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Abstract 

In this study, a new numerical method based on the combination of High Exploration Particle 

Swarm Optimization (HEPSO) and Moving Least Squares (MLS) is introduced to solve nonlinear 

porous media equations. The MLS scheme is employed to describe an appropriate discretized 

function, and the penalty method is implemented to convert the constrained problem into an 

unconstrained one via satisfying the initial conditions. The identified objective function is 

minimized by the HEPSO to find the approximated nodal values for the nonlinear porous media 

equation. In order to illustrate the effectiveness of the HEPSO, the optimization trajectories are 

compared with those of a Standard Particle Swarm Optimization (SPSO) algorithm. Moreover, 

comparisons are made between the exact solution and the introduced strategy to expose the 

accuracy, effectiveness and simplicity of the proposed method. 

Keywords: Moving least square, penalty method, porous media equation, numerical solution, 

high exploration particle swarm optimization. 

1. Introduction

Nonlinear partial differential equations as mathematical models frequently appear in many 

branches of science, engineering and economy. Many models have no closed form solutions and, 

hence, there is a need to seek approximate solutions by means of numerical methods. To name 

just a few, İzgi and Çetin (2018) implemented semi-implicit split-step numerical methods for a 

class of nonlinear stochastic differential equations with non-Lipschitz drift terms. Firoozjaee and 

Yousefi (2018) utilized using Ritz approximation and proposed a numerical approach for 

fractional partial differential equations. Fakhar-Izadi and Dehghan (2018) suggested a numerical 

approach based on the fully spectral collocation method for nonlinear parabolic partial integro-

differential equations. In order to solve hyperbolic partial differential equations, Doha et al. 

(2019) successfully applied a shifted Jacobi spectral-Galerkin method. Zhou and Zhang (2019) 

employed one-leg methods for nonlinear stiff fractional differential equations with Caputo 

derivatives. Esmaeilbeigi et al. (2019) developed a finite difference based numerical scheme to 
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analyze time-dependent stochastic partial differential equations using an especial type of the 

partition of unity collocation method. Li and Wang (2019) combined Galerkin approaches and 

finite element methods to numerically solve Caputo-type partial differential equations. Yang et 

al. (2019) presented numerical blow-up analysis of the linearly implicit Euler method for 

nonlinear parabolic integro-differential equations. Zenget al. (2019) exploited a novel numerical 

approach based on the discrete least squares collocation method for two-dimensional nonlinear 

time-dependent partial differential equations. 

On the other hand, porous media equations form an important class of dynamical systems 

which often occurs in nonlinear heat and mass transfer, combustion theory and flows in porous 

media problems (Polyanin and Zaitsev, 2004). For instance, it describes unsteady heat transfer in 

a quiescent medium with the heat diffusivity as a power-law function of a temperature (Pamuk, 

2005). Consequently, many attempts have been conducted by researchers to investigate the 

nonlinear porous media equation in the last decade. For instance, Antoniouk and Arnaudon (2014) 

developed the variational principle to present the solutions of the weighted porous media 

equation. Jensen et al. (2014) investigated the porous media equations and resistance coefficients 

for coastal structures. Duque et al. (2015) studied the moving mesh method to analyze the porous 

media equation with variable exponent. Campos and Soler (2016) investigated the qualitative 

behavior and traveling waves for flux-saturated porous media equations arising in optimal mass 

transportation. Grillo and Muratori (2016) examined smoothing effects for the porous media 

equation on Cartan–Hadamard manifolds. Röckner et al. (2018) inspected stochastic porous 

media equation on general measure spaces with increasing Lipschitz nonlinearities. Dareiotis et 

al. (2019) reconnoitered entropy solutions for stochastic porous media equations. Duan et al. 

(2019) probed an energetic variational approach to represent numerical solutions for the porous 

media equation. 

In pursuance to this, we propose modifications in the existing methods to solve porous media 

equations based on the new heuristic method introduced by Mahmoodabadi et al. (2014 and 

2018). To this end, the MLS scheme is employed to describe an appropriate discretized function, 

and the penalty method is implemented to convert the constrained problem into an unconstrained 

one via satisfying the initial conditions. The identified objective function is minimized by the 

HEPSO to find the approximated nodal values for the nonlinear porous media equation and results 

are compared with SPSO. From the obtained results, it is observed that the proposed new method 

is consistent, stable and accurate to solve the nonlinear porous media equation. 

The rest of this paper is structured as follows. Section 2 states the governing nonlinear porous 

media differential equation. Section 3 briefly introduces the SPSO and HEPSO algorithms. The 

MLS scheme and discretization of the porous media equation are mentioned in Sections 4 and 5, 

respectively. The simulation results and the comparisons are discussed in Section 6. Section 7 

concludes the results of this study. 

2. Porous media differential equation 

Consider the nonlinear porous media differential equation as follows (Pamuk, 2005). 

 
𝜕𝜓

𝜕𝜏
=

𝜕

𝜕𝜁
(𝜓𝑟 𝜕𝜓

𝜕𝜁
), (1) 

where, 𝑟 is a rational number, 𝜁 represents position coordinate, 𝜏 denotes the time, and 𝜓 signifies 

desired variable of the equation. Let us respect 𝑟 =  1 in Eq. (1); therefore, the equation is 

rewritten as follows. 

 
𝜕𝜓

𝜕𝜏
=

𝜕

𝜕𝜁
(𝜓

𝜕𝜓

𝜕𝜁
), (2) 
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with the initial condition of 

 𝜓(𝜁, 0) = 𝜓𝜁,0, (3) 

and boundary conditions of 

 𝜓(0, 𝜏) = 𝜓0,𝜏  and 𝜓(1, 𝜏) = 𝜓1,𝜏. (4) 

3. High exploration particle swarm optimization 

The general form of the Standard PSO (SPSO) equations could be written as follows (Sibalija, 

2019): 

 𝜙⃗ 𝑖(𝑡 + 1) = 𝑤 𝜙⃗ 𝑖(𝑡) + 𝛼𝑟1⃗⃗⃗   (𝜓⃗ 𝑝𝑏𝑒𝑠𝑡𝑖
(𝑡) − 𝜓⃗ 𝑖(𝑡)) + 𝛽𝑟2⃗⃗⃗   (𝜓⃗ 𝑔𝑏𝑒𝑠𝑡(𝑡)  − 𝜓⃗ 𝑖(𝑡)) (5) 

 𝜓⃗ 𝑖(𝑡 + 1) = 𝜓⃗ 𝑖(𝑡) + 𝜙⃗ 𝑖(𝑡 + 1) (6) 

where, 𝜓⃗ 𝑖(𝑡)  and 𝜙⃗ 𝑖(𝑡) describe the position and velocity of the particle 𝑖 at certain iteration 𝑡, 

respectively. Coefficients 𝛼 and 𝛽 denote the tendency of the particle to the personal and social 

successes, respectively 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗ are random vectors in interval [0,1], and 𝑤 illustrates the effect 

of the particle velocity at the previous iteration on the next one. Furthermore, 𝜓⃗ 𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) and 

 𝜓⃗ 𝑔𝑏𝑒𝑠𝑡(𝑡)  are personal and global best positions of the particle 𝑖 and the swarm at iteration 𝑡, 

respectively. 

In the HEPSO algorithm, two operators are added to the PSO equations. The first one is 

based on the multi-crossover mechanism of the genetic algorithm and the other one is obtained 

via artificial bee colony.  

Genetic algorithm operation: According to multiple-crossover idea, a new formulation for 

the velocity of a particle is proposed as follows: 

 𝜙⃗ 𝑖(𝑡 + 1) = 𝑟  (
𝛽

2
 𝜓⃗ 𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝜓⃗ 𝑝𝑏𝑒𝑠𝑡𝑖

(𝑡) − 𝜓⃗ 𝑖(𝑡)), (7) 

where, 𝑟  is a vector of random values between [0,1].  

Artificial bee colony operation: The main operator of the artificial bee colony algorithm is 

utilized to determine the new position of particle 𝑖 in dimension 𝑑 as the following equation. 

 𝜓𝑖
𝑑(𝑡 + 1) = 𝜓𝑖

𝑑(𝑡) + (2𝑟 − 1)(𝜓𝑖
𝑑(𝑡) − 𝜓𝑗

𝑑(𝑡)), (8) 

where, 𝑟 is a random value between [0,1]. 𝑗 is an integer random number between 1 and the 

maximum number of particles. 

4. Moving least square 

The moving least square approximation is formulized in this section. At first, the shape function 

χ(x𝑖) for a selected point x𝑖 = [𝜏𝑖 , 𝜁𝑖]
𝑇 ∈ Ψ is defined by: 

 χ(x𝑖) = 𝜔𝑇(x𝑖)Γ
−1(x)Ε(x) for x ∈ Ψ𝑑, (9) 

where, 𝜔𝑇(x𝑖) = [1, x𝑖
1, x𝑖

2, x𝑖
3, … , x𝑖

𝑚] is the monomial basis vector of order 𝑚; and matrices Γ(x) 

and Ε(x) are calculated by the following relations. 

 Γ(x) = Ω𝑇ΛΩ , (10) 
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 Ε(x) = Ω𝑇Λ, (11) 

where, Ω = [𝜔(x1), 𝜔(x2), … , 𝜔(x𝑛)]
𝑇 is the monomial basis matrix; 𝑛 refers to the number of 

nodes in the supporting domain Ψx of the global domain Ψ; and Λ represents the diagonal weight 

function matrix whose jth diagonal member is calculated by the following equation. 

 𝜆𝑗(x𝑖) = {
1 − 6(

𝜌̅𝑖𝑗

𝜌
)2 + 8(

𝜌̅𝑖𝑗

𝜌
)3 − 3(

𝜌̅𝑖𝑗

𝜌
)4               0 ≤ 𝜌̅𝑖𝑗 ≤ 𝜌

0                                                                       𝜌̅𝑖𝑗 ≥ 𝜌 
, (12) 

where, 𝑗 = 1,2, … , 𝑛; 𝜌̅𝑖𝑗 is the distance between points x𝑖 and x𝑗; and 𝜌 represents the size of the 

supporting domain. After calculation of the shape function χ(x𝑖), the unknown value 𝜓ℎ(x𝑖) is 

approximated from the nodal values 𝜓̂(x) as bellow (Mahmoodabadi et al., 2018) 

 𝜓ℎ(x𝑖) = χ(x𝑖)𝜓̂(x). (13) 

5. Discretization of the porous media equation 

In this section, the objective function of the problem is identified for minimization by the detailed 

HEPSO algorithm. Suppose that x𝑖 = [𝜏𝑖 , 𝜁𝑖]
𝑇 denotes ith nodal position on the problem domain, 

and 𝜓̂(x𝑖) indicates the approximation function value at x𝑖. Using Eq. (13), Eq. (2) could be 

rewritten for ith node as follows. 

 
𝑑χ(x𝑖)

𝑑𝜏
𝜓̂(x𝑖)  −

𝑑χ(x𝑖)

𝑑𝜁
[𝜓̂(x𝑖)(

𝑑χ(x𝑖)

𝑑𝜁
𝜓̂(x𝑖))] = 0 (14) 

The summation of absolute values of these equations for all nodal points generates the first 

part of the discretized objective function. 

 ∑ |
𝑑χ(x𝑖)

𝑑𝜏
𝜓̂(x𝑖)  −

𝑑χ(x𝑖)

𝑑𝜁
[𝜓̂(x𝑖)(

𝑑χ(x𝑖)

𝑑𝜁
𝜓̂(x𝑖))]|

𝑀
𝑖=1 = 0, (15) 

where, 𝑀 is the total number of nodes.  

If the penalty method is utilized to impose the initial and boundary conditions, then: 

∑ |
𝑑χ(x𝑖)

𝑑𝜏
𝜓̂(x𝑖)  −

𝑑χ(x𝑖)

𝑑𝜁
[𝜓̂(x𝑖)(

𝑑χ(x𝑖)

𝑑𝜁
𝜓̂(x𝑖))]|

𝑀
𝑖=1 + Γ1|𝜓(𝜁, 0) − 𝜓𝜁,0| + Γ2|𝜓(0, 𝜏) −

𝜓0,𝜏| + Γ3|𝜓(1, 𝜏) − 𝜓1,𝜏| = 0  

(16) 

 

where, Γ𝑖 (𝑖 = 1,2,3) ≫ 1 are the penalty parameters.  

6. Numerical results and comparisons 

In this section, the introduced strategy based on the HEPSO and MLS is applied to analyze the 

porous media nonlinear differential equation illustrated by Eq. (2). If 𝑀 is the total number of 

nodes, the population size of optimization algorithm is considered as 10 × 𝑀; its maximum 

number of iterations is set as 500 × 𝑀, while the penalty parameters are set at Γ𝑖 = 100 (𝑖 =
1,2,3). The characteristics of the SPSO and HEPSO algorithms are presented in Table 1. The 

global domain is considered as 𝜏 ∈ [0,1] and 𝜁 ∈ [0,1] with the supporting domain size 𝜌 =
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1.001 for different distances between nodal points in 𝜏 direction (ℎ𝜏) and 𝜁 direction (ℎ𝜁). The 

problem is solved for several different initial and boundary conditions illustrated in the following 

examples. 

6.1. Illustrative Example 1 

Consider the problem of the porous media with governing Eq. (2) and the following initial and 

boundary conditions:  

 𝜓(𝜁, 0) = 𝜁, 𝜓(0, 𝜏) = 𝜏,  𝜓(1, 𝜏) = 1 + 𝜏 (17) 

The exact solutions for this problem is as follows: 

 𝜓(𝜁, 𝜏) = 𝜁 + 𝜏 (18) 

Algorithm Parameters 

SPSO 𝛼 = 3; 𝛽 = 3; 𝑤 = 1 

HEPSO 
𝛼1𝑖 = 2.5; 𝛼1𝑓 = 0.5; 𝛽2𝑖 = 0.5; 𝛽2𝑖 = 2.5; 𝑤=adaptive; 𝑃𝐶 =

0.95; 𝑃𝐵 = 0.02 

Table 1. Parameter configurations of the optimization algorithms. 

 

Fig. 1. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.5 and ℎ𝜁 = 0.5 (Example 1). 

 

Fig. 2. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.5 and ℎ𝜁 = 0.25 (Example 1). 
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Fig. 3. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.5 and ℎ𝜁 = 0.2 (Example 1). 

 

Fig. 4. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.5 and ℎ𝜁 = 0.125 (Example 1). 

 

Fig. 5. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.5 and ℎ𝜁 = 0.1 (Example 1). 

 

Fig. 6. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.25 and ℎ𝜁 = 0.5 (Example 1). 
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Fig. 7. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.2 and ℎ𝜁 = 0.5 (Example 1). 

 

Fig. 8. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.125 and ℎ𝜁 = 0.5 (Example 1). 

 

Fig. 9. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.1 and ℎ𝜁 = 0.5 (Example 1). 
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ℎ𝜏 ℎ𝜁 Objective function of 

HEPSO 

Objective function 

of SPSO 

Error of 

HEPSO  

Error of 

SPSO 

0.5 

0.1 0.0060136 9.1232 9.4037e-05 0.07413 

0.125 0.0032618 6.2153 5.7964e-05 0.08864 

0.2 0.00036714 2.7687 8.8421e-06 0.040681 

0.25 0.00032032 2.1042 7.0401e-06 0.014804 

0.5 0.005225 0.19557 3.4672e-05 0.00055015 

0.1 

0.5 

0.013239 1.4875       4.1813e-05 0.0012832 

0.125 0.011228 0.65529       4.3519e-05 0.00056184 

0.2 0.008176 0.2854       4.2103e-05 0.00044996 

0.25 0.007133 0.23361 3.9744e-05 0.00036228 

Table 2. Objective functions and errors for different distances between nodal points in 

directions 𝜏 and 𝜁 (Example 1). 

 

Fig. 10. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.5 and ℎ𝜁 = 0.5 (Example 1). 
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Fig. 11. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.5 and ℎ𝜁 = 0.25 (Example 1). 

 

Fig. 12. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.5 and ℎ𝜁 = 0.2 (Example 1). 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5





 

 

Proposed numerical solution for  = 0

Exact solution for  = 0

Proposed numerical solution for  = 0.5

Exact solution for  = 0.5

Proposed numerical solution for  = 1

Exact solution for  = 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5





 

 

Proposed numerical solution for  = 0

Exact solution for  = 0

Proposed numerical solution for  = 0.5

Exact solution for  = 0.5

Proposed numerical solution for  = 1

Exact solution for  = 1



Mohammad Javad Mahmoodabadi et al.: NUMERICAL SOLUTIONS OF THE NONLINEAR POROUS…  
 

 

40 

 

Fig. 13. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.5 and ℎ𝜁 = 0.125 (Example 1). 

 

Fig. 14. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.5 and ℎ𝜁 = 0.1 (Example 1). 
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Fig. 15. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.25 and ℎ𝜁 = 0.5 (Example 1). 

 

Fig. 16. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.2 and ℎ𝜁 = 0.5 (Example 1). 
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Fig. 17. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.125 and ℎ𝜁 = 0.5 (Example 1). 

 

 

Fig. 18. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.1 and ℎ𝜁 = 0.5 (Example 1). 
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exact solution in Figs. 10 to 18 for different nodal distributions. These comparisons obviously 

portray the high accuracy, great stability and excellent convergence of the proposed strategy to 

solve the porous media nonlinear differential equation. 

6.2. Illustrative Example 2 

The governing porous media equation was considered as Eq. (2) and the initial and 

boundary conditions are regarded as follows.  

 𝜓(𝜁, 0) = −
𝜁2

6
, 𝜓(0, 𝜏) = 0,  𝜓(1, 𝜏) = −

1

6(1+𝜏)
 (19) 

The exact solution related to the above equation could be given as Eq. (20). 

 𝜓(𝜁, 𝜏) = −
𝜁2

6(1+𝜏)
 (20) 

The convergence trajectories obtained by the regarded optimization algorithms (SPSO and 

HEPSO) are indicated in Figs. 19 through 27 for different number of the nodal points (for more 

visibility, only the first 5000 iterations are disclosed). Additionally, the final value of objective 

function of the global best particle and the related errors are represented in Table 3. This table 

clearly depicts that the HEPSO approach is able to find better results in comparison with the 

SPSO method. As well, the numerical solutions originated via the MLS based PSO method and 

the analytical approach are demonstrated in Figs. 28 to 36 for the various nodal distributions. 

 

Fig. 19. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.25 and ℎ𝜁 = 0.25 (Example 

2). 

 

Fig. 20. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.25 and ℎ𝜁 = 0.2 (Example 2). 
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Fig. 21. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.25 and ℎ𝜁 = 0.125 (Example 

2). 

 

Fig. 22. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.25 and ℎ𝜁 = 0.1 (Example 2). 

 

Fig. 23. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.2 and ℎ𝜁 = 0.25 (Example 2). 
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Fig. 24. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.125 and ℎ𝜁 = 0.25 (Example 

2). 

 

Fig. 25. Convergence trajectory of SPSO and HEPSO for ℎ𝜏 = 0.1 and ℎ𝜁 = 0.25 (Example 2). 
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0.1 

0.25 

0.089099 4.6552 0.0042164 0.03105 

0.125 0.018598 3.574  0.00082393 0.029527 

0.2 0.008846 1.6514 8.4606e-05 0.023025 

Table 3. Objective functions and errors for different distances between nodal points in 

directions 𝜏 and 𝜁 (Example 2). 
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Fig. 26. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.25 and ℎ𝜁 = 0.25 (Example 2). 

 

Fig. 27. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.25 and ℎ𝜁 = 0.2 (Example 2). 
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Fig. 28. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.25 and ℎ𝜁 = 0.125 (Example 2). 

 

Fig. 29. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.25 and ℎ𝜁 = 0.1 (Example 2). 
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Fig. 30. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.2 and ℎ𝜁 = 0.25 (Example 2). 

 

Fig. 31. Comparison of results obtained via the proposed method and exact solution for ℎ𝜏 =
0.125 and ℎ𝜁 = 0.25 (Example 2). 
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square was employed to produce the discretized function, and the penalty method was 

implemented to satisfy the initial and boundary conditions. Convergence trajectories and global 

optimum positions evidently articulated that the considered optimization algorithm, namely 

HEPSO, displays a higher performance and accuracy in comparison with the SPSO. Further, the 

solutions of the nonlinear porous media differential equation via the proposed strategy were 

compared with those of the analytical formulation for various number of regular nodes. These 

results illustrated that the introduced method is able to solve this class of nonlinear differential 

equations with an acceptable convergence speed and high accuracy without any restrictive 

assumptions. 
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