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Abstract 

The performance of a magnetic fluid based short bearing is examined with the effect of viscosity 

variation. The pressure temperature relation of Tipei (1962) concerning viscosity variation is 

adopted here. The Neuringer-Rosensweig’s model has been considered for the magnetic fluid 

flow. The related modified Reynolds type equation is solved for the calculation of pressure 

distribution leading to the computation of load bearing capacity. The graphical representations 

indicate that the positive effect of viscosity variation gets aided considerably by the ferrofluid 

lubrication. 
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1. Introduction 

The use of slider bearing has been proved to be very useful from the industry point of view for 

many decades. This has been documented in the literature (Agrawal (1986), Lin (2001), Deheri 

et al. (2005), Ahmad and Singh (2007), Oladeinde and Akpobi (2010), Deheri and Patel (2011), 

Patel and Deheri (2013, 2015)). The basic phenomenon associated with hydrodynamic slider 

bearing is the formation of a converging wedge of the lubricant. The hydrodynamic slider may 

be constructed to provide this converging wedge in a number of ways such as plane, convex, 

concave and stepped ones. 

 Ferrofluid constitutes suspension of solid magnetic particles of sub domain size in a liquid carrier 

(Bhat 2003). It remains liquid in a magnetic field and alters after the removal of field and recovers 

its characteristics. The magnetic fluid lubrication has been in use for the last three decades, so far 

as the hydrodynamic bearings are concerned. In fact, Loudspeakers and Sealing do make use of 

magnetic fluid lubrication. The magnetic fluid possesses many appealing properties. For instance, 

it can be confined to a desired location with the help of an external magnetic field. This property 

has been exploited for space craft vehicles. 
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Most of the investigations (Agrawal (1986), Shah and Bhat (2003), Ahmad and Singh (2007), 

Deheri and Patel (2011), Patel and Deheri (2013, 2015, 2016), Patel et al. (2017), Patel and Deheri 

(2018)) deal with constant viscosity. But, it fails to comply with reality. In some discussions, of 

course, viscosity variation has been talked about. 

By now, it is known that viscosity of nanofluids is subjected to thorough investigations for system 

dealing with heat transfer applications. It is well known that pumping power pressure drop in 

laminar flow and convective heat transfer always depend on the viscosity of fluids. It is 

established that viscosity increases pumping power. The analysis of viscosity variation turns out 

to be crucial for deciding the thermo-fluidic behavior of heat transfer fluid. It has been observed 

that nano fluid’s viscosity depends mainly on the effects of particles shape, particle size volume 

fraction and temperature. Very little (Sinha et al. (1981), Siddangouda et al. (2013), 

Naduvinamani and Kadadi (2013), Patel et al. (2018)) is known for the effect of viscosity 

variation under the presence of a ferrofluid. So, it was thought appropriate to launch an 

investigation into the effect of viscosity variation on a ferrofluid based short bearing. 

2. Analysis 

The geometrical configuration of the short bearing system is displayed in Figure 1, which is 

given below. In x-direction, the slider bearing surfaces move with uniform velocity 𝑢. 𝐿 and 𝐵 

are respectively length and breadth of the bearing in 𝑧 direction where 𝐵 ≪ 𝐿. Since 
𝜕𝑝

𝜕𝑧
≫

𝜕𝑝

𝜕𝑥
, 

without loss of generality 
𝜕𝑝

𝜕𝑥
 can be neglected (Basu et al. (2005)).  

 

Fig. 1. Configuration of bearing 

The magnetic field remains oblique to the starter as in Agrawal (1986). In view of the 

deliberations there in Prajapati (1995) and Patel and Deheri (2013), the magnitude of the magnetic 

field is taken as  
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      
           

      
  (1) 

where constant 𝑘 is suitably chosen from dimensionless point of view (Patel and Deheri (2013)). 

In 1964, Neuringer and Rosensweig proposed a simple flow model to investigate the steady flow 

of magnetic fluids wherein there is the presence of a slowly changing external magnetic fluid. 

The following equations constitute the model:  

    2

0q q p q M H           (2) 
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 0q    (3) 

 0H    (4) 

 M H   (5) 

   0H M     (6) 

where 𝜌, 𝑞̅, 𝐻, 𝜇̅ , 𝑝, 𝜂 and 𝜇0 denote the fluid density, the fluid velocity in the film region, 

external magnetic field, magnetic susceptibility of the magnetic field, the film pressure, the fluid 

viscosity and the permeability of the free space, respectively. 

In the light of equations (3) to (6), equation (2) turns to  

   2 20

2
q q p M q

 
 

 
      

 
  

Under the usual considerations of hydro-magnetic lubrication, the modified equations for the 

pressure distribution (Bhat 2003;Prajapati 1995; Deheri et al. 2005) is derived to be  

 

2
20

2 3

6

2

d u dh
p M

dxdz h

   
   

 
  (7) 

where 𝜇0 represents the magnetic susceptibility, 𝜇̅  denotes the free space permeability and 𝜇 

being the lubricant viscosity. 

It appears that viscosity of the lubricant may change across the film and may be different 

near the bearing surfaces due to the reactions of additives and surfactant with the bearing surfaces. 

It has been found in Rao and Prasad (2004) that the coefficient of friction decreases with a high 

viscous layer. As per the discussions of Tipei (1962), it has been verified experimentally that the 

highest temperature occurs in the zones in the least film thickness region. Here we discuss the 

thermal effect in view of the viscosity-temperature relation given by, 

 
1

2

q

h

h
 

 
  

 
  (8) 

when the viscosity μ1 at h = h2 is known, where q, the thermal factor, usually lies between 

0 and 1 according to the nature of the lubrication (Sinha et al. (1981), Siddangouda et al. (2013), 

Naduvinamani and Kadadi (2013), Patel et al. (2018)). 

The concerned Reynolds physical boundary conditions associated with the system are  

 0; ,
2

B
p z     

and 

 0; 0.
dp

z
dz

    (9) 

The solution of equations (2)-(6) under boundary conditions (9) leads to the expression for 

dimensional pressure distribution  
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 
  (10) 

Introduction of the non-dimensional quantities  
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transforms the above equation (10) to 
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  (11) 

Further, the load bearing capacity in non-dimensional form is calculated from  

  

1

13 2

2

4

1 0

2

,
h

W w p x z dxdz
uB



      (12) 

which assumes the form 

 

1

* 3

0

1
0.98254

2

qL m
W A dX

B B
      (13) 

3. Results and Discussion 

Equation (11) determines the non-dimensional pressure distribution while expression (13) 

decides the effect of dimensionless load carrying capacity in the short bearing. From equation 

(13), one can notice that the load carrying capacity enhances by 0.98254  μ∗ L̅

B̅
  due to the 

magnetic fluid lubrication as compared to conventional fluid based bearing system. Eventually, 

as found, this is much more than the case of constant viscosity (Agrawal (1986), Lin (2001), 

Ahmad and Singh (2007), Oladeinde and Akpobi (2010), Deheri and Patel (2011), Patel and 

Deheri (2015))  

One can find the graphical representations of load bearing capacity of the short bearing in Fig. 2-

11. The positive effect of magnetization goes further by the effect of viscosity variation as can be 

seen from Fig. 2-5. Fig. 3 suggests that the above positive impact moves up further with a suitable 

choice of aspect ratio. 
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Fig. 2. Variation of 𝑊 with respect to 𝜇∗ and  𝑞 . 

 

Fig. 3. Variation of 𝑊 with respect to 𝜇∗ and  𝑚 . 
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Fig. 4. Variation of 𝑊 with respect to 𝜇∗ and  𝐿̅ . 

 

Fig. 5. Variation of 𝑊 with respect to 𝑞 and 𝐵̅ . 

The variation of load carrying capacity with respect to 𝜇∗ is exhibited in Figs. 2-5. It is found that 

the load bearing capacity enhances due to magnetization which jells well with the theoretical 

consideration based on the linearity of 𝑊 with respect to 𝜇∗. Probably, this is due to the fact that 

the magnetization increases the viscosity of the fluid. It is interesting to note that the behavior of 

𝑚 and 𝐵̅ are approximately opposite in nature.  
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Fig. 6. Variation of 𝑊 with respect to 𝑞 and 𝑚. 

 

Fig. 7. Variation of 𝑊 with respect to 𝑞 and 𝐿̅ . 
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Fig. 8. Variation of 𝑊 with respect to 𝑞 and 𝐵̅ . 

The impact of 𝑞 reflected in Figs. 6-8 shows that the increasing viscosity variation parameter 

causes enhanced load bearing capacity.  

 

Fig. 9. Variation of 𝑊 with respect to 𝑚 and 𝐿̅ . 
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Fig. 10. Variation of 𝑊 with respect to 𝑚 and 𝐵̅ . 

Fig. 9 and 10 display the effect of aspect ratio 𝑚 with respect to 𝐿̅ and 𝐵̅ . The behavior of 𝐿̅ and 

𝐵̅ is same with 𝑚, barring the higher values of 𝐵̅.  

The variation of load carrying capacity with respect to 𝐿̅ and 𝐵̅ can be seen in Fig. 11. It is 

manifest that load carrying capacity increases with respect to 𝐿̅  while it lowers with respect to 𝐵̅. 

 

Fig. 11. Variation of 𝑊 with respect to 𝐿̅ and 𝐵̅ . 
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4. Conclusions 

This study suggests that the ferrofluid lubrication improves the performance of bearing system 

and it remains responsible for an increased bearing’s life span. The viscosity variation may 

provide some measures to boost the performance of the short bearing further. Unlike the 

traditional lubrication the effect of ferrofluid lubrication allows the bearing system to sustain a 

good amount of load even in the absence of flow. The variation effect arising out of the magnetic 

strength and viscosity parameter remains more favorable for the improvement of the bearing 

performance, so far as Neuringer and Rosensweig’s model is concerned. Notably, this type of 

bearing system tends to support some load for almost all range of viscosity. If parameters are 

picked up suitably, then this type of bearing system may be helpful to the industry.  
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