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Abstract 

The problem of bending of an infinite plate containing an array of trough closable cracks and 

narrow slits is considered in a two-dimensional statement. A crack is treated as a mathematical 

cut, the edges of which are able to contact along the line on the plate outside. A slit is referred to 

as a cut with contact stress-free surfaces and the negative jump of normal displacement can occur 

on this cut. The crack closure caused by bending deformation was studied based on the classical 

hypothesis of direct normal and previously developed model of the contact of edges along the 

line. A new boundary problem for a couple of biharmonic equations of plane stress and plate 

bending with interconnected boundary conditions in the form of inequalities on the cuts is 

formulated. The method of singular integral equations was applied in order to develop 

approximate analytical and numerical solutions to the problem. The forces and moments intensity 

factors near the peaks of defects and contact reaction on the closed edges of the cracks are 

calculated. A detailed analysis was carried out for parallel rectilinear crack and slit, depending on 

their relative location. Presented results demonstrate qualitative differences in the stress 

concentration near the defects of different nature. 

Keywords: Plate bending, crack closure, slit, stress intensity factor, contact reaction. 

1. Introduction

An adequate prediction of the structural integrity of thin-walled structures is impossible without 

taking into account the phenomenon of the stress concentration in proximity to crack-like 

damages. Among the problems of the mechanics of cracks in plates and shells, there is a specific 

set of questions which are connected with the mutual interaction of the crack surfaces, which fall 

into the pressure zone. Such contact interaction of the edges of the defects can often significantly 

redistribute the stress field and affect the indicators of strength and durability of the construction. 

In the case of thin plates, these problems naturally arise when the plate is under bending strain, 

which gives different signs of tension on both sides of the median surface. From the mathematical 

standpoint, the research into the phenomenon of the closure of cracks should be conducted by 
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formulating and solving problems of the elasticity theory with specific boundary 

conditions (inequalities) on the cuts (i.e. Khludnev and Kovtunenko 2000). 

If the theory of slits or cracks with stress-free surfaces in bent plates has long been 

sufficiently developed (Williams (1961), Isida (1977), Berezhnitskii et al. (1979), Savruk (1981a, 

1981b), Murakami (1987), Zehnder and Viz (2005)), then the new phenomenon of partial closure 

of through cracks by the bending of plates has only been investigated within two-dimensional 

theories in the last decades. The most productive model here has been that of the contact of crack 

edges along a line (Jones and Swedlow (1975), Heming (1980), Shatsky (1988), Young and Sun 

(1992), Khludnev (1995), Khludnev and Kovtunenko (2000), Shatskii (2001), Bozhidarnik et al. 

(2006), Lazarev (2011)). This approach was developed by Shatskii (1989), Shatsky (1998), Liu 

et al. (1999), Shat’skyi and Perepichka (2004), Shats’kyi and Makoviichuk (2005), Shatskyi et 

al. (2017) to study the behavior of closable cracks under combined tension and bending. Certain 

problems for arrays of rectilinear contact cracks in plates and shells have been solved in the papers 

by Shatskii (1990, 1991), Shatsky (1998), Perepichka (1998), Shats’kyi and Dalyak (2000), 

Perepichka and Shats’kyi (2002), Dalyak (2004, 2019), Opanasovych and Selivestrov (2006), 

Opanasovych et al. (2008), Shats’kyi and Makoviichuk (2009), Shatskii and Makoviichuk (2011), 

Syasky and Muzychuk (2012), Dovbnya and Shevtsova (2014), Shats’kyi (2015), Dovbnya and 

Hryhorchuk (2016), Opanasovych and Slobodyan (2018). In the article by Shats’kyi and Dalyak 

(2002), the elastic equilibrium of the bent plate containing the rectilinear cracks, connected with 

coaxial slits, was addressed. Shatskyi and Dalyak (2015) built an analytical solution to the 

problem of interaction of contact crack and collinear slot in plate bending, which in limiting case 

of defect blending corresponds to the results (of the above cited) source. 

The purpose of this paper is to conduct analytical and numerical research of the two-

dimensional problem of interference of contact cracks and narrow slits in bending of the thin 

infinite plate. On this basis, we want to show qualitative differences in the distribution of stresses 

in proximity of the defects of different nature. In order to achieve the goal, we postulate the 

characteristic features of the two types of defects (crack and slit) and formulate the boundary 

problem of the classical theory of plates with conditions in the form of inequalities on the cuts 

contours. Hence, by the method of singular integral equations we are building an asymptotic and 

numerical solution to the problem and analyze the results of the calculations in case of the 

interaction of two parallel rectilinear cuts – a crack and a slit. Brief conclusions conclude the 

article. Certain data of this paper were delivered in the lecture Shatskyi and Dalyak (2018) earlier. 

2. Model and method

2.1 Formulation of the problem 

We shall start with the terminology and arrangements introduced by Shatskyi and Dalyak (2018). 

A crack is understood as a mathematical cut with zero spacing between its edges, which may 

contact without mutual penetration. At the same time, a slit is understood as a physical cut with 

small spacing between the edges. However, in a model performance we understand it as a 

mathematical cut with surfaces free from contact stresses, on which a negative displacement jump 

is possible. The level of bending load is considered to be such that the edges of the slit do not 

touch each other under any circumstances. This interpretation allows us to distinguish defects by 

type of boundary conditions.  

Let us consider the infinite isotropic plate 
2

( , , ) [ , ]x y z h h  R  containing the array of N

rectilinear arbitrary oriented cuts. In the Cartesian system xOy , the geometry of their location is 

described by such parameters: 
0
nx , 

0
ny  are coordinates of the middle of 2 nl  long n-th cut, n  is 
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inclination angle of the defect to the abscissa axis. We dispose the local coordinate systems 

n n nx O y  on the cuts, so that the point nO  would be in the center of the segment ( , )n nl l , and the 

axis n nO x  would be direct along the defect line. Let us assume that among the N  cuts there are 

1N  cracks, the aggregate contours of which create the set cL . The remaining defects 1( )N N  

will be the slits with multiple contours sL  (Fig. 1).  

The plate is bent by the moments set on the cuts and on the infinity. It is necessary to study 

the influence of the mutual location of defects of different nature on the stressed state of the plate. 

 

Fig. 1. The system of cracks and slits. 

Consideration of the interaction of edges on at least one cut by bending will disrupt the 

antisymmetry of the fields of stress and displacements by thickness in the whole plate. In addition 

to the discontinuities of the rotation angles of the normal, jumps of the displacements appear on 

the cuts in the middle surface of the plate. So we describe the stress state of the plates outside of 

the defects using the couple of biharmonic equations corresponding to classical theories of plane 

stress state and plate bending:  

 
2

0, 0, ( , ) \ ( )c sw x y L L    R  (1) 

where   is stress function, w is plate flexure,   is two-dimensional Laplace operator.  

The boundary conditions on the cuts depend on the type of the defects. Therefore, conditions 

of smooth contact of the edges along a line are set out on the edges of the cracks (Shatskyi (1988), 

Shatskii (1989)):  

 [ ]( ) | [ ] ( ) | 0, ( , 0) 0
n n ny n y n n x y nu x h x N x    
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 1 1
( , 0) ( ) ( , 0)sgn[ ], ( , 0) ( )

n n n n ny n n n y n y x y n n n nM x m x h N x M x p x C 
       (2) 

 1( , 0) 0, ; 1, ;
ny n n n cN x x L L n N     

as well as conditions of the free edge for slits (Williams (1961), Isida (1977), Berezhnitskii et al. 

(1979), Savruk (1981a, 1981b)): 

 ( , 0) 0, ( , 0) 0
n n ny n x y nN x N x   

 1 1
1( , 0) ( ), ( , 0) ( ) , , 1,

n n ny n n n x y n n n n n n sM x m x M x p x C x L L n N N


          (3) 

Bending and twisting moments as well as membrane forces are set up on infiniteness: 

 , , , 0, ( , )y y x x xy xy y x xyM m M m M m N N N x y
  

        (4) 

Here and hereafter , ,x y xyN N N  are membrane forces, , ,x y xyM M M  are moments, 
xyM
  is 

generalized torsional moment, [ ], [ ]
n ny xu u  are the jumps of the displacements in the middle 

surface, [ ] [ / ], [ ] [ / ]
n ny n x nw y w x        are the discontinuities of the rotation angles of 

the normal on the cut nL , 
1 1

( ), ( )n n n nm x p x  are of constant signs loads given on the cuts edges, 

nC  are arbitrary constants.  

2.2 Integral equations 

To construct the solution to the problem (1)–(4), we used the variant of the method of singular 

integral equations described by Savruk (1981b). Integral expressions of the forces and moments 

on the cutting line nL  irrespective of the defect type are as follows: 

  11 12

1

( ,0) ( , )[ ] ( ) ( , )[ ] ( )
4

k

n k k

k

lN

y n nk n y nk n x
k l

B
N x K x u K x u d    

  

     

  21 22

1

( , 0) ( , )[ ] ( ) ( , )[ ] ( )
4

k

n n k k

k

lN

x y n nk n y nk n x
k l

B
N x K x u K x u d    

  

     

  0 33 34

1

( ,0) ( , )[ ] ( ) ( , )[ ] ( )
4

k

n k k

k

lN

y n n nk n y nk n x
k l

Da
M x m K x K x d      

  

      

  0 43 44

1

( ,0) ( , )[ ] ( ) ( , )[ ] ( )
4

k

n n k k

k

lN

x y n n nk n y nk n x
k l

Da
M x p K x K x d      





 

      (5) 

Where  
0 2 2

cos sin sin 2n n y n x n xy nm m m m m    
    , 0

cos2 ( )sin 2 / 2n xy n y x np m m m   
    

are functions of the so-called main stress state of the plate without defects, 2B Eh , 
3 2

2 (3(1 ))D Eh   , (3 )(1 )a     , E  and   are Young’s modulus and Poisson's ratio for 

the plate material. The dash indicates the derivative with respect to a coordinate.  

Kernels of expressions (5) (Savruk (1981a, 1981b)) contain singular additive of Cauchy type 

at n k  and i j , and a regular part dependent on the reciprocal location of the cuts.  
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Having satisfied the boundary conditions (2) for closable cracks and (3) for narrow slits, we 

obtained the system of singular integral equations: 

 [ ] ( ) [ ] ( ) sgn[ ]( ) 0
n ny n yn n y nu x h x x     

  21 22

1

( , )[ ] ( ) ( , )[ ] ( ) 0
4

k

k k

k

lN

nk n y nk n x
k l

B
K x u K x u d    

  

     

 

 

 

11 12

1

33 34

1

sgn[ ]( ) ( , )[ ] ( ) ( , )[ ] ( )
4

( , )[ ] ( ) ( , )[ ] ( ) ( )
4

k

k k

k

k

k k

k

lN

y n nk n y nk n x
k l

lN

nk n y nk n x n n
k l

Bh
x K x u K x u d

Da
K x K x d m x

     


      


 

 

 

   

 

 

 

  43 44

1

( , )[ ] ( ) ( , )[ ] ( ) ( )
4

k

k k

k

lN

nk n y nk n x n n n
k l

Da
K x K x d p x C      

  

      

 1, 1,n n сx L L n N    

  11 12

1

( , )[ ] ( ) ( , )[ ] ( ) 0
4

k

k k

k

lN

nk n y nk n x
k l

B
K x u K x u d    

  

     

  21 22

1

( , )[ ] ( ) ( , )[ ] ( ) 0
4

k

k k

k

lN

nk n y nk n x
k l

B
K x u K x u d    

  

     

  33 34

1

( , )[ ] ( ) ( , )[ ] ( ) ( )
4

k

k k

k

lN

nk n y nk n x n n
k l

Da
K x K x d m x      

  

     

  43 44

1

( , )[ ] ( ) ( , )[ ] ( ) ( )
4

k

k k

k

lN

nk n y nk n x n n n
k l

Da
K x K x d p x C      

  

      

 1, 1,n n sx L L n N N     (6) 

Here 
0 1

( ) ( )n n n n nm x m m x  , 
0 1

( ) ( )n n n n np x p p x  .  

Additional conditions  

 [ ]( ) 0, [ ]( ) 0, [ ]( ) 0, [ ]( ) 0, [ ] ( ) 0, 1, .
n n n ny n x n y n x n n nu l u l l l w l n N             (7) 

provide an one-valued solvability of singular integral equations, restoration of unknown functions 

by their derivatives and finding constants nC .  

Thus, the boundary problem (1)–(5) for the plate with the array of 1N  cracks and 1N N  

slits is settled to the system of N singular integral equations (6) with additional conditions (7).  



Taras M. Dalyak et al.: INTERFERENCE OF CLOSABLE CRACKS AND NARROW SLITS IN AN… 

 

 

56 

3. Results and discussion 

3.1 Solution 

The solution to the problem (6), (7) was obtained through the asymptotic technique of small 

parameter and numerical method of mechanical quadratures (Savruk 1981b). 

Let us use dimensionless variables kl  , n nx l t  and introduce new denotations: 

 1 2[ ] ( ) ( ), [ ] ( ) ( ),
4 4n ny n n y n n

B B
u x f t u x f t      

 3 4[ ] ( ) ( ), [ ] ( ) ( )
4 4n ny n n x n n

Da Da
x f t x f t         

 ( , ) ( , ), ( ) ( ), ( ) ( )
ij ij

k n n n n n n nnk nkl K x K t m x m t p x p t     

Then, the equations (6) and (7) will be written as follows:  

 1 3( ) ( ) ( ) 0n n nhs t f t f t    

  
1

21 22
1 2

1 1

1
( , ) ( ) ( , ) ( ) 0

N

nk k nk k
k

K t f K t f d    
  

     

 

 

 

1
11 12

1 2
1 1

1
33 34

3 4
1 1

( )
( , ) ( ) ( , ) ( )

1
( , ) ( ) ( , ) ( ) ( ) ,

N
n

nk k nk k
k

N

nk k nk k n
k

h s t
K t f K t f d

K t f K t f d m t

    


    


 

 

 

    

 

 

 

  
1

43 44
3 4 1

1 1

1
( , ) ( ) ( , ) ( ) ( ), ( 1, 1), 1,

N

nk k nk k n n
k

K t f K t f d C p t t n N    
  

         

  
1

11 12
1 2

1 1

1
( , ) ( ) ( , ) ( ) 0

N

nk k nk k
k

K t f K t f d    
  

     

  
1

21 22
1 2

1 1

1
( , ) ( ) ( , ) ( ) 0

N

nk k nk k
k

K t f K t f d    
  

     

  
1

33 34
3 4

1 1

1
( , ) ( ) ( , ) ( ) ( ) ,

N

nk k nk k n
k

K t f K t f d m t    
  

      

  
1

43 44
3 4 1

1 1

1
( , ) ( ) ( , ) ( ) ( ), ( 1, 1), 1,

N

nk k nk k n n
k

K t f K t f d C p t t n N N    
  

          (8) 

 
1

4
1

( 1) 0, ( ) 0, 1,4,  1,in nf f d i n N 


      (9) 

We should separately discuss the multipliers 3 1( ) sgn ( ), 1,n ns t f t n N   in the first and the 

third equations (8). Thanks to these multipliers, the system (8) is nonlinear.  
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From the definition of function 3 ( )nf t , it follows that ( ) sgn[ ]( )
nn y ns t x  , and the line of 

the crack edges’ contact belongs to the front surface nz s h . According to the initial assumption, 

the contact conditions (2) are followed along the whole length of each crack, and ( )nm t  have a 

constant sign on each 1, 1,nL n N . Then, we should hope that ( )ns t  is a constant, different for 

each crack: 1( ) , ( 1, 1), 1,n ns t s t n N    , where 1ns    or 1ns   .  

Thus, using the classical Kirchhoff hypothesis about the direct normal, we took down the 

three-dimensional problem of the elasticity with an unknown two-dimensional contact area to a 

two-dimensional problem of the theory of plates with unknown contact lines in front surfaces. 

An additional assumption about the loads of constant sign narrowed down the search for these 

contact lines to finding 1N  of the unknown signs 1ns   . Technically, at this stage the iterative 

procedure is necessary with the control over the kinematic and power inequalities in boundary 

conditions (2).  

As we know from Savruk’s monograph (1981b), the kernels of equations (8) develop in the 

series of the kind  

 1

1 0

( , )
p

ij nkij ij q p q p
nk nkpq

p q

K t a t
t

 
  




 

 

 


   

where max{2 }/ min{ }n nk
n kn

l d


  is the  small non-dimensional parameter, 

0 0 2 0 0 2
( ) ( )nk n k n kd x x y y     is the distance between the centers of defects, ij

nkpqa  are the 

coefficients, dependent on the geometry of the reciprocal location of the cuts, ij  is Kronecker 

delta.  

Analytical results for derivative of the jumps of the displacements and rotation angles of the 

normal were received in the form of asymptotic series by parameter  , which is small at long 

distances between the defects. Thus,  

 , ,
0 0

( ) ( ) ,
p p

in in p n n p
p p

f t f t C C 
 

 

     (10) 

By substituting the formulae (10) in the relations (8), (9) and equating the components with the 

same degree  , we obtained a chain of singular integral equations with the Cauchy-type kernel, 

which have a closed analytical solution in the functions class with the singularity (–1/2) on the 

ends of the interval.  

Additionally, by assuming that ( ) const, ( ) const, 1,2n n n nm t m p t p n      we found the 

component of the distribution of the required functions on cracks:  

 1 , 3 ,( ) ( )n p n n pf t s f t
h


   

  
1

21 22
2 , 1 , 1 2 , 1

2 1 0 0

1
( ) ( )

1

pN r
q q

n p r q nkrq nkrqk p r k p r
k r q
k n

f t H t a G a G

t



    
  


  


    
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  

3 , 0
2

1
11 12 33 34

1 , 1 2 , 1 3 , 1 4 , 1
1 1 0

1
( )

11

( )

1

n
n p p

pN r
r q q q q q

n nkrq nkrq nkrq nkrqk p r k p r k p r k p r
k r q
k n

m t
f t

t

H t
s h a G a G a G a G









       
  



  




    

 
  

 

 



 

4 , , 0
2

1
43 44

13 , 1 4 , 1
1 1 0

1
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1

( ) , 1,
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on slits:  
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and also the components of the constants on all defects:  
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Thus, by integrating along t  derivatives in expressions (11) and (12) under the conditions 

(9), we determined the functions themselves , ( )in pf t . The set ns  may be found by the naught 

members of the functions’ distributions 3 ( )nf t , namely:  
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     2 2 2
3 3 ,0 1sgn ( ) sgn ( ) ( ) sgn 1 ( ) sgn , 1,n n n n ns f t f t O t m O m n N          

If 0nm   on a crack or it is very insignificant compared to the load on other defects, then 

ns  is determined by higher approximations.  

For the factors of intensity of forces and moments, we have the expressions:  

 2 2

1 1
lim 1 ( ) lim ( ) 1 , 1, 4, 1,in n in n in
t t

K l t f t l f t t i n N


 

       

We also obtained the analytical expression of contact forces on the crack lines:  
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3.2 The mutual influence of two parallel defects (crack and slit) 

Let the infinite elastic plate is weakened by a dyad of two through parallel rectilinear defects – 

the crack and the slit ( 2N  , 1 1N  ), each 2l  long, with distance d  between the centers 

(Fig. 2). 

 

Fig. 2. Parallel crack and slit in plate under uniform bending 

We considered that the plate is free from bending load on infinity ( 0y x xym m m
  
   ) and 

under the influence of a uniform bending on each defect with the bending moment (
1 1

( ) const, ( ) 0,  1, 2n n n n nm x m p x n    ). Then ( ) , ( ) 0, 1,2n n nm t m p t n   . For this case 

we obtained and investigated analytical and numeric solutions to the problem, depending on the 

dimensionless parameter 2 /l d  , which characterizes mutual location of the defects.  
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Namely, the coefficients of the intensity of forces and moments were calculated by the 

asymptotic formulae at crack: 

2
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and at slot:  
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Here and hereafter 0 (1 ) (3 )     .  

Consequently, the expression for the contact reaction is:  
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 (15) 

The sign of the function 31( )f t  overall was determined by the two members of the 

distribution:  
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If such 1s  is chosen, all contact inequalities on the crack are performed asymptotically, 

namely: 1 11( ) 0 0f t K    and 
1
( , 0) 0yN t  .  

3.3 Discussion 

The numerical analysis of the problem was done in the range of [0, 5] , assuming 0.3  .  

We considered four cases of loads on the defects’ edges:  

1) the crack and the slit are loaded by moments with identical signs: 1 2,m m m m  ;  

2) the crack and the slit are loaded by moments with different signs: 1 2,m m m m   ;  

3) only the crack is loaded with a bending moment: 1 2, 0m m m  ;  

4) only the slit is loaded with a bending moment: 1 20,m m m  ;  

The analysis has shown that the solution to the non-linear problem is non-contradictory. In 

the first three cases, 1s  is defined by the sign of the load on the crack: 1 1sgn sgns m m  , and 

in the fourth case it is opposite to the sign of the load on the slit: 1 2sgn sgns m m    .  

The results of the calculations, dependent on the reciprocal situation of the defects, are given 

in Figs. 3–6. For the coefficients of intensity of forces and moments, we have adopted the 

normalizing 1 1 / (| | )n nK hK m l


 , 2 2 / (| | )n nK hK m l


  , 3 3 / ( )n nK K m l


 , 

4 4 / ( )n nK hK m l


  , 1,2n  , and for the non-dimensional contact reaction – 

1
( , 0)/ | |y yN hN t m . Solid lines on the graphs are built by the numerical data, and the dashed 

lines – by the asymptotic expressions (13), (14).  

In case of the impact of normal bending moments on the defects, the intensity coefficients 

1 3,n nK K  are dominant, which are responsible for the exposure of the defects (mode I). Here, the 

intensity coefficients 2 4,n nK K  (mode II) are insignificant and for this reason we will not analyze 

them.  

In the first three instances (Figs. 3–5), when the crack is loaded, the coefficient of the 

intensity of the moments 31K  decreases and a considerable coefficient of the intensity of forces 

11K  appears, caused by the edge contact. At the same time, a significant coefficient of the 

intensity of the moments 32K  is preserved on the loaded crack (cases 1), 2), 4), Figs. 3, 4) and 

an insignificant coefficient of the intensity of forces 12K  appears, induced by the closure of the 

adjacent crack. Additionally, for all four cases of the loading we observe 12 0K  , which is 

evidence of the negative jump of the normal displacement in the median surface on the slit. In the 

fourth case (Fig. 6), all intensity coefficients are insignificant on the unloaded crack.  

During the approximation of the defects, which is interpreted as the increase of the parameter 

 , the dominant coefficients of the intensity of forces 1nK  and moments 3nK  decrease in the 

case of loading with identical sign (Fig. 3). At the same time, the increase in the parameter   

leads to the increase of the coefficients 1 3,n nK K  in all the other cases of loading (Figs. 4–6).  
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Fig. 3. The intensity factors of forces ( 1 2, n nK K ) and moments ( 3 4, n nK K ) and distribution  

of contact reaction yN  in the case of loadings of identical sign: 1 2,m m m m   

(Shatskyi and Dalyak (2018))  
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Fig. 4. The intensity factors of forces ( 1 2, n nK K ) and moments ( 3 4, n nK K ) and distribution  

of contact reaction yN  in the case loadings of different sign: 1 2,m m m m    
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Fig. 5. The intensity factors of forces ( 1 2, n nK K ) and moments ( 3 4, n nK K ) and distribution  

of contact reaction yN  in the case of loading of the crack edges: 1 2, 0m m m     
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Fig. 6. The intensity factors of forces ( 1 2, n nK K ) and moments ( 3 4, n nK K ) and distribution  

of contact reaction yN  in the case of loading of the slit edges: 1 20,m m m     
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The regularities of the distribution of the contact reaction on the crack edges are as follows. 

If   increases, then the interaction of the edges near the middle of the crack abates in cases 1) 

and 3) (Figs. 3, 5) and non-monotonically depends on   in the case of loading with different 

signs (case 2), Fig. 4). Near the ends of the crack, the case is the opposite: yN  changes non-

monotonically in cases 1), 3) and monotonically increases in case 2). The phenomenon of the 

reduction in the module of contact effort near the middle of the crack, located in proximity to the 

slit, is similar to the effect of interaction of the crack with the free edge of the semi-infinite plate 

(Dalyak et al. (2003)) or with a circular hole free from stress (Slobodyan (2005)).  

In the fourth case of the unloaded crack, yN  is naturally absent at 0  , thus, the contact 

interaction intensifies at the approximation of the defects (Fig. 6).  

Additionally, it should be noted that the presence of the cracks increases the stress field 

around the crack compared with the case of the interaction of two parallel cracks, studied by 

Shats’kyi and Dalyak (2000).   

For small values of  , the same behavior of intensity factors and contact reaction is 

qualitatively represented also by asymptotic formulae (13)–(15). If we accept the numerical 

results as accurate, then the relative error of the calculation of significant coefficients of intensity 

by the formulae (13), (14) at 1   (read at 2d l ) does not exceed 4%. 

4. Conclusions 

We have suggested a calculation scheme, which allows research of the effects of interaction of 

closable (contact) cracks and narrow slits within the assumes of the classic theory of plates. By 

the method of singular integral equations, we have constructed an asymptotic solution to the 

problem of a series of randomly situated rectilinear defects.  

On the bases of the asymptotic and numerical solutions, obtained for the pair of interacting 

parallel defects of varying nature at four types of bending stress, it has been determined that a 

crack closure decreases the bending moments intensity in the neighborhoods of the tips of the 

crack, and it also produces nonzero value of coefficients of intensity of membrane forces in the 

peaks of both defects.  

The accuracy of the obtained asymptotic formulae is acceptable if the distance between the 

defects exceeds their length.  
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