
Journal of the Serbian Society for Computational Mechanics / Vol. 14 / No. 2, 2020 / pp 97-116 

(10.24874/jsscm.2020.14.02.07) 

ANALYSIS OF ENTROPY GENERATION FOR MIXED CONVECTION 

FLUID FLOW IN A TRAPEZOIDAL ENCLOSURE USING THE 

MODIFIED BLOCKED REGION METHOD 

Meysam Atashafrooz1,*, Mohsen Shafie2 

1 Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran 

E-mail: m.atashafrooz@sirjantech.ac.ir, Meysam.atashafrooz@yahoo.com 
2 Department of Mechanical Engineering, Sirjan Branch, Islamic Azad University, Sirjan, Iran 

E-mail: m.shafie845@yahoo.com 

*corresponding author

Abstract 

In this research, analysis of entropy generation for mixed convection fluid flow in a trapezoidal 

enclosure is numerically investigated. To achieve this goal, the influences of Grashof number, 

Reynolds number and inclination angle of enclosure side walls on the distributions of the velocity 

and temperature fields and the values of entropy generation and Bejan numbers are examined 

with full details. The Boussinesq approximation is used to calculate the buoyancy force. Also, the 

entropy generation numbers are calculated according to the second law of thermodynamics. In 

addition, the modified blocked region method is applied to accurately simulate the diagonal walls 

of the trapezoidal enclosure. The results of numerical solution show that the maximum values of 

the flow irreversibility in the whole computational domain of the enclosure are related to the case 

with the highest values of Grashof number, Reynolds number and inclination angle of side walls. 

Keywords: Entropy generation, irreversibility, mixed convection, trapezoidal 

enclosure, modified blocked region method.  

1. Introduction

Analysis of mixed convection fluid flow in different enclosures is one of the important issues in 

the design of thermal engineering systems (Wu et al. 2011, Kefayati et al. 2012, Atashafrooz and 

Nassab 2013, Nithyadevi and Begum 2017, Yu et al. 2018). These types of fluid flows are found 

in many industrial and engineering applications, such as the electronics cooling systems, heat 

exchangers and solar pools. So far, several researchers studied the mixed convection flow in 

different enclosures (Stiebler et al. 2011, Bhattacharya et al. 2013, Ismael et al. 2014, Ali et al. 

2017, Sajjadi et al. 2018, Sheikholeslami et al. 2019). Among these researches, Revnic et al. 

(2011) studied the unsteady free convection flow in a square enclosure filled with a porous 

medium in the presence of a magnetic field. In another research, Mohammadi and Nassab (2015) 

analyzed the interaction influences of thermal radiation and mixed convection flow in a 

trapezoidal enclosure. They reported that the optical thickness and radiation-conduction 
parameter have the considerable effects on the heat transfer rates. Mahmoodabadi et al. 
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(2018) developed and applied the meshless local Petrov-Galerkin algorithm to simulate the three-

dimensional incompressible flow in a cubic enclosure. Sajjadi et al. (2019) investigated the role 

of buoyancy and magnetic forces on the hydrothermal behaviors of fluid flow in a cubic 

enclosure. In that study, researchers applied the double MRT Lattice Boltzmann method to solve 

the governing equations. In a recent study, Chamkha et al. (2020) used the finite volume method 

to study the influences of Hartmann and Richardson numbers on the magneto-ferrofluid mixed 

convection flow inside a square enclosure with partial slip.  

In the above studies, various methods have been proposed to control (increase or decrease) 

the heat transfer rate in different systems. However, it should be noted that most of the mentioned 

methods significantly affect the efficiency of these systems. Therefore, in addition to controlling 

the heat transfer rate, the energy optimization of thermal systems is very important and should 

also be studied (Bejan 1994, Bejan 1996, Aghaei et al. 2016, Atashafrooz et al. 2019). Theoretical 

and experimental studies show that the reducing the rate of flow irreversibility is the most 

important way to reduce the energy consumption in engineering and thermal systems (Bejan 

1994, Bejan 1996, Aghaei et al. 2016, Atashafrooz et al. 2019). 

So far, many different techniques have been presented by researchers to determine the rate 

of flow irreversibility. Among these techniques, analysis of the thermodynamics second law 

(entropy generation analysis) is a useful method and plays an important role in determining the 

optimal conditions for engineering systems (Erbay et al. 2004, Atashafrooz and Asadi 2019). This 

analysis has been applied by many researchers to investigate the flow irreversibility in various 

geometries (Kooshki et al. 2012, Bahaidarah and Sahin 2013, Mohaghegh and Esfahani 2016). 

Some of these researches are related to calculating the amount of entropy generation in open and 

closed enclosures (Atashafrooz et al. 2014, Malik and Nayak 2017, Dutta et al. 2018, Atashafrooz 

et al. 2020). Among these studies, Dagtekin et al. (2007) analyzed the entropy generation for the 

free convection flow in a Γ-shaped enclosure. Mamourian et al. (2016) applied the Taguchi 

approach to optimize the entropy generation for mixed convection flow in a square enclosure with 

wavy surfaces. Oztop et al. (2017) studied the entropy generation for the free convection flow in 

a three-dimensional partially open enclosure. They found that the geometrical characteristics of 

enclosure and the Rayleigh number have the significant impacts on the values of entropy 

generation number. In another research, Seyyedi et al. (2020) analyzed the entropy generation for 

nanofluid flow in a L-shaped enclosure in the existence of an inclined magnetic field. 

As it is mentioned above, the analysis of flow irreversibility is of great importance in the 

design of engineering systems. Although, several researches have been so far performed to study 

this issue in different geometries; but to the best of author’s knowledge, analysis of entropy 

generation for mixed convection fluid flow in a complex trapezoidal enclosure have not been 

done enough by previous researchers. Therefore, an attempt is made in the present research to 

study this important and industrial issue. In fact, the main purpose of this study is to obtain the 

optimal conditions to reduce the irreversibility rate of mixed convection flow in the mentioned 

enclosure. To achieve this goal, the effects of Grashof number, Reynolds number and inclination 

angle of side walls on the amount of entropy generation are discussed in detail and thoroughly. 

In addition, it is important to note that in order to accurately simulate the diagonal walls of the 

trapezoidal enclosure, the modified blocked region method is applied.  

2. Problem Description

The problem geometry of the present study is a trapezoidal enclosure. This enclosure has two 

independent inlet and outlet ducts. The schematic of this enclosure along with its related 

geometric dimensions are presented in Figure 1 and Table 1. 
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Fig. 1. Geometry and physical configuration of the enclosure under study 

Length of the enclosure bottom wall  2H  

Enclosure height H  

Height of the enclosure side walls  0.9H  

Height of the flow inlet section 0.1H  

Height of the flow outlet section  0.1H  

Inclination angle of the enclosure side walls 50 70      

Table 1. Geometric dimensions of the enclosure under study 

Also, the hydrodynamic (flow) and thermal boundary conditions of this enclosure are 

presented in Table 2. 
  

 
Flow boundary 

conditions 

Thermal boundary 

conditions 

The enclosure walls (include 

the bottom, top and  side 

walls) 

0,  0u v   WT T  

The flow inlet section ,  0inu U v   inT T  

Table 2. Flow and thermal boundary conditions  

3. Governing Equations 

To calculate the amount of the flow irreversibility in the enclosure under study, the velocity and 

temperature fields are first needed. To determine the velocity and temperature fields, the 

governing equations should be solved. Theses governing equations for mixed convection fluid 

flow include the conservation of mass, momentum, and energy equations. For two-dimensional, 

incompressible, steady and laminar flow, these equations can be presented as follows: 

 
u v

0
x y

 
 

 
 (1) 
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2 2

2 2

u u 1 p u u
u v

x y x x y



 

     
           

 (2) 

  
2 2

2 2

v v 1 p v v
u v

x y y x y
ing T T




 

     
             

 (3) 

 
2 2

2 2

T T T T
u v

x y x y

    

        

 (4) 

It should be mentioned that the last term on the right-hand side of equation (3) is related to 

the contribution of buoyancy force, which is calculated by the Boussinesq approximation.  

Also, the dimensionless forms of these governing equations (continuity, momentum and 

energy) are expressed as follows: 

 
U V

0
X Y

 
 

 
 (5) 

 
2 1 U 1 U P

U UV
X Re X Y Re Y X

       
       

       
 (6) 

 
2

2

1 V 1 V P
UV V

X Re X Y Re Y Y Re

Gr       
         

       
 (7) 

 
1 1

U V 0
X Pe X Y Pe Y

      
        

      
 (8) 

It should be noted that in presenting the above equations, the following dimensionless 

parameters have been used: 

 
 

in

2
w in

3

2

T Tx y
(X,Y) ( , ),  ( , ) ( , ), ,  

T T

ν
Pr ,  Re ,  Re Pr,  

α

in in in

W inin

u v p
U V P

H H U U U

g T T HU H
Pe Gr





 


    




   

 (9) 

3.1. Entropy Generation Analysis 

As it is mentioned before, the main purpose of this study is to obtain the entropy generation rate 

as a criterion for determining the rate of flow irreversibility in the enclosure under study. 

According to the second law of thermodynamics, for mixed convection fluid flow, the entropy 

generation rate  gS  is the sum of the entropy generation rates due to conductive heat transfer 

  g
c

S and the viscous fluid flow   g
v

S  (Mohaghegh and Esfahani 2016, Atashafrooz and 

Asadi 2019): 

    g g g
c v

S S S   (10) 
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  
22

2 x y
g

c
in

k T T
S

T

    
     

      

 (11) 

  
222

2

u v u v
2

x y y x
g

v
in

k
S

T

              
             
              

 (12) 

Also, the dimensionless form of Equations (10) to (13) can be formulated as follows 

(Kooshki et al. 2012, Atashafrooz and Asadi 2019): 

 c vNs Ns Ns   (13) 

 

2 2

X Y
cNs

     
     

      

 (14) 

 

22 2
U V U V

Ψ 2
X Y Y X

vNs
               

              
               

 (15) 

In the above equations, the following dimensionless relations are used: 

 
   

2 2 2

2 2

 
Ns ,  Ψ

g in in in

W in W in

S T H T U

k T T k T T


 

 
 (16) 

Besides, the total entropy generation numbers can be calculated as (Kooshki et al. 2012, 

Atashafrooz and Asadi 2019): 

     c v c vt t t
Ns = Ns + Ns Ns + Ns  d

t t
XdY



 
   (17) 

Another important parameter in studying the flow irreversibility is the Bejan number  Be . 

This number represents the ratio of entropy generation due to conductive heat transfer to total 

entropy generation and is calculated as follow (Kooshki et al. 2012, Atashafrooz and Asadi 2019): 

 c

c

Ns
Be

Ns vNs



 (18) 

4. Numerical Solution and Code Validation 

4.1. Numerical Solution 

To obtain the velocity and temperature fields in the studied enclosure, the governing equations 

(continuity, momentum and energy) are first discretized using the finite volume method and by 

integration on the volume of each element. Then, these discrete equations are solved using the 

SIMPLE algorithm (Patankar and Spalding 1972) and line-by-line iterative method. 

It should be noted that the flow velocity field are obtained using the staggered control 

volumes; whereas, the pressure and temperature fields are calculated on the main nodes. Also, 

the convergence criterions for the numerical solution of the governing equations are considered 

as follows: 
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1

6( , ) ( , )
10

( , )

n n

n

i j i j
Error Max

i j


 

  


 (19) 

 1 5

1 1

( , ) ( , )  10
j JNi IN

n n

i j

Error i j i j


 

 

       (20) 

In the above equations, the  symbol represents the pressure, velocity and temperature 

fields. Also, the index n denotes the iteration step.  

In the present study, a grid size of 340 200   X Y  has been obtained as the optimal mesh. 

It should be noted that for more accurate results, this mesh is denser and clustered near the 

enclosure walls.  

4.2. Modified Blocked Region Method 

In this research, the modified blocked region (embedded boundary) method is used to simulate 

the diagonal surfaces of the trapezoidal enclosure (Zabihi et al. 2017).  

The modified blocked region method is almost similar to the blocked-off method 

(Atashafrooz et al. 2014). In fact, the difference between two these methods is related to simulate 

the inclined or curved walls. The modified blocked region method includes drawing a nominal 

domain around the main (physical or real) domain. Then, to make a distinction between the cells 

in the active and inactive regions a “domain file” is created for each geometry. A schematic of an 

irregular complex geometry and its nominal domain is shown in Figures 2. In this figure, cells A 

and D are respectively the active and inactive cells. 

 

Fig. 2. Simulation of an irregular complex geometry using the modified blocked region method 

(Zabihi et al. 2017) 

In addition, the location of the inner boundaries in the nominal domain is set and a “boundary 

condition file” is defined for these boundaries. For those inner boundaries that are parallel to the 

coordinates axis, the boundary condition file involves those control volumes (CV) in the physical 

domain that are near to the inner boundaries (Please see cell B in Figure 2). 

But, for curved and inclined inner boundaries, the boundary condition file involves cells that 

have an intersection with the inner boundary (Please see cell C in Figure 2). It should be 

mentioned that using the modified blocked region method, the inclined or curved surfaces are 

modeled exactly the same as the real irregular surfaces. More details of this method were 

explained by Zabihi et al. (2017). 
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4.3. Code Validation 

To check the accuracy of the computer program in solving the governing equations, the values of 

average Nusselt number on the bottom wall of a square enclosure are compared with the 

numerical findings of Iwatsu et al. (1993) in Table 3.  
  

Grashof number Reynolds number Iwatsu et al. (1993) Present study 

100Gr   
Re 100  1.85 1.89 

Re 400  3.76 3.81 

10000Gr   
Re 100  1.30 1.32 

Re 400  3.57 3.60 

Table 3. Comparison of the average Nusselt number with the results of Iwatsu et al. (1993) 

This comparison is done for different values of Grashof and Reynolds numbers. As it is clear 

from Table 3, there is a good consistency between the results of the present study and Iwatsu et 

al. (1993). 

In order to further evaluate the validity of the numerical calculations performed in the present 

study, the variations of the entropy generation number on the bottom wall of a rectangular duct 

having step are compared with the results presented by Kooshki, et al. (2012) in Figure 3. As it 

is seen from this figure, the algorithm used in this research has an acceptable accuracy. 

 

Fig. 3. Comparison of the entropy generation number on the bottom wall of a rectangular duct 

having step with the results of Kooshki, et al. (2012) 

5. Results and Discussions 

First, to obtain the buoyancy force influence on the hydrodynamic and thermal patterns of mixed 

convection fluid flow, distributions of the axial velocity and temperature fields in the enclosure 

under study are presented in Figures 4 and 5 at two different values of Grashof number  Gr . A 

detailed analysis of the results presented in these figures shows that the Grashof number has a 

significant effect on both the trends and values of the velocity and temperature fields, especially 
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near the enclosure walls. Therefore, it can be predicted that the amount of flow irreversibility is 

also significantly dependent on the values of the buoyancy force.  

To analyze this issue, distributions of entropy generation numbers  Ns  on the bottom wall 

of enclosure are shown in Figure 6 at five different values of the Grashof number. Careful analysis 

of this figure reveals that the values of entropy generation number increase significantly by 

enhancing the magnitudes of Grashof number. To find out the reason for this increase, 

distributions of entropy generation numbers due to conductive heat transfer  cNs  and viscous 

fluid flow  vNs  are shown in Figures 7 and 8 at different values of Grashof number. A careful 

examination of these two figures shows that an enhancement in the magnitudes of Grashof 

number results in a significant increase in the amounts of the cNs  and vNs . Therefore, it can be 

said with certainty that the reason for the enhancement of the Ns  values against the Gr  is due to 

the increase of the magnitudes of the cNs  and vNs .  

 

(a) Gr=0  

 

(b) Gr=200000  

Fig. 4. Influence of Grashof number on the axial velocity fields in the enclosure under study 
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(a) Gr=0  

 

(b) Gr=200000  

Fig. 5. Influence of Grashof number on the temperature fields in the enclosure under study 

 

Fig. 6. Influence of Grashof number on the distributions of entropy generation numbers along 

the bottom wall of enclosure under study 
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Fig. 7. Influence of Grashof number on the distributions of entropy generation numbers due to 

conductive heat transfer along the bottom wall of enclosure under study 

 

Fig. 8. Influence of Grashof number on the distributions of entropy generation numbers due to 

viscous fluid flow along the bottom wall of enclosure under study 

To further study the impacts of the buoyancy force on the rates of flow irreversibility, the 

values of total entropy generation numbers  t
Ns  in the whole computational domain of the 

enclosure under study are presented in Figure 9 for five different values of the Grashof number. 

As can be seen from this figure, the flow irreversibility rate (total entropy generation number) 

enhances significantly as the Grashof number increases.  
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Fig. 9. Influence of Grashof number on the values of total entropy generation numbers along the 

bottom wall of enclosure under study 

It can be said that this increase is due to the fact that two effective terms on 
t

Ns  including 

the total entropy generation numbers due to conductive heat transfer  c t
Ns  and viscous fluid 

flow  vNs
t

 increase against the Grashof number (Please see Figures 10 and 11). 

 

Fig. 10. Influence of Grashof number on the values of total entropy generation numbers due to 

conductive heat transfer along the bottom wall of enclosure under study 
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Fig. 11. Influence of Grashof number on the values of total entropy generation numbers due to 

viscous fluid flow along the bottom wall of enclosure under study 

As it is mentioned before, one of the important parameters in the study of the flow 

irreversibility is the Bejan number  Be . Figures 12 (a) and (b) are presented to analyze the 

effects of the buoyancy force on the values of this parameter in the enclosure under study. In these 

figures, distributions of the Bejan number are shown at two different values of Grashof number. 

As can be seen from these figures, a decrease in the values of the Bejan number is registered by 

increasing the Grashof number. In other words, the highest values of Bejan number are related to 

the pure forced convection fluid flow. Based on the definition of Bejan number, it can be said that 

the contribution of total entropy number due to conductive heat transfer decreases significantly 

by increasing the Grashof number. 

 

(a) Gr=0  

 

(b) Gr=200000  

Fig. 12. Influence of Grashof number on the Bejan number fields in the enclosure under study 
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(a) Re=400  

 

(b) Re=800  

Fig. 13. Influence of Reynolds number on the axial velocity fields in the enclosure under study 

 

(a) Re=400  

 

(b) Re=800  

Fig. 14. Influence of Reynolds number on the temperature fields in the enclosure under study 
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To study the effects of Reynolds number  Re  on the flow and thermal behaviors in the 

enclosure under study, distributions of dimensionless axial velocity and temperature fields are 

shown in Figures 13 and 14. As it is clear from these figures, the values and trends of velocity 

and temperature fields are dependent on the values of Reynolds number. Besides, a detailed 

analysis of the results shows that the Reynolds number has a significant effect on the gradients of 

velocity and temperature near the enclosure walls, especially near the bottom wall.  

Therefore, it can be expected that the amount of the flow irreversibility are significantly 

dependent on the magnitudes of Reynolds number. To investigate this issue, distributions of 

entropy generation number on the bottom wall of enclosure are presented in Figure 15 for five 

different values of Reynolds number. As can be seen from this figure, there is a dual behavior for 

the variations of entropy generation number on the bottom wall of the enclosure in terms of 

Reynolds number. In fact, in the areas near the right wall of enclosure, the values of the entropy 

generation number enhance with increasing Reynolds number; whilst in other areas, this behavior 

is reversed. 

 

Fig. 15. Influence of Reynolds number on the distributions of entropy generation numbers along 

the bottom wall of enclosure under study 

 

Fig. 16. Influence of Reynolds number on the values of total entropy generation numbers along 

the bottom wall of enclosure under study 
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To better understand the effects of Reynolds number on the rates of flow irreversibility, the 

values of total entropy generation numbers in whole computational domain of enclosure under 

study are presented in Figure 16. It is clear from this figure that the rates of flow irreversibility 

increase significantly with raising the Reynolds number.  

To determine the contribution of total entropy generation due to conductive heat transfer in 

the amounts of the flow irreversibility in the enclosure under study, distributions of Bejan number 

fields are presented in Figures 17 (a) and (b) for two values of Reynolds number. These figures 

clearly show that the values of the Bejan number increase as the Reynolds number increases. 

Therefore, it can be said that the contribution of conductive heat transfer in values of the total 

entropy generation number increases significantly with increasing the Reynolds number. 

 

(a) Re=400  

 

(b) Re=800  

Fig. 17. Influence of Reynolds number on the Bejan number fields in the enclosure under study 
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wall. Therefore, it can be said that the maximum values of total entropy generation number occurs 

in the enclosure with high values of the inclination angle of side walls. 

 

Fig. 18. Influence of the inclination angle of side walls on the distributions of entropy 

generation numbers along the bottom wall of enclosure under study 

 

Fig. 19. Influence of the inclination angle of side walls on the values of total entropy generation 

numbers along the bottom wall of enclosure under study 
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 The modified blocked region method has a very high ability to simulate different 

surfaces in Cartesian coordinates. Such that, the calculations obtained from this method 

are very consistent with the results of previous studies. 

 The values of the entropy generation numbers on the bottom wall of the enclosure 

increase as the Grashof number increases. 

 The Reynolds number and inclination angle of side walls have a dual influence on the 

magnitudes of the entropy generation numbers on the bottom wall. 

 Any enhancement in the values of Grashof number, Reynolds number and inclination 

angle of side walls leads to a significant increase in the magnitudes of total entropy 

generation number (the flow irreversibility). Therefore, the optimal conditions for the 

design of thermal systems with a trapezoidal enclosure are related to the case of forced 

convection flow  0Gr  with the lowest values of Reynolds number  Re 400 and 

the inclination angle of side walls  50   . 

 The contribution of conductive heat transfer in the values of total entropy generation 

numbers (Bejan number) increases and decreases with increasing the Reynolds number 

and Grashof number, respectively. 

Nomenclature 

Be  Bejan number 

Gr  Grashof number 

H Enclosure height, (m) 

k  Thermal conductivity, (W.m-1.K-1) 

Ns  Entropy generation number 

p  Pressure, (N.m-2) 

P  Dimensionless pressure 

Pr  Prandtl number 

Re  Reynolds number 

gS  Entropy generation rate 

T  Temperature, (K) 

inU V  Average velocity of the incoming flow at the inlet section (m.s-1) 

u, v  x- and y-components of velocity, (m.s-1) 

U, V  Dimensionless x- and y-component of velocity 

Greek Symbols 

  Thermal diffusivity, (m2.s-1) 

  Constant volumetric expansion 

  Dynamic viscosity, (N.s.m-2) 

  Kinematic viscosity, (m2.s-1)  

  Density, (kg.m-3) 

    Dimensionless temperature 
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