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Abstract 

The onset of thermal instability in a dielectric rotating nanofluid layer saturating a porous medium 

with vertical AC electric field is investigated by employing Darcy model for porous medium. The 

rheology of the nanofluid is described by Walters’ (model B’) for calculating the shear stresses 

from the velocity gradients. The employed model incorporates the combined effects of movement 

of the molecules of the fluid striking the nanoparticles, thermophoresis and electrophoresis due 

to the embedded particles. The boundaries are considered to be stress free. It is assumed that 

nanoparticle flux is zero on the boundaries. The eigen-value problem is solved analytically using 

the first approximation of Galerkin method. The Darcy Rayleigh number for onset of non-

oscillatory (stationary) modes is obtained. The effects of the modified Taylor number, the AC 

electric Rayleigh number, the Lewis number, the modified diffusivity ratio, nanoparticles 

Rayleigh number and medium porosity have been discussed. The kinematic viscoelasticity 

accounting for rheology of the nanofluid has no effect on the stationary convection for Walters’ 

(model B’) nanofluids and behaves like an ordinary Newtonian nanofluid. Oscillatory convection 

has been ruled out under the considered boundary conditions. 

Keywords: nanofluid, AC electric field, Rayleigh number, Walters’ (model B'), 

electrohydrodynamic, Brownian motion, Galerkin method 

1. Introduction 

Electrohydrodynamics (EHD) finds diverse applications in enhancement of thermal transfer, 

EHD pumps, micromechanic systems, micro-cooling systems, building of thermal insulation, 

biomechanics etc. Electrohydrodynamic thermal instability in a porous medium is a phenomenon 

related to various fields. It has various applications in different areas such as EHD enhanced 

thermal transfer, EHD pumps, EHD in microgravity, micromechanic systems, drug delivery, 

micro-cooling system, nanotechnology, oil reservoir modeling, petroleum industry, building of 

thermal insulation, biomechanics, engineering etc. Chandrasekhar (1961) has given a 
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comprehensive account of thermal instability of Newtonian fluid under the various assumptions 

of hydrodynamics and hydromagnetics. The investigation in porous media has been started with 

the Darcy model. A good account of convection problems in a porous medium is given in Ingham 

(1981), Vafai and Hadim (2000) and Nield and Bejan (2006). Electrodynamics of continuous 

media and electrohydrodynamic convection in fluids has been studied by Landau, (1960), Roberts 

(1969) and Castellanos (1998). Electrohydrodynamics is a branch of fluid mechanics which deals 

with the motion of fluid under the influence of electrical forces. It can also be considered as that 

part of electrodynamics which is necessitated with the influence of moving media on electric 

fields. Electrohydrodynamics involves both the effect of fluid in motion and the influence of the 

field in motion (Melcher et al. 1969; Jones 1978). Nanofluid was first coined by Choi (1995). 

Further, suspensions of nanoparticles are being developed for medical applications including 

cancer therapy. The detailed study of thermal convection in a layer of nanofluid in porous medium 

based upon Buongiorno (2006) model has been discussed by different authors (Tzou 2008a, b; 

Nield and Kuznetsov 2009; Sheu 2011; Chand and Rana 2012; Nield and Kuznetsov 2014; Chand 

et al. 2014; Yadav and Kim 2015; Chand et al. 2017; Chand and Rana 2017). 

All the studies referred above deal with Newtonian nanofluids. However, with the growing 

importance of non-Newtonian fluids in geophysical fluid dynamics, chemical technology and 

petroleum industry attracted widespread interest in the study on non-Newtonian nanofluids. One 

such type of fluids is Walters’ (model B') (1962) elastico-viscous fluid having relevance in 

chemical technology and industry. Walters’ (model B') elastico-viscous fluid forms the basis for 

the manufacture of many important polymers and useful products. A good account of thermal 

instabilities problems in a Walters’ (Model B') elastico-viscous fluid in a porous medium is given 

in Sharma and Rana (2001), Gupta and Aggarwal (2011), Shivakumara et al. (2011) and Rana et 

al (2012).  

Recently, considerable interest has been evidenced in the study of electrohydrodynamic thermal 

instability in viscous and viscoelastic fluid. Takashima (1976) discussed the effect of uniform 

rotation on the onset of convective instability in a dielectric fluid under the simultaneous action 

of AC electric field. The onset of electrohydodynamic instability in a horizontal layer of viscous 

and viscoelastic fluid was studied by Takashima and Ghosh (1979), Takashima and Hamabata 

(1984), Othman (2004), Shivakumara et al. (2007), Ruo et al. (2010), Shivakumara et al. (2013) 

and Rana et al. (2015, 16).  

The growing number of applications of electrohydrodynamic thermal instability in an elastico-

viscous nanofluid in a porous medium which include several engineering and medical fields, 

such as automotive industries, energy saving and cancer therapy, motivated the current study. 

Our main aim is to study the effect of vertical AC electric field on the onset of thermal instability 

in a horizontal layer of an elastico-viscous Walters’ (Model B') nanofluid under rotation in a 

porous medium. 

2. Formulation of the problem and mathematical model 

Here we consider an infinite horizontal porous layer of a Walters’ (model B') elastico-

viscous rotating nanofluid of thickness d, bounded by the planes z = 0 and z = d and subject to 

a uniform vertical AC electric field applied across the layer; the lower surface is grounded and 

the upper surface is kept at an alternating (60Hz) potential whose root mean square value is V1  

(see Fig.1). The layer is heated from below, which is acted upon by a gravity force g = (0, 0, -g) 

aligned in the z direction. The temperature, T, and the volumetric fraction of nanoparticles, φ, at 

the lower (upper) boundary is assumed to take constant values T0, and φ0 (T1, and φ1), 

respectively. We know that keeping a constant volume fraction of nanoparticles at the horizontal 

boundaries will be almost impossible in a realistic situation. However, we assumed these 
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conditions, which have also been previously adopted by several authors (Tzou 2008 a, b; Nield 

and Kuznetsov 2009; Sheu 2011; Chand and Rana 2012; Nield and Kuznetsov 2014; Chand et al. 

2014; Yadav and Kim 2015; Takashima and Ghosh 1979; Takashima and Hamabata 1984; 

Othman 2004; Shivakumara et al. 2007; Ruo et al. 2010; Shivakumara et al. 2013; and Rana et 

al. 2015, 2016, Chand et al. 2017 and Chand and Rana 2017).  

 

Fig. 1. Physical Configuration 

2.1 Governing Equations 

The equations of mass-balance and momentum-balance for Walters’ (model B') elastico-viscous 

with vertical AC electric field (Chandrasekher 1961, Tzou 2008a, b, Nield and Kuznetsov 2009, 

Sheu 2011, Chand and Rana 2012, Nield and Kuznetsov 2014, Chand et al. 2014, Yadav and Kim 

2015, Chand et al. 2017, Chand and Rana 2017) under the Oberbeck-Boussinesq approximation 

in a porous medium are 

 . 0,= q   (1) 
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1 1 1
. 2

2

'ρ
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is the modified pressure (Takashima 1976) and 'ρ, , , , ,p    k1, E, K , q(u, v, w), denote 

respectively, density, viscosity, viscoelasticity, pressure, medium porosity, medium permeability, 

root mean square value of the electric field and Darcy velocity vector, respectively. 

The ρ density of the nanofluid can be written (Buongiorno 2006) as  

  φρ 1p fρ + φ ρ    (3) 
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where φ is the volume fraction of nanoparticles,  ρp is the density of nanoparticles and ρf is the 

density of base fluid. We approximate the density of the nanofluid by that of the base 

fluid, that is we consider 
fρ ρ (Tzou 2008a, b; Nield and Kuznetsov 2009; Sheu 2011; 

Chand and Rana 2012). Now, introducing the Boussinesq approximation for the base fluid, the 

specific weight,    ρg  in equation (2) becomes 

       0φρ 1 1pρ + φ ρ α T T   g g   (4) 

where   is the coefficient of thermal expansion. 

If one introduces a buoyancy force, the equation of motion for Walters’ (model B') nanofluid 

by using Boussinesq approximation and Darcy model for porous medium (e.g. Nield and 

Kuznetsov 2009) is given by 

          '

p 0

1

1 1
0 φρ 1 φ ρ 1 α T T 2

k 2
P E E K

t


 



 
              

 
g q q Ω   (5) 

The mass-balance equation for the nanoparticles (Buongiorno 2006) is 

 2 2

0

1
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B

Dφ
+ φ= D φ+ T

t T


  


q   (6) 

The thermal energy equation for a nanofluid is 

    2 T

m Bm p

0

DT
ρc . T k T ε ρc D φ T T. T

t T

  
              

q   (7) 

where (ρc)m is heat capacity of  fluid in porous medium, (ρc)p is heat capacity of  nanoparticles 

and  km is thermal conductivity. 

The Maxwell equations are  

 0 E   (8) 

   0K E   (9) 

Let V be root mean square value of electric potential, the electric potential can be expressed as 

 V E   (10) 

The dielectric constant is assumed to be linear function of temperature and is of the form 

  0 01K K T T       (11) 

where 0  , is the thermal coefficient of expansion of dielectric constant and is assumed to be 

small. 

We assume that the temperature is constant and nanoparticles flux is zero on the boundaries. 

Thus, boundary conditions (1, 18) are 
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We introduce non-dimensional variables as  
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   is  thermal diffusivity of the fluid and 
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  is the thermal capacity 

ratio. We obtain the equations in non-dimensional form (after dropping the dashes ( ' ) for 

convenience) as 
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is the AC electric Rayleigh number. 

The dimensionless boundary conditions are  
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2.2 Basic Solutions 

We assume that the basic state is quiescent [Nield and Kuznetsov (2009), Sheu (2011), Chand 

and Rana (2012), Nield and Kuznetsov (2014)] and is given by  

            b0, , K K z , , ., ,    z .b b b bu = v = w= P = P z T = T z φ= φ z E E z       (19) 
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 is the root mean square value of the electric field at z = 0.
 

The basic state defined in (19) is substituted into equations (18) and (19), these equations reduce 

to 
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Using boundary conditions (18) in equations (15) and (16), on integration equation (20) gives 

 
   

0,
b b

A

dφ z dT z
+ N =

dz dz
  (22) 

Using equation (22) in (21), we obtain 

 
 2

0
b

2

d T z

dz
   (23) 

Applying the boundary conditions (18), the solution of equation (23) is given by  

   1 .bT z = z   (24) 

Integrating equation (22) by applying the boundary conditions (18), we get 

   0 .b Aφ z = N z    (25) 

These results are identical with the results obtained by Sheu (2011) and Nield and Kuznetsov 

(2009).   

 2.3 Perturbation Solutions 

To study the stability of the system, we superimposed infinitesimal perturbations on the basic 

state, so that  
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     b, ,K K K , ,E V .'' '' ''
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Introducing equation (26) into equations (13) – (17), linearizing the resulting equations by 

neglecting nonlinear terms that are product of prime quantities and dropping the primes ('') for 

convenience, the following equations are obtained  
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Operating equation (28) with
ˆ

ze curl curl
 to eliminate the pressure term P, we obtain 
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is the vorticity. 

Again eliminating pressure P from Eq. (28) and introducing vorticity ξ, we get 
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Now, eliminating ξ between Eqs. (28) and (29), we obtain 
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Boundary conditions are  
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3. Normal Mode Analysis 

We express the disturbances into normal modes of the form  

            , , , , , , z expw T φ V = W z Θ z Φ z ilx+imy+ t ,     (36) 
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where l, m are the wave numbers in the x and y direction, respectively, and  is the growth rate of 

the disturbances. 

Substituting equation (36) into equations (27) - (31) and (34), we obtain the following eigenvalue 

problem 

      2 2 2 2 21 0,2

eaD a F TaD W a RaΘ a RnΦ a R D =          (37) 

 2 22
0,A A B BN N N N

W D D D a Θ DΦ =
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  (39) 

  2 2D a D      (40) 

where 
d

D =
dz

and a2 = l2+ m2
 is the dimensionless resultant wave number. 

The boundary conditions of the problem in view of normal mode analysis are 

 20, 0, 0, 0, 0 0 1.AW D W D D N D at z and z             (41) 

4. Method of solution 

The Galerkin-type weighted residuals method is used to find an approximate solution of the 

system of equations (37) - (40) with the corresponding boundary conditions (41). In this method, 

the test functions are the same as the base (trial) functions. Thus, we can write 

 
1 1 1 1

, , , ,
N N N N

s s s s s s s s

s s s s

W A W B C D
   

               (42) 

where As, Bs, Cs and Ds are unknown coefficients, s = 1, 2, 3, ……, N and the base functions Ws, 

Θs, Φs and  Ψs satisfy the boundary conditions (41). Using expression for  W, Θ, Φ and  Ψ in 

equations (39) – (40) and multiplying the first equation by Ws, second by Θs, third by Φs and 

fourth by Ψs; then integrating between the limits 0 to 1, we obtain  a set of 3N homogeneous 

equations with 3N unknowns As, Bs, Cs and Ds; s = 1, 2, 3, …., N. For the existence of non-trivial 

solution, the vanishing of the determinant of coefficients produces the characteristics equation of 

the system in terms of Rayleigh number Ra. 

5. Linear Stability Analysis and Dispersion Relation 

We have considered the case of free boundaries for which system of Eqs. (37) - (40) together 

with the boundary conditions (41) constitute a linear eigenvalue problem with variable  

coefficient  for  the  growth  rate  of disturbance of  the  system. The resulting eigenvalue problem 

is solved numerically by the Galerkin method of first order (N = 1), which gives the expression 

for Rayleigh number Ra as 

Substituting Eq. (42) into Eqs. (37) – (40), we obtain the following matrix equation 
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The linear system (43) has a non-trivial solution if and only if 
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Equation (44) is the required dispersion relation accounting for the effect of rotation, Lewis 

number, kinematic visco-elasticity parameter, AC electric Rayleigh number, nanoparticle 

Rayleigh number, modified diffusivity ratio on thermal instability in a layer of Walters’ (model 

B') elastico-viscous nanofluid saturating a porous medium under vertical AC electric field. 

For neutral stability, the real part of ω is zero. Hence on putting  ω =  iω, ( where ω is real and 

is dimensionless frequency) in Eq. (44), we have  

 1 2Ra = i     (45) 

where  
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Since Ra is a physical quantity, so it must be real. Hence, it follows from the Eq. (44) that either 

ω = 0 (exchange of stability, steady state) or Δ2 = 0 (ω ≠ 0 overstability or oscillatory onset). 

6. Stationary Convection  

Since oscillatory convection has been ruled out, because of the absence of two opposing buoyancy 

forces, we need to consider only the case of stationary convection.  Put  = 0 in equation (44), 

we obtain 

 
   

 

2
2 2 2 2 2 2

2 2 2
.ea A

a a Ta a Le
Ra = R N Rn

a a

  



    
   

  
  (48) 

Equation (48) expresses the Rayleigh number as a function of the dimensionless resultant wave 

number a and the different parameters Ta,  Rea, , Rn, Le, N
A

. Since the elastico-viscous parameter 

F vanishes with  so the Walters’ (model B') elastico-viscous nanofluid fluid behaves like an 

ordinary Newtonian nanofluid. Equation (48) is identical to that obtained by Kuznetsov and Nield 

(2009) and Rana and Chand (2016). Also, in equation (48) the particle increment parameter NB 

does not appear and the diffusivity ratio parameter NA appears only in association with the 

nanoparticle Rayleigh number Rn. This implies that the nanofluid cross-diffusion terms approach 

to be dominated by the regular cross-diffusion term.  

In the absence of AC electric field Rae, equation (48) reduces to 

 
   

2
2 2 2 2 2

2
.A

a a Ta Le
Ra = N Rn

a

  



    
  
 

  (49) 

which is identical with the result derived by Kuznetsov and Nield (2009), Rana et al. (2015) and 

Rana and Chand (2016). 

In the absence of rotation, equation (49) becomes 

 
 

2
2 2

2
.A

a Le
Ra = N Rn
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  (50) 

To study the effect of AC electric Rayleigh number, Lewis number, nanoparticle Rayleigh 

number, modified diffusivity ratio and medium porosity, we examine the behavior of 

, , , ,
ea A

Ra Ra Ra Ra Ra Ra
and

Ta R Le N Rn 

     

     
analytically. 

From equation (48), we obtain 
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2

Ra LeRn

 





  (56) 

7. Results and Discussions  

The thermal Rayleigh number on the onset of stationary convection is given by (48) which does 

not depend on viscoelastic parameter. It takes the same value that the one obtained for an ordinary 

Newtonian fluid. According to the definition of nanoparticle Rayleigh number Rn in Eq. (25), 

this corresponds to negative value of Rn for bottom-heavy distribution of nanoparticles ( ρp >ρ). 

In such cases, values of NA are also negative as defined in the paper.  In the following discussion, 

negative values of Rn and NA are presented.  

From equation (51), we see that the partial derivative of Rayleigh number Ra with respect to 

modified Taylor number Ta is positive implying thereby rotation stimulates the stationary 

convection. Thus, rotation parameter has stabilizing effect on the system for both top-heavy and 

bottom-heavy nanoparticle distribution which is in an agreement with the result derived by 

Shivakumara (2011) and Chand et al. (2017). 

The right hand sides of equations (52) and (55) are negative implying, thereby the AC electric 

Rayleigh number and nanoparticle Rayleigh number inhibit the stationary convection. Thus, AC 

electric Rayleigh number and nanoparticle Rayleigh number have destabilizing effects on the 

system which is in an agreement with the results derived by Nield and Kuznetsov (2009), 

Takashima (1976) and Shivakumara (2011), Rana et al. (2012, 2015) and Chand et al. (2017). 

The right hand sides of equations (53) and (54) are negative if nanoparticle Rayleigh number Rn 

is positive but for the bottom-heavy nanoparticle distribution, Rn is negative. Thus, Lewis number 

Le and modified diffusivity ratio NA have stabilizing effect on the system for bottom-heavy 

nanoparticle distribution which is in an agreement with the result obtained by Sheu (2011). 

The right-hand side of equation (56) is positive but it will be negative if Rn is negative implying 

thereby medium porosity has destabilizing effect on the system which is in an agreement with the 

results derived by Nield and Kuznetsov (2009), Rana et al. (2012, 2015) and Chand et al. (2017). 

The dispersion relation (48) is also analyzed numerically. Graphs have been plotted by giving 

some numerical values to the parameters to depict the stability characteristics, e. g., 
2 410 10Le  (Lewis number),

110 10Rn    (nanoparticles Rayleigh number), 0.1 1   

(porosity parameter) (Rana et al. 2012, 2015) and 
410 Re 10   (AC electric Rayleigh number), 

410 10Ta   (Shivakumara et al. 2011). Stability curves for modified Taylor number Ta, AC 

electric Rayleigh number Rea, Lewis number Le, nanoparticles Rayleigh number Rn, modified 

diffusivity ratio NA and porosity parameter  are shown in Figures 2-7. 
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Fig. 2. The variations of thermal Rayleigh number Ra
 
with the wave number a for different 

values of the modified Taylor number Ta =1000, Ta =2000 and Ta =3000. 

 

Fig. 3. The variations of thermal Rayleigh number Ra
 
with the wave number a for different 

values of the AC electric Rayleigh number Rea =1000, Rea =4000 and Rea =7000. 
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Fig. 4. The variations of thermal Rayleigh number Ra
 
with the wave number a for different 

values of the Lewis number Le = 1000, Le = 4000, Le = 7000. 

 

Fig. 5. The variations of thermal Rayleigh number Ra
 
with the wave number a for different 

values of the modified diffusivity ratio NA = - 5, NA = - 45 and NA = - 85.  

 



G. C. Rana et al.: Electrohydrodynamic Thermal Instability in a Walters’ (Model B’) Rotating Nanofluid… 

 

 

32 

 

Fig. 6. The variations of thermal Rayleigh number Ra
 
with the wave number a for different 

values of the nanoparticle Rayleigh number Rn = - 0.1, Rn = - 0.3, Rn = - 0.5. 

 

Fig.7. The variations of thermal Rayleigh number Ra
 
with the wave number a for different 

values of the medium porosity   = 0.2,   = 0.4 and   =0.6. 

In Fig. 2, the variations of thermal Rayleigh number Ra
 
with the wave number a for three different 

values of the modified Taylor number, namely, Ta = 1000, 2000 and 3000 which shows that 

thermal Rayleigh number increases with the increase in the modified Taylor number. Thus, 

rotation parameter has stabilizing effect on the system. The variations of thermal Rayleigh 

number Ra
 
with the wave number a for three different values of the AC electric Rayleigh number, 

namely, Rea = 1000, 4000 and 7000 is plotted in Fig. 3 and it is observed that the thermal 
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Rayleigh number decreases with the increase in AC electric Rayleigh number implying there by 

AC electric Rayleigh number destabilizes the system. In Fig. 4, the variations of thermal Rayleigh 

number Ra
 
with the wave number a for three different values of the nanofluid Lewis number, 

namely, Le = 1000, 4000 and 7000 which shows that thermal Rayleigh number increases with 

the increase in Lewis number. Thus, Lewis number has stabilizing effect on the system.  

The variations of thermal Rayleigh number Ra
 
with the wave number a for three different values 

of the modified diffusivity ratio, namely, NA = - 5, -45, - 85 is plotted in Fig. 5 and it is found 

that thermal Rayleigh number increases slightly with the increase in modified diffusivity ratio 

implying thereby modified diffusivity ratio has very little stabilizing effect on the system. For 

negative values of NA, an increase of NA reduces the thermophoresis effect of pushing the heavier 

nanoparticles upwards. As a result, the stabilizing effects of particle distributions enhanced. Thus, 

the effect of increasing NA is to stabilize the system when Rn is negative. 

In Fig. 6, the variations of thermal Rayleigh number Ra
 
with the wave number a for three different 

values of the nanoparticle Rayleigh number, namely Rn = - 0.2, - 0.4, - 0.6 which shows that 

thermal Rayleigh number increases with the increase in nanoparticle Rayleigh number. Thus 

nanoparticle Rayleigh number has a stabilizing effect on the system. The variations of thermal 

Rayleigh number Ra
 
with the wave number a for three different values of medium porosity, 

namely ε = 0.2, 0.4 and 0.6 is plotted in Fig. 7 and it is found that thermal Rayleigh number 

decreases slightly with the increase in medium porosity implying thereby medium porosity has a 

very low destabilizing effect on the onset of stationary convection in a layer of Walters’ (model 

B') elastico-viscous nanofluid saturating a porous medium.  

8. Conclusion 

On the onset of electrohydrodynamic thermal instability in a layer of Walters’ (model B') 

elastic viscous Nanofluid under rotation saturating a porous medium has been investigated by 

using a linear stability analysis and Galerkin method. The elastico-viscous nanofluid 

incorporates the Brownian motion and thermophoresis. For the case of stationary convection, 

the Walters’ (model B') nanofluid behaves like an ordinary Newtonian nanofluid. Kinematic 

viscoelasticity has no effect on the onset of stationary convection. It is found that the Taylor 

number, Lewis number and nanoparticles Rayleigh number has stabilizing effect whereas the AC 

electric field Rayleigh Number has destabilizing effect on the stationary convection. Modified 

diffusivity ratio and medium porosity have slightly destabilizing effect. Oscillatory convection 

has been ruled out under the considered boundary conditions. 
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