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Abstract 

A theoretical investigation on the flow of nonlinear magnetohydrodynamic (MHD), laminar, 

viscous, incompressible boundary layer fluid with thermal radiative heat transfer and variable 

properties past a stretching plate was carried out. The liquid is taken to be gray, absorbing, 

emitting but with non-scattering medium. The main nonlinear equations governing the flow are 

reduced to ordinary differential equations by using appropriate similarity variables and quantities.  

The obtained nonlinear equations are computationally solved by applying shooting techniques 

coupled with Nachtsheim-Swigert method for asymptotic satisfaction of boundary conditions by 

fourth order Runge-Kutta scheme. The computational results for momentum and heat distribution 

are obtained for various values of the emerging parameters. The results for the coefficient of skin 

friction and dimensionless heat gradient are likewise obtained for different physical parameters 

values. From the study, it was observed that the parameters which enhanced the heat source terms 

decreased the fluid viscosity and caused increase in the flow rate. Also, parameter that reduced 

heat source terms encouraged viscosity which resulted in retardation of the fluid velocity. 

Keywords: Power-law velocity; Stretching surface; MHD flow; Nonlinear radiation; variable 

properties 

 

Nomenclature 

 (x) −Variable applied magnetic induction          θ − Dimensionless temperature 

T −Temperature of the fluid           qr − Component of radiative flux 

m −Velocity exponent parameter                        cp  −  Heat capacity 

p  −Pressure of the fluid                                       k∗  − Thermal conductivity 

ρ  −Density of the fluid                         Ψ − Stream function 

υ  −Kinematic viscosity                         Tw – Heated plate temperature 
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B0  − Constant applied magnetic induction          T∞  −Fluid ambient temperature 

u, v −Velocity component of fluid in x and y direction 

1. Introduction 

It is an established contention that several industrial and engineering processes involving heat 

and mass transport such as glass fibre, metal extrusion, rubber manufacturing, and many more 

takes place in the presence of simultaneous effects of thermal and species buoyancy forces. 

Different studies on the fluid flow through an inclined, horizontal and vertical surface in the 

existence of magnetic field have been examined. In Seth et al. (2011) and Salawu and Fatunmibi 

(2017) the analysis of dissipative heat transfer of hydromagnetic fluid flow past an inclined plate 

was investigated. Salawu and Okedoye (2018) investigated gravity driven flow of reactive 

hydromagnetic fluid through a vertical channel in the presence of magnetic field. Hassan et al. 

(2018), Kareem et al. (2020) studied hydromagnetic reactive fluid flow through horizontal porous 

plates with radiation and internal heat generation. 

Fluids flow past a vertical Couette boundary layer plates with heat radiation is gaining 

considerable attraction due to its wide spectrum usefulness in industrial systems. For example, it 

useful in the rocket engine, combustion chamber, geothermal reservoirs, thermal insulation, and 

so on. Various leading past studies concerning convection flow through vertical plates in the 

presence radiation has been established in the research work of (Hayat et al. (2013); Salawu et al. 

(2018); Devi and Gururaj (2012)). The heat transfer in over a stretching plate is important in 

several devices and industrial applications. In manufacturing process of rubber and plastic sheet 

where it is frequently important to blow gaseous through the unsolidified material, this 

circumstance emerge in the glass blowing, expulsion processes, and spinning of fibers also 

include the flow as a result of stretching plate, Hayat et al. (2013). Devi and Gururaj (2012) 

reported on heat transport characteristics of two dimensional nonlinear hydromagnetic 

incompressible fluids with variable viscosity and electrically conductivity. The liquid is taken to 

be gray, absorbing, emitting but not scattering medium. In Patowary (2012), the influence of 

radiation on the flow of boundary layer in the existence of magnetic field with thermal 

conductivity and variable viscosity due to a stretching surface in a permeable medium was 

investigated. To show the heat flux by radiation in the heat equation, Rosseland approximation 

was utilized. The energy and species transport through a vertical surface under the joined effect 

of the diffusion thermo and thermo diffusion in the existence of magnetic field was carried out 

by Hazarika and Gopal (2012). A computational solution of a convective transient fluid flow with 

thermal radiation over a moving plate of a Sisko binary fluid was analyzed by Okedoye (2015). 

The problem formulated was solved numerically; the outcomes of the analysis demonstrated that 

the flow is affected considerably by the injection/suction, heat source, and chemical reaction at 

the plate surface. Also, the impact of soret and dufour on a Sisko fluid is significant.  

The understanding of the thermophysics properties of some parameters associated with the fluid 

flows with temperature dependent variable properties have instant influences on the micro 

fluidics, ink-jet printing, polymer production, earth mantle geological flows, colloidal flow 

suspensions, turbulent flow shear, fluid gems, and many more, Salawu and Oke (2018). In respect 

of this, scientist has being showing high interest on the intrigue behavior of fluids with variable 

properties and subsequently studies has been done on it using the analytical and computational 

approaches which are available in many articles including (Salawu (2018); Abdou (2010); Salem 

(2007); Chen (2006)). A few great reports on the flow of fluid through a stretching surface are 

presented by (Modather et al. (2007); Yurusoy (2006); Pantokratoras, A (2006)). Considering the 

above studies, the authors ignored the heat dependent thermal conductivity and viscosity in the 

momentum variation power-law. The variable physical properties may vary meaningfully with 
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changes in temperature, when taken into variable properties into consideration. The present study 

aims to investigate heat dependent variable properties with variable surface velocity over a 

stretching plate. The flow is propelled by the influence of buoyancy forces in the existence of 

thermal radiation in a stretching plate. 

2. Formulation of the problem 

Forced convection flow of nonlinear radiation along a stretching horizontal plate kept at the same 

wall temperature Tw. The stretching surface is with velocity power law of uw  =  u0xm (where 

u0 and m are constants) through a fluid with variable viscosity is considered. The electrically 

conducting fluid is taken to be incompressible, viscous, absorbing, emitting, gray and non-

scattering medium with temperature T∞. A magnetic field is assumed perpendicular to the flow 

in a horizontal stretching surface as depicted in (Figure 1) according to Devi and David (2012). 

Cartesian coordinate system is chosen. The main flow is along x −axis direction in a stretching 

sheet with velocity components u and v in these directions (Salawu and Dada (2018); Salem 

(2007)). 

 

Fig. 1. Schematic diagram of the problem 

The flow runs continuously along the x-axis with y-axis normal to it. The assumptions below are 

considered: 

 The flow is laminar, steady in two-dimensional. 

 Excluding the viscosity of the fluid, the fluid thermophysical properties are taken be 

unchanged. 

 The induced magnetic and Reynolds number are considered negligible and small 

respectively. 

 The Joule’s heating and heat viscous is taken to be negligible.  

𝒚 
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 The heat flux radiation is considered negligible in the x-direction compared to the y-

direction. 

The continuity, momentum, and energy conservation equations under the above assumptions are 

presented as: 

 0
u u
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 

 
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The fluid viscosity is taken as 
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Here, d1 , d2 and Tr are constants, and their values depend on the fluid thermal property and the 

reference state . 

The associated boundary conditions are 

 
 0 0, 0, at 0 0

0, as

m

w wu u u x v T T y u

u T T y

     

  
  (6) 

where uw is the velocity of the stretching surface, the components velocity are respectively the 

quantities u and v in the direction of x and y, u0 is a constant, B0 is the  magnetic field and all the 

other quantities have their usual meanings.  

The heat flux radiative term is defined by using the Rosseland diffusion approximation, Salawu 

and Dada (2018);  

 

* 3

*

16

3
r

T T
q

y






 


  (7) 

where σ∗ is the Boltzmann-Stefan constant, α∗ is the coefficient mean Rosseland absorption. 

Assume the temperature difference within the flow are sufficiently small such that T 4 may be 

expressed as a linear function of temperature, using Taylor series to expand T 4 about the free 

stream T∞ and neglecting higher order terms, this gives the approximation 
434 34   TTTT . 

Using the stream function ψ(x, y), the continuity equation is satisfied such that 
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Applying the suitable similarity transformation, Salem (2007) 
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where θw is surface temperature parameter, equation (7) is redefined using appropriate variables.  

Now 
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Hence, equation (8) is the transformed dimensionless radiation. It is also obtained that  
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Further simplification of equation (9) is expressed as 
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Therefore, the heat dependent variable viscosity is redefined in equation (10)  
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0 for liquids
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Thus continuity equation (1) implies m ≡ 1, therefore, the non-dimensional variables appropriate 

for the problem under consideration are: 
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Using equation (11) on the equations (2) – (4) and boundary condition (6) along with equations 

(8) to (10). Then we have 
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The equations (12) to (15) are the dimensionless flow equations, where θc =
1

( Tw – T∞)γ
 is the 

viscosity measuring parameter. θr =
1

k( Tw – T∞)
 is the thermal conductivity term, R =

kα∗

4σ∗T4 is the 

heat transfer rate, M =
σB0

2

ρu0
 is the magnetic term, 

μcp

k
 is the Prandtl number, Grt =

gβτ( Tw – T∞)

ρxu0
2  is 

the thermal buoyancy, Grc =
gβτ( Cw – C∞)

ρxu0
2  is the mass buoyancy, Sc =

μ

Dm
 is the Schmidt number, 

β =
A

υu0
 is the reaction parameter. 

3. Numerical solution of the problem  

Computational solution to the dimensionless equations (12)–(14) along with the boundary 

conditions (15) are obtained by coupled trapezoid method with Runge-Kutta seventh-eighth of 

continuous order scheme and Richardson extrapolation improvement (Rani et al. (2013); 

Sharidan et al. (2006); Kareem et al. (2018), Salawu and Ogunseye (2020)). A shooting method 

is used first to change the derivatives to differential equations of first order. The non-magnetic 

solution is taken as the primary guess; the Euler iterative techniques is used continuously until it 

convergence within the given precision. The following are prescribed parameters in the study 

, Grt, Grc, M, R, 
w ,  , 

c , r , Sc, and Pr. The initial guesses with the equation was solved 

by Thomas' algorithm. The computation was carried out using MAPLE 18 software. 

3.1. Special Cases 

(i) In nonexistence of radiation term, the numerical value is compared to that of Devi and 

David (2012) as illustrated through Tables 1 and 2. From the tables, it is noticed that the 

results are in good agreement with that of Devi and David (2012). 

(ii) When magnetic field is absent, the results obtained in the study takes the form Okedoye 

et al. (2017).  

(iii) In the absence of variable conductivity and magnetic field, the study is similar to that of 

Okedoye (2015) in the absence of radiation effect with constant thermal conductivity. 

3.2. Validity of Results 

We compare this result with the result of Devi and David (2012) with our numerical result for 

M = 2 and M = 4. It is observed from Table 1 and 2 that the numerical values of velocity )(f   

and θ(η) is in good agreement as shown in tables. 

f′(η) M = 2.0 M = 4.0 

η 

Devi & 

David 

Current 

Work 

Differenc

e 

Devi & 

David 

Current 

work 

Difference 

0.0 1.00000000 

1.0000000

0 

0.0000000 1.0000000

0 

1.0000000

0 

0.0000000

0 

0.4 0.32339773 

0.3233977

3 

0.0000000 0.2332171

5 

0.2338171

6 

0.0000000

1 

0.8 0.10736922 

0.1073692

2 

0.0000000 0.0561298

3 

0.0565298

3 

0.0000000

0 

1.2 0.03668281 

0.0366827

2 

0.0000009 0.0139944

8 

0.0137947

8 

0.0000003

0 
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1.6 0.01282269 

0.0128226

9 

0.0000000 0.0036779

1 

0.0030780

1 

0.0000001

0 

2.0 0.00466227 

0.0046622

8 

0.0000010 0.0009622

0 

0.0006621

0 

0.0000001

0 

2.4 0.00175143 

0.0017515

4 

0.0000011 0.0002922

0 

0.0006925

0 

0.0000003

0 

2.8 0.00060943 

0.0006096

3 

0.0000020 0.0000815

2 

0.0007820

2 

0.0000005

0 

3.2 0.00023224 

0.0002322

4 

0.0000000 0.0000379

4 

0.0002381

4 

0.0000002

0 

3.6 0.00011875 

0.0001187

5 

0.0000000 0.0000773

0 

0.0000773

1 

0.0000000

1 

Table 1. Comparison of f′(η) from Devi and David (2012) result with the current research for 

M = 0.4 and M = 0.8 

θ(η) M = 2.0 M = 4.0 

η 

Devi & 

David 

Current 

work 

Differen

ce 

Devi & 

David 

Current 

work 

Differen

ce 

0.0 1.000000 1.000000 0.000000 1.000000 1.000000 0.000000 

0.4 0.326922 0.326921 0.000001 0.277864 0.277864 0.000000 

0.8 0.106878 0.106877 0.000001 0.077208 0.077208 0.000000 

1.2 0.034941 0.034938 0.000003 0.021453 0.021453 0.000000 

1.6 0.011423 0.011420 0.000003 0.005961 0.005961 0.000000 

2.0 0.003734 0.003730 0.000004 0.001656 0.001656 0.000000 

2.4 0.001221 0.001215 0.000006 0.000460 0.000460 0.000000 

2.8 0.000399 0.000392 0.000007 0.000128 0.000127 0.000000 

3.2 0.000130 0.000122 0.000008 0.000036 0.000035 0.000001 

3.6 0.000043 0.000032 0.000011 0.000010 0.000008 0.000002 

Table 2. Comparison of θ(η) from Devi and David (2012) result with the current research for 

M = 0.4 and M =   0.8 

There is good agreement in the comparison as presented in the tables. In contrast to the above 

numerical solution presented here, the Prandtl number used is one corresponding to the one for 

plasma ( 71.0Pr  ) and Schmidt number corresponding to that of water vapour (Sc=0.62). 

4. Results and Discussion 

The solutions to the dimensionless formulated equations governing the flow are computationally 

obtained for different physical parameters values entrenched in the model. The computational 

results are illustrated graphically for the various flow fields as showed in Fig 2 to Fig 15. 

The impact of viscosity measuring term θc on the dimensionless momentum f′(η) and 

concentration field ϕ(η) are seen through Table 3. As viscosity measuring parameter θc increases 

in magnitude, velocity decreases. Furthermore, it is interesting to notice that the rise in viscosity 
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measuring term decrease the momentum boundary layer thickness. While rises in magnitude of 

viscosity measuring parameter θc increases the concentration distribution. Thus, confirming the 

fact that the viscosity measuring parameter enhances the concentration boundary layer thickness. 

Table 4 shows the influence of viscosity measuring term θc over the temperature θ(η) and the 

effect of thermal conductivity measuring parameter θr on the dimensionless velocity field f′(η) 

respectively. Viscosity measuring parameter θc increases in magnitude, temperature increases. 

Also, as previously noted for concentration distribution, increase in viscosity measuring 

parameter enhances the temperature boundary layer thickness. While increases in magnitude of 

thermal conductivity measuring parameter θr increases the velocity distribution. Also, it is 

noticed that the thermal conductivity measuring term enhances the flow rate boundary layer 

thickness. The influence of thermal conductivity measuring term on both concentration and heat 

distributions respectively is shown in Table 5. From this table, increase in thermal conductivity 

brings about decrease in concentration distribution. This is so because; increase in temperature 

will enhance consumption of more chemical species to support the rise in the momentum flow 

profile. Whereas, increase in thermal conductivity result to increase in temperature distribution. 

Thus, it is worth to mention that increase in thermal conductivity enhances the temperature and 

heat boundary layer.  

 f′(η) ϕ(η) 

η 

θc

= 0.1 θc = 5 

θc

= 100 

θc

= 200 

θc

= 0.1 θc = 5 

θc

= 100 

θc

= 200 

0 1.00000 

1.0000

0 

1.00000 1.00000 1.0000

0 

1.0000

0 

1.0000

0 

1.0000

0 

0.

4 1.53506 

1.2968

6 1.27334 1.27210 

0.7771

7 

0.7949

4 

0.7965

6 

0.7966

5 

0.

8 1.25357 

1.2289

8 1.21920 1.21864 

0.5558

9 

0.5836

0 

0.5862

6 

0.5864

1 

1.

2 0.97260 

1.0306

3 1.03390 1.03410 

0.3696

4 

0.3975

5 

0.4003

5 

0.4005

1 

1.

6 0.72876 

0.8087

9 0.81759 0.81807 

0.2314

7 

0.2538

4 

0.2561

5 

0.2562

8 

2.

0 0.52800 

0.6058

6 0.61502 0.61553 

0.1382

1 

0.1537

0 

0.1553

2 

0.1554

1 

Table 3. Effect of viscosity measuring term on f′(η) and ϕ(η) 

 θ(η) f′(η) 

η 

θc

= 0.1 θc = 5 

θc

= 100 

θc

= 200 θr = 1 

θr

= 20 

θr

= 30 

θr

= 40 

0 1.00000 

1.0000

0 

1.00000 1.00000 1.0000

0 

1.0000

0 

1.0000

0 

1.0000

0 

0.

4 0.88652 

0.8901

0 0.89044 0.89046 

1.4049

0 

1.4035

5 

1.4170

8 

1.4171

4 

0.

8 0.76552 

0.7725

1 0.77318 0.77322 

1.2481

0 

1.2465

3 

1.2764

2 

1.2765

4 

1.

2 0.64136 

0.6508

2 0.65175 0.65180 

0.9857

7 

0.9856

7 

1.0335

1 

1.0336

8 

1.

6 0.51951 

0.5301

1 0.53116 0.53122 

0.7347

6 

0.7375

5 

0.8005

3 

0.8007

2 

2 0.40577 

0.4161

3 0.41717 0.41723 

0.5226

0 

0.5290

6 

0.6000

6 

0.6002

5 
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Table 4. Impact of viscosity measuring and thermal conductivity parameters on θ(η) and f′(η) 

respectively 

 ϕ(η) θ(η) 

η θr = 1 θr = 20 θr = 30 θr = 40 θr = 1 θr = 20 θr = 30 θr = 40 

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

0.4 0.79016 0.79007 0.78470 0.78468 0.88781 0.88641 0.89440 0.89445 

0.8 0.57653 0.57634 0.56659 0.56655 0.76572 0.76328 0.78220 0.78229 

1.2 0.39153 0.39124 0.37894 0.37890 0.63726 0.63443 0.66655 0.66669 

1.6 0.25060 0.25020 0.23744 0.23740 0.50783 0.50568 0.55154 0.55171 

2 0.15308 0.15261 0.14108 0.14104 0.38438 0.38425 0.44160 0.44178 

Table 5. Effect of thermal conductivity parameters on ∅(η) and θ(η) respectively  

We displayed the impact of magnetic interaction term (M) and radiation term (R) on the 

concentration distributions in Figures 2 and 3. Concentration distribution is encouraged with 

either rise in the radiation or magnetic field term. This implies that the species boundary layer 

thickens with a rise in R and M. Increase in surface temperature and thermal buoyancy enhances 

the concentration field. The mass distribution is enhanced with variational rise in the surface 

temperature and thermal Grashof number as shown in Figure 4 and 5 respectively. While Figure 

6 shows that mass distribution speedup with a rise in the generative chemical reaction(β > 0). 

The consequence of thermal radiation term ® over the dimensionless heat θ(η) is seen through 

Fig.7. It is observed that the influence of radiation term is to decrease the heat distribution is the 

system. It elucidates that the thickness in the boundary layer of the energy equation is reducing 

as R values enhance. The response of heat source term in the heat equation to a rise in the magnetic 

field M over the flow heat θ(η) is depicted with the aid of Fig. 8. Enhancing the magnetic field 

term M encourages Lorentz force in the flow which then resulted into rise in the heat profile. This 

described the fact that increase in the Lorentz force boosted the temperature source term in the 

energy balance equation. The effect of stretching surface temperature term θw on the 

dimensionless heat θ(η) is presented as Figure 9. Rising in the surface heat term θw is seen to 

have increasing effect on the temperature distribution. Figure 10 illustrates thermal buoyancy 

effect on the temperature field. Boosting the thermal Grashof number (Grt) decreases the 

temperature distribution, this describing the impact of Grt on the bulk temperature. Decreasing 

in the bulk temperature influence the heat source parameter in the system to increases thereby 

enhances the heat profile. Figures 12 and 13 portray the graphical result of the momentum f′(η) 

for various values of radiation term R and magnetic interaction parameter M. It is observed that 

as the parameter values R and M rises, the fluid velocity distribution f′(η) reduces to show 

influence of radiation and magnetic field terms on the fluid flow rate in under different variable 

properties. The profiles decelerated as the parameters values in boosting. The action of surface 

temperature and thermal buoyancy on non-dimensional velocity distribution in plotted in Figures 

14 and 15 respectively. It is obtained from the plots that an increase in either θw or Grt increases 

the flow momentum and enhances thickness of the flow boundary layer as seen due to a rise in 

the values of θw or Grt. 



A. M. Okedoye et al.: Effect of Nonlinear Radiative Heat and Mass Transfer on MHD Flow Over... 

 

96 

 

Fig. 2. Concentration distributions profile for various radiation parameters R 

 

Fig. 3. Concentration distributions profile for various M 

 

Fig. 4. Concentration distributions profile for various θw 
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Fig. 5. Concentration distributions profile for various Grt 

 

Fig. 6. Concentration distributions profile for various β 

 

Fig. 7. Temperature distributions profile for various R 
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Fig. 8. Temperature distributions profile for various θw 

 

Fig. 9. Temperature distributions profile for various M  

 

Fig. 10. Temperature distributions profile for various Grt 
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Fig. 11. Velocity distributions profile for various β 

 

Fig. 12. Velocity distributions profile for various R 

 

Fig. 13. Velocity distributions profile for various M 
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Fig. 14. Velocity distributions profile for various θw 

 

Fig. 15. Velocity distributions profilefor various Grt 

5. Skin friction, heat and mass gradient 

We now move to examining some important fluid parameters that are of importance to this work. 

Such parameters include Skin friction, Sherwood and Nusselt numbers coefficient.  We therefore 

denote and define respectively, Skin friction, Nusselt and Sherwood numbers as Salawu and Dada 

(2016); 

  
2

2

0

, 0
f

f f f

y

T du d
c T c f

u v dy d 


 



       

The heat transfer at the wall is computed from Fourier's law: 

 
 

 
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, 0
y

q v dT d
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T T Kv dy d




 


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

  

And mass transfer rate at wall 
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
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 


 

     


  

Table 6 presents the effect of the parameters Grt, Grc, M, θc, θr, θw, R, β  on the wall shear stress 

cf, Sherwood number Sh and wall heat gradient Nu for Sc = 0.62, Pr = 0.71 and ϵ = 0.01. From 

the table, the heat and spaces buoyancy, surface temperature and reaction parameter rises the 

coefficient of skin friction cf. But thermal and viscosity conductivity measuring heat transport 

and parameters reduces the coefficient skin friction cf. It is also noticed that the dimensionless 

wall heat transport gradient Nu enhances with rises in the thermal and mass buoyancy, thermal 

conductivity measuring parameter and heat transfer rate, but decrease with viscosity measuring 

parameter, surface temperature, magnetic and chemical reaction parameters. While surface 

temperature, thermal and mass buoyance are found to enhance the mass transfer rate at the wall 

and decreases with Hartmann number, thermal and viscosity conductivity measuring parameter, 

heat transfer rate and chemical reactivity terms.  

Grt Grc M θc θr θw R Β cf Sh Nu 

0.0 2.0 2.0 0.6 0.8 1.5 5.0 0.4 -1.08182 0.15662 0.20182 

5.0 2.0 2.0 0.6 0.8 1.5 5.0 0.4 2.57279 0.49550 0.26680 

10.0 2.0 2.0 0.6 0.8 1.5 5.0 0.4 5.86878 0.64549 0.31049 

15.0 2.0 2.0 0.6 0.8 1.5 5.0 0.4 8.92490 0.74383 0.34283 

5.0 0.0 2.0 0.6 0.8 1.5 5.0 0.4 1.25845 0.43265 0.25230 

5.0 2.0 2.0 0.6 0.8 1.5 5.0 0.4 2.57279 0.49550 0.26680 

5.0 6.0 2.0 0.6 0.8 1.5 5.0 0.4 4.99743 0.58459 0.28893 

5.0 12.0 2.0 0.6 0.8 1.5 5.0 0.4 8.32460 0.67732 0.31370 

5.0 2.0 0.0 0.6 0.8 1.5 5.0 0.4 4.83244 0.62428 0.30337 

5.0 2.0 2.0 0.6 0.8 1.5 5.0 0.4 2.57279 0.49550 0.26680 

5.0 2.0 4.0 0.6 0.8 1.5 5.0 0.4 0.95431 0.38386 0.24054 

5.0 2.0 6.0 0.6 0.8 1.5 5.0 0.4 -0.27328 0.28910 0.22220 

5.0 2.0 2.0 0.1 0.8 1.5 5.0 0.4 5.95466 0.52346 0.27171 

5.0 2.0 2.0 50.0 0.8 1.5 5.0 0.4 1.34764 0.47182 0.26257 

5.0 2.0 2.0 100 0.8 1.5 5.0 0.4 1.33821 0.47158 0.26252 

5.0 2.0 2.0 2000 0.8 1.5 5.0 0.4 1.32921 0.47135 0.26248 

5.0 2.0 2.0 0.6 0.0 1.5 5.0 0.4 2.56594 0.48865 0.26652 

5.0 2.0 2.0 0.6 0.1 1.5 5.0 0.4 2.56234 0.48889 0.27025 

5.0 2.0 2.0 0.6 15 1.5 5.0 0.4 2.59287 0.50270 0.25392 

5.0 2.0 2.0 0.6 40 1.5 5.0 0.4 2.59302 0.50275 0.25381 

5.0 2.0 2.0 0.6 0.8 0.8 5.0 0.4 1.24735 0.25659 1.79983 

5.0 2.0 2.0 0.6 0.8 1.0 5.0 0.4 1.78345 0.33036 1.12815 

5.0 2.0 2.0 0.6 0.8 1.2 5.0 0.4 2.22678 0.40798 0.56860 

5.0 2.0 2.0 0.6 0.8 1.4 5.0 0.4 2.48936 0.47156 0.33215 

5.0 2.0 2.0 0.6 0.8 1.5 0.5 0.4 2.57279 0.49550 0.26680 

5.0 2.0 2.0 0.6 0.8 1.5 1.5 0.4 2.33973 0.42677 0.44214 

5.0 2.0 2.0 0.6 0.8 1.5 5.0 0.4 2.06203 0.36876 0.70642 

5.0 2.0 2.0 0.6 0.8 1.5 2000 0.4 1.78543 0.33059 1.12413 

5.0 2.0 2.0 0.6 0.8 1.5 5.0 0.0 2.51671 0.68072 0.26486 

5.0 2.0 2.0 0.6 0.8 1.5 5.0 0.4 2.57279 0.49550 0.26680 

5.0 2.0 2.0 0.6 0.8 1.5 5.0 0.8 2.65253 0.25056 0.26982 

5.0 2.0 2.0 0.6 0.8 1.5 5.0 1.2 2.78307 0.12245 0.27518 

Table 6. Skin friction, gradient of energy and species transfer 



A. M. Okedoye et al.: Effect of Nonlinear Radiative Heat and Mass Transfer on MHD Flow Over... 

 

102 

6. Conclusion 

The following conclusions are made in view of the above obtained results. 

 It is noticed that the magnetic field decelerates the momentum and enhances temperature 

distribution in the system under consideration. 

 It is seen that the term that increases the heat source term diminishes the fluid viscosity.  

 Temperature is found to reduce due to the radiation term effect while it is found to 

increase with the increasing surface heat parameter. 

 The thickness of heat boundary layer reduces significantly as Prandtl number rises. 

 The skin friction and the fluid flow rate decrease by the velocity exponent term. On the 

other hand, heat diffusion is enhanced by the velocity exponent parameter. 

 It is obtained that for encouraging radiation parameter R, the dimensionless rate of heat 

transfer decreases. 
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