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Abstract 

The paper develops a method for approximation of the discontinuous functions of two variables 

by discontinuous interlination splines using arbitrary triangular elements. Experimental data are 

one-sided traces of a function given along a system of lines (such data are commonly used in 

remote methods, in particular in tomography). The paper also proposes a method for 

approximating the discontinuous functions of two variables taking into account triangular 

elements having one curved side. The proposed methods improve approximation of the 

discontinuous functions, allowing an application to complex domains of definition and avoiding 

the Gibbs phenomenon. 

Keywords: Discontinuous function, Discontinuous interlination, Gibbs phenomenon, Computer 

tomography, Triangular elements 

1. Introduction 

The methods of approximation of smooth functions by continuous methods with sufficient 

completeness were considered in works of many researchers [1, 2]. However, as a rule, existing 

methods consider only exceptional cases or the results of extreme idealization. At the same time, 

real objects can be adequately described only by the functions with discontinuities, kinks, or other 

violations of smoothness. Examples of such nonsmooth functions are the profiles of shock waves 

generated by acoustic emitters and the shape of dunes in the desert, which have a characteristic 

outline, etc. Discontinuous objects are common idealisations in the problems, which are 

commonly solved with remote methods. E.g., discovery of cracks in industrial products using 

non-destructive testing is an important task in flaw detection, aimed at determining deviations of 

an internal structure of a product. In the problems of geophysics, detection of the boundaries of 

the blocks with different physical properties is the first step of the study of the physical 

characteristics of the internal structure of the Earth. At the study of an internal structure of a body 

in computed tomography, the heterogeneity (different densities of the various parts of the body) 

should be also taken into account.  

mailto:vitaliy.mezhuyev@fh-joanneum.at
mailto:yuliapershina78@gmail.com


V. Mezhuyev et al.: Approximation of Discontinuous Functions of Two Variables by Discontinuous.. 
 

 

76 

In general, remote methods become one of the promising areas of the environmental studies. 

They serve as an important source of information about various phenomena occurring in the 

geographic shell of the Earth and are an effective tool for monitoring the state of the environment 

and solving environmental problems. It is obvious that further progress in the development of 

natural sciences is linked with the use of remote research methods. 

This work belongs to the series of works of the authors aimed to study and improve 

mathematical models in computed tomography [3, 4]. Currently, tomography has developed 

many computational methods, algorithms and software tools aimed at reconstruction the internal 

properties of an object. They perform well when restoring objects with smooth properties, but 

produce unsatisfactory results for objects having discontinuous characteristics. Therefore, there 

is a need to improve the mathematical methods for approximating discontinuous functions, 

allowing for increase an accuracy of the models of reconstructed objects. 

The mathematical foundations of tomography were laid in the works of the German scientist 

J. Radon [5], who developed the theory of the transformation of functions of many variables 

(Radon transformation). According to these transformations, the function of many variables can 

be characterized not only by its values at the points of multidimensional space but also by the 

integrals from this function taken over an infinite set of lines or planes. 

The approximation of discontinuous functions by trigonometric Fourier sums causes so 

called the Gibbs phenomenon. Various filters have been developed to overcome this phenomenon 

[6, 7]. Some authors [8, 9] proposed the methods for reconstruction of discontinuous lines using 

wavelets. There are also works that propose the use of direct and inverse Radon transform for 

reconstruction of discontinuities in computed tomography. Faridani, Finch, Ritman, Smith [10], 

Louis [11], and Maass further developed this methodology and tools for algorithmic 

reconstruction of discontinuities in computed tomography. Ramachandran, Lakshminarayanan, 

and Ramm proposed approaches that allow restoring not only a set of discontinuities, but also the 

jump values by Radon transform [12]. Further development of this approach can be found in [13, 

14]. These works are based on the direct and inverse Radon transform (direct Radon transform is 

an integral transformation and the derived functions, having a higher smoothness than the 

converted function). 

At the same time, existing filters and methods cannot completely overcome the Gibbs 

phenomenon. The Italian scientist Rossini M. [15] developed the methods for reconstruction of 

discontinuous lines using wavelets. These recovery methods use polyharmonic wavelets that have 

an infinite carrier. It leads to a smoothing of the study signal but require additional analysis of the 

results.  

The methods for solving boundary-value problems with discontinuous solutions have been 

contributed by Sergienko I.V., Deineka V.S., Skopetsky V.V., Lytvyn O.M. A.L. Ageeva and 

T.V. Antonov [16, 17] proposed a method for determining the number of breakpoints and their 

positions based on the use of the Gibbs phenomenon. However, the method requires additional 

information: the smallest and largest values of the jumps of an approximate function. It is also 

assumed that the intervals, in which the Gibbs phenomena arises, do not intersect; i.e. it is 

impossible to separate the breakpoints that are close to each other. 

The series of works by the authors [18-20] were devoted to solving the flat problem of Radon 

computed tomography using heterogeneity of the internal structure of a two-dimensional body. 

Here, it was advised to use interlination operators, since these operators restore (possibly 

approximated) functions by their known traces on a given system of lines. Researchers provide a 

method to construct operators, whose integrals from the lines (linear integrals) will be equal to 

integrals from the most renewable function. Note that interlination is a mathematical apparatus, 



Journal of the Serbian Society for Computational Mechanics / Vol. 14 / No. 1, 2020 

 

 

77 

naturally related to the problem of restoring the characteristics of objects according to their known 

projections. This paper gives an elaboration of the methods described in [18-20]. 

The study [18] proposed the method for the restoration of the discontinuous functions of one 

variable and the algorithm for detecting  -discontinuity points. In [19, 20], an algorithm for 

detecting the lines of  -discontinuity was developed, allowing a separation of the functions of 

two variables with the help of discontinuous approximation splines and rectangular elements. In 

[21], a method for solving the 2D problem of computed tomography using the inhomogeneity of 

an internal structure of a body was proposed. To solve it, the paper [21] constructed the 

discontinuous interlination operator based on known one-sided traces of a function along a system 

of given mutually perpendicular lines. This paper constructs the discontinuous interlineation 

operator from the known traces of the function of two variables on a system of arbitrary lines that 

do not intersect at one point.  

2. Formulation of the Problem 

Let the function ( , )f x y  be a discontinuous function of two variables in the domain D . We will 

assume that the domain D  is divided into arbitrary triangles. The sides of the triangles do not 

intersect. The function ( , )f x y  has the first-order discontinuities at the boundaries between these 

triangular elements (but not necessarily at all). The experimental data are unilateral traces of a 

function along a system of the given lines. Based on these data, let us construct an analytic 

formula of an unknown function (i.e. the discontinuous interlination operator). 

3. Development of the method and formula  

Let us consider a triangular element , 1, , 1,ij i n j m    (Fig 1), formed by straight lines 
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Fig. 1. View of a triangular element 
ij  
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Let us consider as given:  

Function traces ( , )f x y on the straight line
ix x  (on the right and on the left of the line 

respectively): 
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Function traces on the straight line 
jy y  (on the right and on the left of the line 

respectively). Formulas are developed similarly to the traces along the line ix x . 
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Theorem 1. Let the traces of the function ( , )f x y  satisfy the conditions 
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intersection points of the lines coincide. Then the operator 
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is the operator of interlination of a function ( , )f x y  on : ( , ) ( , )
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Theorem 2. If ( , )f x y  is a continuous function (together with its partial derivatives up to the 

second order inclusively) inside a triangular element 
ij , then for the residual 

( , ) ( )Rf x y I O f   equals  
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In the case, when the domain is triangulated, the residual of interlination in each triangle does 

not equal the product of the residuals of one-dimensional interpolation, in contrast to the case of 

dividing the domain into rectangular elements. 

Let us estimate the error of the formula, which general form was obtained in theorem 2. 
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turns the inequality (1) into an equality. 

Example 1. Let { , 0 :1 0}x y x y       is a domain of the definition of the function 

( , ).f x y  The function is continuously differentiable inside a given triangle  . Then, by theorem 
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The value (1 )xy x y   is always positive, so we can estimate the above value, by finding 

the largest value of the function ( , )f x y : 
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Fig. 2. The area of the approximated function ( , )f x y  

These traces satisfy the conditions of Theorem 1 in each of the four triangles. The 

discontinuous spline-interlinant will be constructed in the form, represented by the formula (1) 
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1 2 3 4, , ,O O O O  are calculated by the formula (1).  Let us consider in detail the 
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              

               


              

           
4

1 ), ( , ) ,y x x y







    

1

2

3

4

2 , ( , ) ,

2 , ( , ) ,

, ( , ) ,

, ( , ) .

x y x y

x y x y

x y x y

x y x y

 


 


 
  

 

It can be seen that the function ( , )S x y on the border between the elements 
1 and 

4 will 

have the following traces: 

    1 1
( 0, ) (1 ) (0) ( ) (0) (0) 1 ( ) , ( , ) ;S y y p p y p y m p p y x y               
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 ( 0, ) (1 ) (0) ( ) (0)S y y p m y m          2 2
(0) 1 ( ) , ( , ) .y m m m y x y       

That is, if (0) (0)p m  , (1) (1)p m  , then the function ( , )f x y will be discontinuous 

on the line 0x  . 

4. Approximation of the Discontinuous Function of Two Variables by a Discontinuous 

Interlination Spline and Triangular Elements with One Curved Side 

Let a discontinuous function of two variables ( , )f x y  be defined in the domain D . We assume 

that domain D  is divided by lines 
0 1 20 ... 1,mx x x x       

0 1 20 ...y y y     

.. 1,ny   into rectangular elements, and each rectangle is divided into two right triangles with 

curvilinear hypotenuse. Triangles do not fit into each other, and the sides of the triangles do not 

intersect. The function ( , )f x y  has discontinuities of the first kind at the boundaries between 

these right triangles (not necessarily between all). Let us construct an operator of discontinuous 

piecewise polynomial interlination, such that in each triangle it is an operator of polynomial 

interlination of a function ( , )f x y . 

Consider a triangular element , 1, , 1,ij i n j m    (Fig. 3), in which the catheti are defined 

by the equations: : ,iAB x x  : ,jAC y y and the hypotenuse BC  is curved and can be defined 

by an equation ( ) ( ) 1h x g y  , that is 1
(1 ( ))y g h x


   or 1

(1 ( ))x h g y


  . In addition, the 

following relationships are fulfilled ( ) 0,jg y   ( ) 0ih x  . 

Let a function ( , )f x y  is given on this triangle, which may have discontinuities of the first 

kind on the lines of a given triangular element. 

 

Fig. 3. Example of a triangular element with curvilinear hypotenuse and with a right angle 

Let us consider the given: 1) traces of the function ( , )f x y  on the line 
ix x  (to the right 

and to the left of the line); 2) traces of the function ( , )f x y  on the line 
jy y  (to the right and 

to the left of the line); 3) traces of a function ( , )f x y  on a curved hypotenuse (below and above 

of the line):This formulas are developed similarly to the item III. 

We introduce the following notation: 

   1 1
( ) 0, (1 ( )) 0 , ( ) 0, (1 ( )) 0

i i i i
m x f x g h x p x f x g h x  

         

or    1 1
( ) (1 ( )) 0, 0 , ( ) (1 ( )) 0, 0 .

j j j j
p y f h g y y m y f h g y y  

         

ix

jy

x

y

A

B

C

i
x

x


jy y

( )
(

)
1

h
x

g
y




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It is easy to verify that the following relations hold: 

( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ).

i i ij i i i ij j

j j ij j j j ij j

m x m x p x p y

p y m y m y p y

   

   

 

 
 

Let us construct the operator of interlination. 

Theorem 5. If traces of the function ( , )f x y  satisfy the conditions 

 1
( ) ( ), ( ) (1 ( )) ,

j i i j ij i i i
p x p y m x p g h x    

    

   1 1
(1 ( )) (1 ( ))

ij j j j
m h g y p h g y  

   , 

then the operator 

 
1 2 12( , ) ( , ) ( , ) ( , )Lf x y L f x y L x y L x y    (3) 

1 ( , ) ( ) ( ) ( ) ( )ij ijL f x y h x m y g y m x     , 

2 ( , ) ( ) ( ) ( )j i i jL f x y p x p y p y     , 

 1 2
( , ) ( ) ( ) ( ) ( )

i j i j
L L f x y h x p y p y p y       ( ) ( ) ( ) ( )

ij i i j
g y m x m x p x    , 

interlinated a function ( , )f x y  on three sides of a triangle , 1, , 1,ij i n j m   , i.e. 

( , ) ( )
j

jy y
L f x y p x


 , ( , ) ( )

i
ix x

Lf x y p y


 , 

( , ) ( , )Lf x y f x y , if ( ) ( ) 1h x g y  . 

Theorem 6. If 
(1,1)

( , ) ( )ijf x y C  , then for the residual ( , ) ( ) ( , )Rf x y I L f x y   equals  

(1,1)

0 0

( , ) (1 ( ) ( )) ( , )

yx

Rf x y h x g y f u v dudv    

1 1
(1 ( )) (1 ( ))

(1,1) (1,1)

0 0

( ) ( , ) ( ) ( , ) .

h g y y g h xx

x y

f x f u v dudv g y f u v dudv

 
 

      

Remark. For arbitrary functions ( , ) ( ) ( )f x y u x v y  , where ( ), ( )u x v y  are arbitrary 

functions of one variable, the equality holds ( , ) ( , ).Lf x y f x y  

Comment. If ( ) ( )i ip y m y  , ( ) ( )j jp x m x  , ( ) ( )ij ijp x m x  , then the constructed 

discontinuous spline of the form (3) is a continuous interlination spline at the boundaries of a 

triangular element 
ij . 

Example 3. Let the function ( , )f x y  be defined in the domain 
1 2 3 4       as 

shown in Fig. 4a. The catheti of these triangular elements are formed by straight lines 0, 0x y 

, and the hypotenuses are given by an equation of the form ( ) ( ) 1h x g y  , there they satisfy the 

conditions ( ), ( )h x g y and are defined in each triangular element as follows: 
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2

1 2

2 2 2 2

3 4

: ( ) , ( ) , : ( ) , ( ) ,

: ( ) , ( ) , : ( ) , ( ) .

h x x g y y h x x g y y

h x x g y y h x x g y y

      

     
 

Let a function ( , )f x y  be defined in a certain area (Fig. 4 b): 

2

2 2 2 2

0.5, 0 1, 0 1 ,

( , ) 1, 1 0, 0 1 ,

, 1 1 , 1 0.

x y x

f x y x x y x

x y y x y y

     


        


        

 
Therefore, the function ( , )f x y  on the lines of triangulation has discontinuities of the first 

kind, but not on all lines. As initial data we will use the traces of a given function on the lines of 

triangular elements: 

1

2

: ( ) ( 0, ) 0.5, ( ) ( , 0) 0.5,

( ) ( ,1 0) 0.5 ( ) 0.5

p y f y p x f y

m x f x x m y

 

 

      

     
 

2 : ( ) ( 0, ) 1, ( ) ( , 0) 1,

( ) ( ,1 0) 1

m y f y p x f x x

p y f x x x

 



        

     
 

2 2

3

2

: ( ) ( 0, ) , ( ) ( , 0) ,

( ) ( , 1 0) 1

m y f y y m x f x x

p x f x x

 



      

    
 

2 2

4

2

: ( ) ( 0, ) , ( ) ( , 0) ,

( ) ( , 1 0) 1

p y f y y m x f x x

m x f x x

 



      

    
 

 

Fig. 4. a) areas of the function definition; b) the form of the function ( , )f x y  

Let us construct the operator 1( , )L x y on 
1 . By the theorem 5 it has a form 

1 2 121 ( , ) ( , ) ( , ) ( , )L f x y L f x y L x y L x y   ; 

2

1 ( , ) ( ) ( ) ( ) ( ) 0,5 0,5L f x y h x m y g y m x x y         ; 

2 ( , ) ( ) ( ) (0) 0,5 0,5 0,5 0,5L f x y p x p y p         ; 

 1 2 ( , ) ( ) ( ) ( ) (0)L L f x y h x p y p y p       ( ) (0) ( ) ( )g y m m x p x     
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= 2 2
(0,5 0,5 0,5) (0,5 0,5 0,5) 0,5 0,5x y x y       ; 

2 2
1 ( , ) 0,5 0,5 0,5 0,5 0,5 0,5L f x y x y x y      . 

That is, the linear function of the interlination operator is restored exactly.  

Operators 2, 3, 4L L L are constructed in a similar way. As a result, we obtain the 

discontinuous interlinaton operator, which completely coincides with the given function (Fig 4b). 

5. Construction of the Discontinuous Interlination Operator by Arbitrary Triangular 

Elements 

Let us consider a triangular element , 1,i i n   whose sides are defined by equations 

1 2: ( , ) ,
i i i i i

k k k k kx y x y          1,3, 1,k i n  ,    
2 2

1 2 1
i i

k k   , 

12 11 1

1 2

123 22 21 2

1 2

32 31 3

0, 0,

i i i

i i

i i i i i k k

k i i

i i i

  
 

  
 

  



      



2 1, ( , ), 1,3.
i i i

k k kk k     

 
Let ( , )

i i i

kl kl klA x y  – is a solution of the systems of equation: 

( , ) 0, ( , ) 0, , , 1,3
i i

k x y x y k k     , which are the vertices of a given triangle. 

We consider the given one-sided traces of the function ( , )f x y  on the lines i

k  (below and 

above the line): 

 1 2( , ) , ( ) / 0 ,
i

k k k km x y f x x       

 1 2( , ) , ( ) / 0
i

k k k kp x y f x x       or 

 2 1( , ) ( ) / 0, ,
i

k k k km x y f y y       

 2 1( , ) ( ) / 0, .
i

k k k kp x y f y y       

Theorem 7. Let 2
( , ) ( ), 1,if x y C i n   . If the traces of the functions ( , )f x y  satisfy at the 

points i

klA  the Nikolsky condition [3], which can be written as 

3 13 1 13( , ) ( , ),
i i i i

p x y m x y  1 12 2 12( , ) ( , ),
i i i i

m x y m x y   

2 32 3 32( , ) ( , ),
i i i i

m x y p x y 

 
then the operator  
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1 2

2 23 3

1 23 23

3 2 1

3 23 2 3 23 1 13 3

32 2 13 13

3

3 13 1 1

31

( , )
( , ) ( , )

( )

( , )
( , ) ( ) ( , )

( )

( , )

i i

i i i i

i i i

i i i

i i i i i i i i

i i i i

i

i i i i

i

x y
O f x y m A x y

A

x y
p A x y p A m A x y

A

p A x y m

 
 



  
    




  

 
    

    
                  

 
     

3 1

13 1 12 2

3 12 12

2

2 12 1 2 12

21

( , )
( ) ( , )

( )

( , ) ( ) .

i i

i i i i

i i i

i

i i i i i

i

x y
A m A x y

A

m A x y m A

 
 




  

   
       

 
       

 (4) 

is an interlination spline in 
iT  which has properties 

1 1 1 1
1

: ( , 0) 0 : ( , 0) 0
( , ) ( )

i i

i i

x y x y
O f x y m x

 


     
 ; 

2 2 2 2
2

: ( , 0) : ( , 0) 0
( , ) ( )

i i

i i

x y x y
O f x y m x

 


    
 ; 

3 3 3 3
3

: ( , 0) 0 : ( , 0) 0
( , ) ( )

i i

i i

x y x y
O f x y p x

 


     
 . 

Theorem 8. If (2,2)
( , ) ( ), 1,

i
f x y C i n   , then the residual 

( , )
i

R f x y   

32 ( , )( , )

(1,1) 31 2

23 3 2 2 3

1 23 23 320 0

( , )

( )

ii
x yx y ii i

i

i i i i

x y
f A t t dt dt

A


 



 
       

   

31 ( , )( , )

(1,1) 32 1

13 3 1 1 3

2 13 13 310 0

( , )

( )

ii
x yx y ii i

i

i i i i

x y
f A t t dt dt

A


 



 
       

   

1 2( , ) ( , )

(1,1)3 1 2

12 2 1 1 2

3 12 12 210 0

( , )
.

( )

i i
x y x yi i i

i

i i i i

x y
f A t t dt dt

A

 
  



 
   

  
   

Remark. If the one-sided traces on the same line coincide, then we get a continuous 

interlination spline. 

Example 4. Let the area of the definition of a discontinuous function ( , )f x y  be a triangle 

 (Fig. 5), whose sides are given by equations 1( , ) 0,x y   2( , ) 0,x y   3( , ) 0x y  :  

1( , ) / 50 7 / 50 3 / 50,

2( , ) 4 / 41 5 / 41 1, 2 / 41,

x y x y

x y x y





  

   
 

3( , ) 5 / 29 2 / 29 5,1 / 29.x y x y     

If we solve the pairwise systems of the above equations, we will get the points of intersection 

of the sides of the triangle: 
12 23 13(0,2;0,4), (0,7;0,8), (0,9;0,3)A A A  . 
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And we define the function ( , )f x y  as follows: 

2 2
, ( , ) ,

( , )
0, ( , ) .

x y x y
f x y

x y

  
 



 

 

Fig. 5. Function ( , )f x y : а – the area of definition; b – the graphical representation  

Therefore, the function has discontinuities on the lines of a given triangle and has the 

following traces on these lines (below and above the lines respectively): 

2

1 1( , ) 0, ( , ) 1,02 0, 22 0,184,m x y p x y x x      

2

2 2( , ) 0, ( , ) 2,56 0,75 0,09,m x y p x y y y      

2

3 3( , ) 7, 25 12,75 6,5025, ( , ) 0.m x y x x p x y    

 Let us check the fulfilment of Nikolsky's conditions: 

1 22( , 0) 0 1( 0, ) 0
( , ) ( , ) 0,2

x y x y
p x y m x y

 
 

   
  , 

2 33( 0, ) 0 2( , 0) 0
( , ) ( , ) 1,13

x y x y
m x y p x y

 
 

   
  , 

2 33( 0, ) 0 1( 0, ) 0
( , ) ( , ) 0,9

x y x y
p x y m x y

 
 

   
  . 

Thus, the conditions of Theorem 7 are satisfied. Then we construct an interlination spline 

according to the formula (4), the graph of which is shown in Fig. 6(b). Fig. 6(a) shows a 

discontinuous interpolation spline approximating for comparison the same discontinuous 

function. 
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Fig. 6. A graphic representation of the given discontinuous function ( , )f x y  and discontinuous 

splines: a) interpolation; b) interlination 

6. Conclusions 

The paper presents a method for approximating a discontinuous function of two variables by its 

known traces on a system of arbitrary lines. For this purpose, a discontinuous interlination 

operator was constructed using triangular elements. It was shown that the proposed interlination 

operator approximates the discontinuous function more precisely than the classical interpolation 

operator. In the future works, based on the proposed operator, authors will be able to construct a 

method for approximating a discontinuous function using a partition of the domain into triangular 

elements. 
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