝐻𝐻𝑆𝑆𝑜𝑜𝑖𝑖. 

The following equation (7) determines the initial cycle 𝑇𝑇0 with the test dataset in which the 
root mean square error between 𝑆𝑆𝐻𝐻𝑆𝑆𝑜𝑜𝑖𝑖 and its appropriate model (ℎ𝐼𝐼𝐼𝐼) reaches a minimum value 
throughout the time axis in the offline model. 

 ( ) ( )( )20 0
1

1arg min
onL

on j IM j
on j

T SHI t h T t
L =

= − −∑  (7) 

The projected 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝 of the online process according to ℎ𝐼𝐼𝐼𝐼(𝑡𝑡𝑗𝑗) can be calculated by: 

 0p off onRUL L L T= − −  (8) 

Where 𝑅𝑅𝑜𝑜𝑛𝑛𝑛𝑛 is the offline lifetime. 

2.5 RUL Estimation 

In the last step consisting of the prediction of the 𝑅𝑅𝑅𝑅𝑅𝑅, this study proposes the Similarity-Based 
Interpolation (SBI) technique, which is the preferred technique at this stage, (see Wang et al. 
2008, Wang et al. 2012, Wang et al. 2013). 

This similarity is assessed by a measure of distance between the predictive degradation model 
ℎ and 𝑆𝑆𝐻𝐻𝑆𝑆𝑜𝑜𝑖𝑖. This difference gives the similarity weight 𝑊𝑊, which can be expressed as sum 
square error:  
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The combination of the 𝑅𝑅𝑅𝑅𝑅𝑅 depends on the match of the online data with the predictive 
model. Its weight is determined by the system correspondence: 
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2.6 Performance Metrics 

The main performance metrics are: 

Score: It is the asymmetric function used by many researchers (see Saxena et al. 2008a) to 
evaluate their algorithm. Interval I= [-10, +13] is a range of acceptability defined to measure the 
estimates quality. 
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Where  𝑑𝑑𝑖𝑖 = 𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑚𝑚𝑒𝑒𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑡𝑡𝑃𝑃𝑢𝑢𝑒𝑒 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖, N is the unit number. 

RMSE (root mean square error): 

 2

1

1 N

i
i

RMSE d
N =

= ∑  (13) 

Exactitude: Measures the proximity of the predicted failure date to the current failure date. 
The calculation on this metric represents a critical point in the prognostic process. The 
exponential function is used here to give a monotonically decreasing smooth curve. The 
exactitude is great, close to 1 when the expected value is the same as the current value and 
decreases when the expected value deviates from the current value. 
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3. Case Study – Turbofan Engines RUL Prediction 

3.1 C-MAPSS Dataset 

A turbofan engine degradation simulation dataset was performed using NASA Commercial 
Modular Aero- Propulsion System Simulation (C-MAPSS), (see Saxena et al. 2008b). This 
dataset is subdivided into four subsets that have been simulated under different operating 
conditions. Each data subset contains a learning file, a test file, and a real RUL file detailed in 
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Table 1. Both train and test data for each cycle per engine include turbofan engine identification, 
cycle index, three values for an operational context, and twenty-one sensor measurement values. 

For every sample, the turbofan engine operates normally, but it stops immediately when a 
fault occurs. In the test dataset, the cycle index ends before the system fails. The aim of these 
collected data is to estimate the RUL and evaluate the accuracy of our prediction by using 
different metrics.  

 

Dataset FD_001 FD_002 FD_003 FD_004 

Train data 100 260 100 249 

Test data 100 259 100 248 

Operating 
conditions 

1 6 1 6 

Table 1. C-MAPSS dataset. 

In this study, our interest lies in the subset data group FD_001. Data file "train FD001.txt" is 
used for the offline part and "test FD001.txt" is used for the online part. Each data file contains 
100 turbofan engines, the purpose of which is to predict the number of operational cycles 
remaining before the test set fails. The true RUL values for the test data are given in the data file 
"RUL FD001.txt". 

3.2 Result and Interpretation 

3.2.1 Offline Part 

Step 1 

𝑃𝑃𝐻𝐻𝑆𝑆𝑜𝑜𝑛𝑛𝑛𝑛 selection is an important step among the twenty-one sensor signals of the training data, 
seven of which do not contain any degradation information, see Fig. 3-a. Fig. 3 shows various 
degradations of the sensors on all turbofan engines. Among 14 signals, only five (T24, T30, T50, 
Ps30, and BPR) have the same trend, see Fig. 3-b, c, d, e, f, and were selected to best characterize 
the state of the turbofan engine. The remaining 9 sensors show non-similar degradation 
information like sensor P30 and NRc, see Fig. 3-g and h. 

To take into account the different initial conditions, an adjusted cycle index is calculated as 
Cadj  =  Co − Cf, where Co and Cf are respectively the operating cycle and faulty cycle of the 
engine. The cycle number 0 indicates a turbofan engine failure where a negative cycle number 
corresponds to an operating cycle before the failure. By defining the failure of the reference 
turbofan engine, the predictive degradation model of the different offline learning turbofan 
engines with initial system state and degradation paths can be plainly displayed and used easily. 
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Fig. 3. Sensor selection. 

Step 2 

In next step, the 𝑆𝑆𝐻𝐻𝑆𝑆𝑜𝑜𝑛𝑛𝑛𝑛 construction, as shown in Fig. 4, displays the degradation state of the 
turbofan engine, from the five sensor signals selected above using the T transformation matrix, 
see equation (15). The transformation matrices 𝑇𝑇 must be defined according to equation (1) with 
both matrices 𝑄𝑄0 and 𝑄𝑄1. 

In this case study, 𝑄𝑄0 was designed with sensor data in engine failure state in which the 
adjusted cycle index is between -4 and 0. By the same method, 𝑄𝑄1 was calculated with sensor 
data in the healthy state in which the adjusted cycle index is less than -300. The transformation 
matrix 𝑇𝑇 (5 ×  1), in which each row is a transformation vector for the corresponding operating 
regime points, is shown in equation (15). 

 

0.1095
0.0065
0.0134
0.5265
1.8256

T

 
 − 
 = −
 
− 
 − 

 (15) 

Fig. 4 represents the evolution of 𝑆𝑆𝐻𝐻𝑆𝑆𝑜𝑜𝑛𝑛𝑛𝑛 obtained from the training data set of 3 turbofan 
engines. The evolution of this point cloud logically decreases from value 1 (healthy) toward the 
value 0 (faulty), with different lifetime. Engine 1 presents the longest lifetime and follows 
turbofan engines 2 and 8. 

Step 3 

Now, this step presents the elaboration of the predictive degradation model. Fig. 5 represents the 
case of turbofan engine 1. The SBL/RVM technique with Gaussian basic function is used with a 
few significant relevance vector (RVs). It constitutes a novel approach in relation to this database. 
This technique is detailed in section 2.2.  
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Fig. 4. SHI creation. 

 
Fig. 5. Predictive degradation model. 

3.2.2 Online part 

Step 1 and 2  

In the online process, the test_FD001 dataset containing 100 online turbofan engines is used. 
Firstly, and for each engine, the same sensor as selected in the offline part was chosen in this step. 
Secondly, the 𝑃𝑃𝐻𝐻𝑆𝑆𝑜𝑜𝑖𝑖 data are used to create the necessary 𝑆𝑆𝐻𝐻𝑆𝑆𝑜𝑜𝑖𝑖 for the following tasks with the 
same transformation matrices given in equation (15). 

Step 3 

Identification of an adequate model for each online unit is a great importance in the 𝑅𝑅𝑅𝑅𝑅𝑅 
estimation. Fig. 6 represents an example of the best degradation model of online unit 1, by 
calculating RMSE between 𝑆𝑆𝐻𝐻𝑆𝑆𝑜𝑜𝑖𝑖 and each point of the 100 models using equations (5) and (6): 
predictive degradation model of turbofan engine 57 is identified as an adequate model of online 
unit 1 compared to models 8 and 60. 



Asmaa Motrani et al.: PERFORMANCE EVALUATION OF DATA-DRIVEN PROGNOSTIC…  
 

 

46 

Step 4 

Based on equation (8), the initial degradation time 𝑇𝑇0 for each turbofan engine is determined by 
reducing the sum-squared error between 𝑆𝑆𝐻𝐻𝑆𝑆𝑜𝑜𝑖𝑖 and ℎ(𝑡𝑡𝑗𝑗). Fig. 7 illustrates the process to 
determine the initial degradation time 𝑇𝑇0 of engine 1 as well as its 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝 such that the points 
represent its 𝑆𝑆𝐻𝐻𝑆𝑆𝑜𝑜𝑖𝑖 1 and the curve its predictive degradation model 57. The projected 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝 of 
each online engine, using equation (9), is obtained. The replication of this process has provided 
100 projected 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝 on the 100 predictive degradation models. 

Step 5 

Finally, the SBI technique is employed to determine the similarity weights 𝑊𝑊𝑖𝑖. In this case, 10 
great weights were used to predict the 𝑅𝑅𝑅𝑅𝑅𝑅 of each turbofan engine using respectively equations 
(11) and (12).  

 
Fig. 6. Identification model. 

 
Fig. 7. System initial state determination. 
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4. Performance Evaluation 

In order to evaluate the results obtained in Section 3, the performance metrics using RUL_FD001 
files were calculated. These files contain 100 values of the true RUL coupled to equations (12), 
(13) and (14). As I= [-10, +13] is the range of acceptability, already defined in Section 2.6. The 
obtained result imply that the prognostic is correct with a score 7.29, root mean square error 19.74 
and an accuracy rate of 78% (see Table 2). 

 

Performance metric Score RMSE Exactitude 

FD_001 7.29 19.74 0.78 

Table 2. Performance evaluation. 

In order to verify the accuracy of the algorithm proposed, the results are compared with those 
obtained in the references (Babu et al. 2016; Jayasinghe et al. 2018; Zheng et al. 2017). They 
respectively used Temporal Convolutional Memory Networks (TCMN), Deep Long Short-Term 
Memory (Deep LSTM), Conventional Neural Network (CNN), Multi-Layer Perceptron (MLP), 
Support Vector Regression (SVR), and Relevance Vector Regression (RVR), see Table 3. 

In comparison, the results obtained in this paper with a score of 7.29 are more accurate than 
those provided by Jayasinghe (2018) and Babu (2016) with scores of 12.2, 12.86, 178, 13.81, and 
15.02, while the result of Zheng (2017) presents the best score. 

 

Reference Method Score 

Jayasinghe et al. 2018 TCMN 12.2 

Zheng et al. 2017 Deep LSTM 3.38 

Babu et al. 2016 

CNN 12.86 

MLP 178 

SVR 13.81 

RVR 15.02 

Proposed technique RVM-SBI 7.29 

Table 3. Comparison of score results. 

5. Conclusion 

The data-driven prognostic algorithm based on the association of artificial intelligence and 
similarity-based interpolation methods developed in this paper can be successfully used to predict 
Remaining Useful Life (RUL) of turbofan engines. The methodological support of the proposed 
approach integrates all data-driven prognostic sequential steps merged into two distinct parts, 
offline and online part. The offline process, to design the predictive degradation model, is based 
on the Relevance Vector Machine (RVM) algorithm, while the online process, to predict the RUL, 
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is based on the Similarity-Based Interpolation (SBI) algorithm. The technique implementation is 
performed in MATLAB environment through industrial turbofan engines data treatment using C-
MAPSS dataset.  

The performance evaluation of the proposed technique is carried out by calculating 
performance metrics and comparing the obtained results. The achieved score of 7.29 is a 
satisfactory prediction. Compared with results from TCMN, CNN, MLP, SVR, and RVR, our 
proposed methodology proves to be a significant improvement but the Deep LSTM method 
remains the method offering the best prediction. 
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