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Abstract 

This article discusses a method for calculating the dynamic characteristics of thin-walled 

viscoelastic composite pipes made by continuous winding under the influence of internal 

hydrodynamic pressures. The solution is based on an approximate energy method based on the 

instant theory of shells and the second-order Lagrange equation. Initial technological 

irregularities are taken into account. The pipe is considered a multilayer viscoelastic toroidal shell 

with variable reinforcement parameters, initial ovality and difference in thickness. The dynamics 

problem is formulated as the problem of natural oscillations of a compressed thin-walled 

structure. The basic equations are obtained in the form of a coupled system of ordinary integro-

differential equations with variable stiffness coefficients.  

Keywords: pipeline, pressure, semi-moment less theory, parametric oscillation, freezing method. 

1. Introduction 

Pipelines occupy a special place in aviation, rocket and aerospace engineering. They are an 

integral part of the design of propulsion systems, ground launch complexes, power equipment. 

The total length of the hydraulic, air and fuel systems for designed production of a modern aircraft 

is several kilometers, their number is several thousand (Hambartsumyan 1974; Kubenko et al. 

2003). The modern thin-walled pipeline of large diameter with internal pressure of more than 10 

MPa is not an ordinary rod or beam, but a thin cylindrical shell with a deformable contour of the 

cross section. Therefore, to calculate such a pipeline should not use the traditional core theory, 

but the theory of thin shells, taking into account the interaction of the structure with the internal 

and external environment. The reliability of pipelines significantly determines the operability of 

flying vehicles in general. Therefore, the pipelines are subjected to increased requirements for 

reliability, resource and, at the same time, strict restrictions on weight and dimensions. These 

conflicting requirements are best analyzed by thin-walled multilayer composite structures. One 

of the most widespread and advanced methods of manufacturing multilayer pipes from fibrous 

composite materials is the method of continuous winding (Kubenko et al. 1992). Reinforced tape 

formed by a system of threads is impregnated with a polymer binder. Then it is fed to a rotating 



Journal of the Serbian Society for Computational Mechanics / Vol. 13 / No. 2, 2019 

 

 

105 

mandrel and laid along predetermined paths. For fiber laying, detachable rotating heads and 

programmed automatic machines are used. After polymerization of the binder and removal of the 

mandrel, a multilayer shell of a given shape is formed. The most technologically challenging are 

curvilinear pipes made of fibrous composite materials. In the process of manufacturing curved 

pipes by continuous winding of fibers or reinforced tape, an inhomogeneous layered and fibrous 

structure with variable angles and reinforcement coefficients is formed (Kovalchuk and Kruk 

2000). Typical technological irregularities of the product are ovality and thickness variation of 

the cross section. At the same time, curved sections are the most stressed elements of pipelines. 

The main load is internal pressure. Tests of the film pipeline under pressure showed that failure 

occurs as a result of rupture of the shell in the zone of thinning of the wall of a curved section 

(Safarov et al. 2018a). Wall ruptures are one of the main causes of pipeline failures: An important 

advantage of pipes made of fibrous composite materials is the non-fragmentation nature of 

failure. The problem of nonlinear vibrations of thin cylindrical shells, taking into account the 

interaction of various bending forms, was discussed in Safarov et al. 2018b and Safarov and 

Boltaev 2018. In Safarov et al. 2018c and Amabili et al. 2000, the features of the influence of a 

liquid aggregate (partial filling) on the processes of dynamic interaction of the forms of bearing 

shells were studied.  

In this paper, we consider the problem of multimode vibrations of composite toroidal  shells 

(orthotropic model) completely filled with liquid. The main attention is paid to the study of the 

interaction under resonance conditions of conjugated and non-conjugated bending forms of these 

shells under free vibrations of the entire shell-liquid system. 

An alternative solution can be implemented using the finite element method. Then, an 8-node 

curvilinear isoperimetric finite element method can be used. The composite shell is considered 

as a degenerate three-dimensional anisotropic layered body.  

2. Problem statement and solution methods 

The dynamic state of thin-walled viscoelastic composite curved pipes manufactured by 

continuous winding under the influence of internal hydrodynamic pressures is considered.  

To derive resolving equations describing the damped oscillations of curved (toroidal) 

composite pipes under the influence of hydrodynamic pressure, we use the semi-moment less 

theory of shells V.Z. Vlasov (1949). The limits of applicability of semi-moment less theories for 

solving the problems of statics and dynamics of thin-walled pipes were studied in Stasenko and 

Rakhmanova (1986) and Khaletskaya (1975). Moreover, it is believed that the curved pipe is 

quite long, slightly bent and thin-walled. Given the weak heterogeneity of the physic mechanical 

properties of individual layers, the semi-moment less theory has also been used to calculate shells 

of fibrous composites (Vasiliev 1988; Biderman 1980). We consider that wall deformations, as a 

packet of layers, obey the Kirchhoff – Love hypothesis. Taking into account the kinematic 

relations of the semi-moment less theory of thin shells and the symmetry condition, we present 

the following forms of motion: 
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A pipe bend obeys the hypothesis of flat sections. To derive the equations of motion, we use the 

second-order Lagrange Equations (Vlasov 1949): 
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dt w w w
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Here ( )mnQ t  is generalization of external forces related to generalized coordinates mnw (m=1,2  

and  n=1,2....).The motion of the time-averaged flow will be decomposed figurative and relative 

with velocity Vm . In this case, the kinetic energy of the unperturbed parts of the flow can be 

expressed as (Stasenko and Rakhmanova 1986) 

     

     

 
 

 

22 2
22 2 2

11 21

0

2 2

2 2
2 2 2 2 2 2

11 21 11 12 21 222

2 2 2
2 2 2

1 2 1 12 4 2
2

1 1
'

2 2

1 6 16 12 3
[

8 2

1 11

1

L L

T ж m

L L

T ж

n n n n

n

K r u v w h dsd m w V w ds

r
m m L w w e w w w w

L

n nn r
w w e w w

n nn n L



  

  

 



 





      
 

   
         

  

  
    

 

  

    2 2 2 2 2 2

1 2 2 1 11 21] ,
4

n n ж mw w m V w w
L


   

  (3) 

where 2T T mm h r and 0ж жm А is pipe mass and fluid mass per unit length; Т and ж  area 

average densities of composite and liquid.  

The last term in the expression for K determines the potential of the centrifugal inertia forces 

of the fluid due to a change in the curvature of the axial line of the pipe. In view of the fact that 

the first harmonic is taken into account in the description of the rod forms (3), the Carioles inertia 

forces vanish. The viscoelastic potential, built on the basis of the relations of the semi - moment 

less theory of anisotropic layered shells and approximations (3), has the form: 
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Here 1 2,Е Е  are operator moduls of elasticity, which have the form 
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where f(t) is the time derivative function;  ЕкR t  is core relaxation; 0кЕ  is instant modulus; 

12 12,   are Poisson's ratios which are considered constant; 
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The axial deformation of the shell has the form (Khaletskaya 1975) 
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The change in the curvature of the wall in the circumferential direction has the following 

expression (Vasiliev 1988) 
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The potential of external load moments mM and internal pressure ( mp ) in generalized 

coordinates has the form (Biderman 1980):  
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Here is mutual angle of rotation of the end sections due to bending of the pipe axis, and V

is the volume change due to Karman effect.  

Using the Lagrange equations (2) and relations (3) - (5), we obtain two independent systems 

and integro - differential equations with variable stiffness coefficients of the form (Korotkov and 

Kulikov 2010): 

 

                  

             

0

0

( 2 ( ) ) ( ) ( ) ( ) ( ),

( 2 ( ) ) ( ) ( ) 0

t

t

А w C t F w C R t w d p t F e P

А w C t F w C R t w d

      

     

       

      




  (6) 



M. Kh. Teshaev et al.: Oscillations of Multilayer Viscoelastic Composite Toroidal Pipes 

 

108 

Here   ,w w  are vectors of generalized coordinates and accelerations, 
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wall. Terms , ,А С F  can be defined by the following formulas (Novozhilov et al. 1991): 
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For the integral terms, the freezing method is applied (Ahmadi and Satter 1978), so that we obtain  

the following relations 
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m m mN p A N  is the longitudinal force ( mN meets initial stress - strain state).The matrix А

learns from three diagonal, the matrix С  is from three diagonal ribbon with complex coefficients 

and takes the following form. 



Journal of the Serbian Society for Computational Mechanics / Vol. 13 / No. 2, 2019 

 

 

109 

The matrix А learns from the tridiagonal matrix, from the С three-diagonal ribbon matrix with 

complex coefficients and assumes ˆ ˆ 0m mN p   the following form: 
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The first equation (6) describes the forced parametric vibrations of the shell in the plane of its 

curvature. Oscillations are simultaneously supported by force and parametric excitation. Force 

excitation is initiated by initial geometric irregularities. The interaction of generalized 

1 ( ) ( 1,2,3...)nw t n  coordinates is determined by mutual inertial and viscoelastic bonds, the 

intensity of which is characterized by off-diagonal matrix elements А  and С . The second 

equation (5) describes the parametric vibrations of the shell (pipe) along the normal to the plane. 

Parametric excitation is due to changes in the shell stiffness associated with bending deformations 

of the shell. The matrix А  is obtained diagonal (e = 0). 

3. Solutions of particular problems 

3.1. Consider the effect of harmonic pressure ( ) (1 cos )kp t p t   , where 0 / kp p  - is the 

ripple parameter, 0p and  are the amplitude and circular frequency. The mass of liquid is 

neglected. As an example, we consider the first two harmonics of a number of displacement 

functions (1).The interaction of generalized coordinates 11( )w t and 12 ( )w t  neglected. In this case, 

the equations of motion (6) will take the following form: 
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where 
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Here 1  and 11  are the partial complex frequencies. 

The first equation (7) describes the forced vibrations (cantilever) of a viscoelastic rod of 

length L / 2 under the action of a focusing moment. If we accept 12 ( ) 0Кt R   , then the error 

in the natural frequency of transverse vibrations 1 I   will be 4.2% [20]. 

The second equation (7) describes the forced parametric vibrations of the shell under the 

action of pressure p (t). In the case
1

0
R
 , the expression for coincides with the formula for 

2 II  the fundamental frequency of the bending vibrations of the circular shell (Timoshenko 

et al. 1985). 

3.2. In the absence of pulsations ( 0 0, 0mp p  ), the solution of the quasistatic problem follows 

from the first equation (6): 

            
0

( ( ) ( ) ) ( )

t

kC w R t w d p F e P          (8) 

Solution (8) determines the generalized displacements of a curved composite pipe with initial 

ovality and thickness variation under the influence of static pressure pm. With an absolutely rigid 

contour of the cross section of the pipe, ( ) 0R t   we get a beam. In this case, from equation 

(8) we find (Korotkov and Kulinov 2010) 

 3 2

11 12 21 012

2
(1 ) / ( )k zw p er L E I 


     (9) 

Expression (9) determines the displacement of the free end of a curved composite pipe in pure 

bending. 

3.3. In the absence of initial irregularities and the action of harmonic pressure, the first integro-

differential equation (6) becomes homogeneous and coincides with the second equation: 

              
0

( 2 ( ) cos ) ( ) ( ) 0.

t

А w C t F t w C R t w d               (10) 

When 
1

0
R


  

, the matrix  С  is reduced to diagonal form. In this case, the coupled system of 

integro - differential equations (10) decomposes to a system of independent Mathieu equations 

with a complex output parameter is separated from it 

 2 (1 ( ) 2 cos ) 0 ( 2,3,4...),n n n R n nw t w n          (11) 

where 
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Equations (11) describe the parametric oscillations of a cylindrical shell and coincides with 

the known solutions for ( ) 0R t    [20]. When 0n   we get: 

 2 2

crit 2( 1) /mp p n D r     (12) 

Formula (12) determines the spectrum of critical values of the external pressure at which the 

cylindrical shell loses its static stability (Alfutov 1978). 

The resolving equation (11) with ( ) 0R t   , in the general case, a system of separable 

equations is reduced (m, n = 1, 2, 3 ...) quation of Mathieu: 

 2( ) (1 cos ) ( ) 0n mn mn nw t t w t       (13) 

where mn -  is the excitation coefficient, defined by the expression: 

 
4 2 *

0

*

4 4 2 2 * 2 40

( 1)

( 1) 1

mn

n n

m m q

q
m m m k m

 

  



 

    
   

  
   

  

where  

 2

0 0 0 0, / vq Gq G R E hh     

The solution of the Mathieu differential equation (13) allows one to construct regions of 

dynamic instability of structures. 

Assessment of the dynamic stability of pipelines lying on an elastic foundation consists, 

firstly, in constructing regions of dynamic instability on the parameter plane ωmn and   under a 

given condition of external pressure q0 and various values of the soil bed coefficient K. Secondly, 

a direct assessment of the dynamic stability of a given section of the pipeline is carried out at 

known values of ωmn,  and q0 by superimposing a point corresponding to these values on the 

parameter plane , q0, containing the region of dynamic instability (Safarov et al. 2018). 

The regions of dynamic instability are determined at the frequency ratios ωmn and . The 

main, widest region, called the main region of instability, is realized for the coefficients k = 1, 

i.e., for ωmn=  /2. The minor instability regions for k> 1 are much smaller in width and usually 

overlap with the main region. The solution of the Mathieu equation in notation (13) for the main 

instability region obtained in the work of N.N. Bogolyubov and Yu.A. Metropolitan, represents 

the inequality (Safarov et al. 2018): 

 
2

1 1
2 2

mn mn mn   
     

  

Based on this solution, the methodology for constructing the main areas of dynamic instability 

for pipeline sections is to determine the upper and lower boundaries of these areas. 
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4. Numerical results 

The calculation results are shown in Figs. 1-2. The methodology for assessing the dynamic 

stability of the pipeline is reduced to finding the position of the point (  , q0). 

 

Fig. 1. Areas of dynamic instability of a metal pipeline (1420x10 mm) with external pressures 

at different thicknesses of the protective reinforced concrete layer 1 - h1 = 45 mm, 2 - h1 = 65 

mm, 3 - h1 = 85 mm. 
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Fig. 2. Areas of dynamic instability of curvilinear pipelines at 1 10r R  and with different 

thin-walled parameters under h r (1. 1 12; 2. 1 15;3. 2 35;4. 1 20.h r h r h r h r    ) the 

influence of external unsteady pressure q0. 

 

Fig. 3. Dependence of the critical external pressure q0,cr on the thickness parameter and relative 

curvature. 
1

1. 0.1;2.
30

r r

R R
  . 
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If this point falls on a plane free of shaded instability regions, this pipeline stability is ensured. 

Otherwise, you should change the main parameters of the pipeline (ωmn, q0 or  ). Firstly, the 

oscillation frequencies decrease with a decrease in the h/r parameter with a fixed value of the pipe 

curvature parameter r/R. The rate of frequency reduction is higher, the smaller the parameter h/r. 

Secondly, with a decrease in the curvature of the pipeline section, that is, the r/R ratio at 

h/r=const, the frequency (Fig. 1 and 2).The calculations showed 
0,crq that it substantially depends 

on the parameters h/r and r/R. This dependence is illustrated by the graphs in Fig. 3 (
210

h

R
  ). 

Analysis of the obtained values shows that the critical external pressure increases with increasing 

thickness parameter h / r . It should be noted that for pipes with large curvature r/R = 1/10, the 

critical pressure value is greater than for pipes with lesser curvature r/R = 1/30. 

5. Conclusions: 

Analysis of the calculation results at an external pressure acting on the pipe wall showed the 

following: 

1. The lowest frequency of free bending vibrations of pipeline sections is realized by shell forms, 

that is, 21 and 31 for m = 2, 3 and n = 1. 

2. With an increase in the pipe curvature parameter,  the frequencies of free bending vibrations 

of the pipeline sections mn for m = 1, 2, 3 and n = 1 increase significantly. 

3. When h/R decreases with constant pipe curvature, a decrease in frequencies occurs. 
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