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Abstract 

This research paper deals with a numerical algorithm based on the RCW method to solve a set of 

first-order ordinary differential equations. In this algorithm, the answer of each equation is 

considered as a polynomial of degree 2. The coefficients used in this polynomial are categorized 

into groups of free and fixed coefficients. The free coefficients are obtained by optimizing the 

error function, while the fixed coefficients are computed from the magnitudes of derivative of 

this polynomial at initial value. To check the correctness of the current algorithm, its results for 

several case problems are compared with the findings of the Runge-Kutta (RK) method. This 

comparison shows that the algorithm presented in this paper has a higher accuracy and stability 

than the RK method even for the nonlinear problems.  

Keywords: RCW method, ordinary differential equations, initial value problems, first-order 

equations 

1. Introduction 

Many physical phenomena, chemical reactions, mechanical systems, thermal systems and 

engineering applications can be simulated using the ordinary and partial differential equations 

(Zeeshan and Majeed 2016, Jaskulski et al. 2017, Atashafrooz et al. 2018, Reis et al. 2018, Sajjadi 

et al. 2018, Shah et al. 2018, Mahmoodabadi et al. 2018, Mehralian and Beni 2018, Kumar et al. 

2018, Atashafrooz et al. 2019, Kang et al. 2019, Sajjadi et al. 2019, Rashid et al. 2019, 

Sheikholeslami et al. 2019, Atashafrooz and Asadi 2019).  

In many cases, partial differential equations (PDEs) can be converted into a set of ordinary 

differential equations (ODEs) using spetial discretization (Esmaeilpour and Ganji 2007, Blinder 

2013). Also, there are approaches to reduce the order of ordinary differential equations and to 

their change to a set of first-order ODEs (Ha 2001, Charroyer et al. 2018, Filipov et al. 2019). 

Therefore, finding an approach to solve a set of first-order ODEs is very important and practical.  

So far, many scholars have focused on this topic and several different algorithms were 

presented to solve these equations, such as Euler’s method, Taylor series algorithms, Runge-

Kutta methods, improved Euler’s method, multi-step approaches and the extrapolation method 
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(Franco 2007, Brugnano and Magherini 2009, Cutolo et al. 2011, Tang and Sun 2012, Li and Wu 

2016, Wang et al. 2017, Rahmanzadeh and Barfeie 2018, Korkmaz 2019, Amodio et al. 2019).  

RCW method is an effective approach to solve an ordinary differential equation. This 

algorithm was firstly presented by Rahmanzadeh et al. (2013). Recently, RCW method was 

applied to simulate the Blasius problem (Rahmanzadeh et al. 2020). This problem simulates the 

viscous fluid flow over a semi-infinite flat plate and includes a nonlinear ordinary differential 

equation.  

However, previous research has clearly shown that the RCW method has a high ability to 

solve the ODE problems. Therefore, the authors of the current research have decided to extend 

this method to solve a system of first-order initial-value problems. In other words, the main goal 

of this paper is to present a numerical algorithm based on the modified RCW method to solve a 

set of first-order ordinary differential equations. In the next sections, in addition to presenting the 

“Theory” and “Results and Discussions” parts, several case problems are considered and solved 

to ensure the correctness of the presented algorithm. 

2. Theory  

Consider a set of first-order differential equations as follows: 
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To solve this system using RCW method, it is assumed that the solution of an equation in the 

above set is as follows: 
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Here, the 
ia variables  1, 2, ,i m  are named as the free coefficients. To calculate these 

coefficients, it is first necessary to define the residual functions  iR  as follows: 
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Then, an error function  ie  is defined based on these residual functions using the following 

equation:  
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The next step to calculate the free coefficients is the optimization of this error function. This 

optimization is performed as follows: 
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In fact, the values of 
1 2, ,a a  and 

ma are found by solving the above equations. 

Besides, 
0ia variables in Equations (2) and (3) are called fixed coefficients and based on the 

Equation set (1) their magnitudes are obtained from the values of 
iy at the 

0t point. 

However, by replacing the fixed and free coefficients in Equation (2), the final answer of 

Equation system (1) can be computed as follows: 
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Accordingly, more details on the current algorithm needed to solve a set of first-order 

ordinary differential equations are presented as follows: 

1- The matrix F is defined and calculated as follows: 

 
1 2 mF F F F     (8) 

Where 
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2- The matrix E is formed in the following manner: 

 
1 2 0mE E E E     (10) 

Here 

 0i i iE R F    (11) 

In fact, the above equation leads to the formation of m algebraic equations. Such that the free 

coefficients ( )ia are obtained by solving these algebraic equations using the Newton method. 

3- To calculate the values of 
0( )iy t h , the following steps are carried out: 

 0 0
( 1)   ,  1, , 4

4
k

h
t t k k     (12) 
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By guessing the values of 
1 2, , , ma a a and integrating of all arrays of matrices E and J  

relative to 𝑡 variable in the interval of 
0 0 t t h   , the new magnitudes of  1, 2, ,ia i m  will 

be calculated as follows: 
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These calculations continue until the 
ia variables are converged. With this strategy, the 

values of 
0 1iky 

 are obtained using the following equation: 
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Finally, the value of 
0 5iy is the values of 

0( )iy t h . 

3. Results and Discussions 

In this section, the presented steps for solving a set of first-order ordinary differential equations 

using the RCW method are discussed in the form of a simple example. 

Consider the following first-order ordinary differential equation: 

 
1 1 120  ,  (0) 1y y y     (21) 

First, function F and matrix E are calculated using the below equations: 

    
2

0 010F t t t t      (22) 
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Where 
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Then, value of k set to one, such that the fixed coefficients are computed using the following 

equations:  
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In the next step, the magnitudes of y and y  are replaced in matrix ,E  such that the values 

of this matrix are dependent on the 
1a  and t  variables. 

Then, matrix J is formed in the following manner: 

     
2

2
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Then, an arbitrary value is guessed for 
1a  variable. With this strategy, matrixes E  and J

are dependent on the t variable. By Integrating over t variable in interval 
0 0  t ,t h    the new 

value of 
1a is numerically calculated as: 
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After the convergence of the numerical solution, the final value of 
1a is equal to. 289.4737. 

By substituting the 
1a in function 

1y , the magnitude of 
012y  is obtained as: 
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In next step, the value of k set to 2 and the new coefficients are calculated as follows: 
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    1 1 02 0215.5873 0.7794y a t t t t      (37) 

Then, 
013y can be calculated like the 1k  step: 

  
0.05/ 2

013 012 1 1
0.05/ 4

, 0.6073y y f t y dt    (38) 

Then, the calculations continue for 3k   and 4.k   

According to what is done in 1k   to 4k   steps, the value of 
015y  is obtained. In fact, the 

final value of 
1y is equal to 

015.y  

In the following, an attempt is made to show the influences of k on the correctness of 

numerical solution. 

The analytic solution of Equation (21) is: 

 ( ) exp( 20 )exacty t t   (39) 

Such that 

 ( ) 20exp( 20 )exacty t t     (40) 

The values of 
exacy and 

1  (k=1,2,3,4)ky are shown in Figure 1. It should be mentioned that 

1ky are estimated by a linear equation. 

 

Fig. 1. The values of 
exacy and 

1  (k=1,2,3,4)ky  

As it is shown in Figure 1, the values of 
11y  and 

12y  are lower than ( ),exacy t whilst 
13y  and 

14y  have higher values than ( ).exacy t   
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Given that error values between the exact solution  exacy  and the estimated solutions  1ky  

can be positive and negative, it can be concluded that the values of final error at the desired point 

 0t h  is decreased by summing the positive and negative errors.  

However, it can be seen from Figure 2 that the absolute magnitude of error is very low for 

4.k   

 

Fig. 2. The error magnitudes for different values of k  

4. Examples 

In this section, three different problems are selected to ensure the accuracy of the present approach 

for solving a set of first-order ordinary differential equations. In all the problems, the equations 

system is solved using the RCW and Runge-Kutta (RK) methods. In fact, these solutions are 

performed to compare the error values of these two methods.  

4.1. Problem I 

Consider the following equations system: 

 1 1 2 1

1 4
9 24 5cos( ) sin( ),          y (0)=

3 3
y y y t t      (41) 

 
2 1 2 2

1 2
24 51 9 cos( ) sin( ),      y (0)=

3 3
y y y t t       (42) 
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The errors magnitudes of RCW and RK methods in computing
1y  and

2y variables are 

presented in Table 1. These results are obtained for the case of 0.02.h   As it can be seen from 

this table, the RCW method is more accurate than the RK method. 

 

t 
RCW method RK method 

Error of 
1y   Error of 

2y   Error of 
1y  Error of 

2y  

0.02 2.54396×10-5 -6.61495×10-5 0.002125136 -0.00425029 

0.04 1.83852×10-5 -5.81536×10-5 0.001952972 -0.003905981 

0.06 6.85835×10-6 -3.70662×10-5 0.001346125 -0.002692301 

0.08 -1.95706×10-6 -1.95492×10-5 0.000824814 -0.001649691 

0.1 -7.36233×10-6 -8.04911×10-6 0.000473872 -0.000947818 

Table 1. The errors magnitudes of RCW and RK methods in computing 
1y and 

2y variables for 

Problem I 

4.2. Problem II 

Consider a set of nonlinear ordinary differential equations as below: 

 2 6 31 1 2

1 13

3
,           y (1)=e

tdy y y
y e

dt t
    (43) 

 

2

2 3
2 1 2

3 log( ) 3 ,       y (1)=1
dy

y y t
dt

    (44) 

Where the exact solutions are 
3

1, ( )
t

exacty t e and
3

2, ( )exacty t t . 

The amounts of 
1y and 

2y obtained from the RCW and RK methods are shown in Figure 3 

for the case of 0.02h  . These findings are compared with the results of exact solutions.  

The detailed analysis of this figure clearly shows that the accuracy and stability of the RCW 

method is higher than the RK method. In fact, the RK method loses its stability at the point of 

1.16.t    
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Fig. 3. Comparison of 
1y and 

2y amounts obtained from the RCW and RK methods with the 

results of the exact solutions for Problem II 

4.3. Problem III 

Consider a set of nonlinear, time dependent ordinary differential equations as follows: 

 
1 0,                           55A

A B A

dy
k y y y

dt
    (45) 

 . . (46) 

 R

1 2 0

dy
,            0A B B R Rk y y k y y y

dt
    (47) 

 s

2 0

dy
,                              0B R sk y y y

dt
   (48) 

Here, , ,A B Ry y y and 
sy variables point to the concentration of various materials, while 

0 0 0, ,A B Ry y y and 
0sy parameters are initial concentration of these materials. In fact, this set of 

equations is related to chemical reactions in a batch reactor. 

The values of relative error for 
Ay  variable in both RCW and RK methods are presented in 

Table 2. These values are tabulated for different values of .h As it is seen from this table, the 

accuracy of the RK method decreases considerably by increasing the amounts of .h In fact, Table 

2 clearly shows that the stability of the RK method is not suitable at high values of .h However, 

the accuracy and stability of the RCW method for all presented step lengths is very good. 

 

h Relative error (%) for RCW Relative error (%) for RK 



M. Rahmanzadeh et al.: A Numerical Algorithm Based on the RCW Method to Solve a Set of First-Order.. 
 

 

72 

0.006 0.191091 1.848575 

0.007 0.33683 6.235279 

0.008 0.555213 17.00306 

0.009 0.876214 40.20436 

0.01 1.346192 85.41022 

Table 2. Values of relative error for 
Ay variable in both RCW and RK methods for Problem III 

5. Conclusion 

In this research, an attempt is made to present a numerical approach based on the RCW method 

to solve a set of first-order ordinary differential equations. To reach this goal, a polynomial of 

degree 2 is considered as the answer of each equation. This polynomial includes two groups of 

free and fixed coefficients. The fixed coefficients are obtained from the derivative magnitudes of 

this polynomial at initial values, while the free coefficients are computed by optimizing the error 

function. To provide more details about the mentioned algorithm, all the steps of the numerical 

solution are described in the form of a sample example. Besides, the findings of the current 

algorithm for three case problems are compared with the results of the Runge-Kutta method. This 

comparison clearly shows that the approach used in this paper has a higher stability and accuracy 

than the Runge-Kutta method even for the nonlinear problems. In addition, the results of the RCW 

method are in an excellent agreement with the findings of the exact solution. 
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