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Abstract  

A Quick Adaptive Galerkin Finite Volume (QAGFV) solution of Cauchy momentum equations 
for plane elastic problems is presented in this research. A new damping coefficient is introduced 
to preserve the efficiency of the iterative pseudo-explicit solution procedure. It is shown that the 
numerical oscillations are not only effectively damped by the proposed damping coefficient, but 
also that the rate of the convergence of QAGFV algorithm increases. Furthermore, the numerical 
results show that the proposed coefficient is not sensitive to the spatial discretization. In order to 
improve the accuracy of the computed stress and displacement fields, an automatic two-
dimensional h–adaptive mesh refinement procedure is adopted for shape-function-free solution 
of the governing equations. For verification, two classical problems and their analytical solutions 
have been investigated. The first is a uniaxial loaded plate with holes, and the second is a 
cantilever beam under a concentrated load. The results show a good agreement between QAGFV 
and analytical method. Moreover, the direct and iterative approaches of the finite element method 
have been implemented in FORTRAN to evaluate the efficiency and accuracy of the presented 
algorithm. In the end, the corresponding results of some problems have been compared to the 
QAGFV solutions. The results confirm that the presented h-adaptive QAGFV solver is accurate 
and highly efficient especially in a large computational domain.  

Keywords: Galerkin Finite Volume Method, Numerical Damping Relation, A Posteriori Error 
Estimator, h–Adaptive Mesh Refinement, Unstructured Triangular Meshes 

1. Introduction 

The Finite Element Method (FEM) is a very popular numerical method in structural analysis, and 
the solid issues are often addressed by this method especially for elastic deformations, because 
of great practical results (Demirdžić and Martinović 1993). This method can be easily extended 
to higher order shape functions, but produces large block–matrices (Jasak and Weller 2000c). 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjds_OclfvRAhUFYJoKHeFPDSsQFggaMAA&url=http%3A%2F%2Fwww.sirjantech.ac.ir%2F&usg=AFQjCNFlK3EsPLdHqdqBfnzuht7b2C5VBw&sig2=rQBEDq_eYKRBDXVRqCB5bQ&bvm=bv.146094739,d.bGs
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The Finite Volume Method (FVM) is usually a second–order accurate numerical approximation, 
based on the integral form of the governing equations. This method uses a segregated solution 
procedure, where the coupling and nonlinearity are treated in an iterative way. The method leads 
to diagonally dominant matrices, which are well suited for iterative solvers (Jasak & Weller 
2000c). 

Similar to aforementioned methods, the Finite Difference Method (FDM) needs a mesh to 
discretize the computational domain. Although using the unstructured meshes for dealing with 
irregular boundaries provides great flexibility in modeling real-world problems (Sabbagh–Yazdi 
and Alimohammadi 2009), FDM suffers from numerical errors and inefficiencies for solving 
boundary value problems on irregular domains. As a result, this is a potential bottleneck to handle 
complex geometries in multiple dimensions by FDM. This issue motivates researchers to use the 
integral form of the governing equations, which results in FEM and FVM (Yip 2005).  

Here, there is a compromise between high expenses of FEM direct solver for large matrices or 
cheaper expenses of FVM iterative solver. Owing to the fact that FVM is inherently good at 
treating complicated, coupled and nonlinear differential equations, it is widely used in fluid flows. 
In recent years, computational fluid dynamics has been dealing with high order meshes that are 
necessary to produce accurate results of complex mathematical models and full–size geometries 
(Jasak and Weller 2000c). When a mathematical model becomes more complex, FVM becomes 
more interesting alternative compared to FEM. In addition, unlike FDM, FVM solution is 
conservative in which the incompressibility is exactly performed for each control volume of 
computational domain (Alkhamis et al. 2008). Due to local conservation properties, FVM should 
be in a good position to effectively solve structural analysis of linear, non-linear and 
incompressible materials. Moreover, FVM numerical calculation on meshes consisting of 
triangular cells showed excellent agreement with the analytical results (Sabbagh–Yazdi and 
Alimohammadi 2009). 

Ekhteraei–Toussi et al. demonstrated that FVM offers some advantages over the equivalent FEM 
models. Their results show the local and global norms of numerical errors for FVM are similar to 
FEM and similar stiffness matrix is created using the constant strain triangular elements. 
Therefore, the results’ accuracy is comparable in both methods. Interestingly, the execution time 
for FVM is less than direct FEM for a fine mesh (Ekhteraei–Toussi and Rezaei–Farimani 2007). 
Although FVM was originally developed for computational fluid dynamics, some problems in 
continuum mechanics have been successfully resolved using this method (Demirdžić and 
Martinović 1993).  

Since the quality, size and distribution of elements in the mesh have significant effect on the 
computational error, the mesh generation plays an important role in the accuracy of the numerical 
results. Although it is possible to uniformly reduce the size of all elements in the computational 
domain to limit the maximum absolute value of the error, the computational effort increases 
drastically with increasing DOFs. Therefore, an adaptive strategy is required in which the size of 
the elements reduces if the computational error increases. Adaptive method was firstly introduced 
by Sewell and Babuška in mid 1970s. However, this method was not attractive until most 
researches were focused on the automatic mesh generation. Bennet, Botkin and Zienkiewicz were 
the first researchers to use the adaptive strategy in various fields (Chang and Kikuchi 1994). 
Subsequently, in recent decades, much attention has been given to adaptive procedures and many 
efforts have used this method to achieve more accurate solution with a lower computational cost.  

The adaptive history of FEM is more than the other numerical methods. In fact, most adaptive 
researches in solid mechanics have been done using the FEM. In 1987, Zienkiewicz and Zhu 
introduced 2Z  error estimator. Later, the gradient recovery procedures were improved, and the 
Superconvergent Patch Recovery (SPR) method was introduced. SPR was applied to linear 
problems at first usage (Zienkiewicz et al. 1999). However, it was immediately extended to 

http://www.google.com/url?sa=t&rct=j&q=SPR%20%2Bsuperconvergent&source=web&cd=1&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2F004578259290023D&ei=pTEoUsyjHIimtAbo7YCQDA&usg=AFQjCNGPQStJ2k0GmFK0tar42sUuQckRiQ&bvm=bv.51773540,d.d2k
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nonlinear problems (Boroomand and Zienkiewicz 1999). Li and Wiberg (1994) used h–adaptive 
Finite Element Analysis (FEA) to more accurately simulate 2D linear elastic structural problems 
on meshes consisting of triangular cells. Later, it was extended to quadrilateral meshes (Sharif 
and Wiberg 2002). Katragadda and Grosse performed a FEA to investigate the influence of the 
dual loading (thermal and static) on quadrilateral meshes using the h–adaptive scheme. They 
modified the Zienkiewicz and Zhu (𝑍𝑍2)  technique to improve the convergence and 
computational efficiency (Katragadda and Grosse 1996). Tabarraei et al. developed an h–adaptive 
FEM using quad–tree data structure and polygonal interpolants for better efficiency. Adaptive 
FEM is nonconforming on quad–tree mesh; therefore, Tabarraei and Sukumar (2005) used mesh–
free basis function to construct conforming approximation. Phongthanapanich and Dechaumphai 
(2004) employed the Delaunay triangulation as the mesh generator. They predicted the crack 
propagation path for practical problems of mechanical engineering. Meyer et al.  (2006) 
numerically simulated the crack propagation of linear elastic problems. They used 2D adaptive 
solver on triangular meshes to obtain more accurate solution and used the hierarchical data 
structure to improve the efficiency of analysis. This data structure would not be destroyed during 
crack propagation analysis, therefore the efficiency of the analysis increases. Khoei et al. (2008) 
used the automatic adaptive re-meshing procedure for the numerical simulation of crack growth 
in the context of FEM. They used the 𝑍𝑍2 error estimator with the modified SPR technique using 
the analytical solution at the crack tip to obtain more accurate error estimation. Palani et al. (2006) 
proposed a new error estimator based on either Strain Energy Release Rate (SERR) or Stress 
Intensity Factor (SIF). They used the proposed error estimator at the crack tip region. For regions 
away from the crack tip, the residual error estimator based on stress was used. They performed 
the fracture analysis of 2D problems on quadrilateral meshes using the proposed method. The 
SPR method was developed to transfer data of 3D elasto–plasticity problems during adaptive 
FEA by Gharehbaghi and Khoei (2008). They used the polynomial function with 0C , 1C  and 2C  
continuity to estimate required values of state variables and error (Gharehbaghi and Khoei 2008). 

Afshar et al. (2012) used the adaptive refinement procedure to solve the elasticity problems using 
the least squares concept and the Meshless Method. They presented residual a posteriori error 
estimator to detect the regions of high error. 

Muzaferija and Gosman (1997) presented an adaptive Finite Volume procedure for laminar and 
turbulent flow on unstructured meshes. They developed a novel error estimation to simplify 
adaptive space discretization using cells of arbitrary topology. Ilinca et al. (2000) used adaptive 
FVM for the problems governed by 2D Euler equations on unstructured meshes. They compared 
three error estimators, Richardson extrapolation, solution recovery and a proposed procedure for 
hyperbolic problems. Jasak et al. (2000a, 2000b)used the adaptive Finite Volume Analysis (FVA) 
in the numerical solution of fluid flow problems. They presented two a posteriori error estimators, 
Taylor series and Moment error estimator for FVM, which were based on the absolute error 
Subsequently, Jasak et al. introduced element residual error estimator for FVM that has been 
widely used. They applied this error estimator to the numerical simulation of the convection–
diffusion and Navier–Stokes problems (Jasak and Gosman 2003). The mesh adaptation 
procedure, designed in the context of FVM, was used to solve the Reynolds–Averaged Navier–
Stokes equations on unstructured meshes. The procedure was applied to complex turbulent flow 
around a high–lift multiple element airfoil (Hay and Visonneau 2007). Lötstedt et al. (2004) 
presented an adaptive solution to solve the hyperbolic Partial Differential Equation (PDE) on 
structured meshes. Implicit time stepping method was adopted in their study. Theeraek et al. 
(2011) used the adaptive meshing technique to solve the unsteady convection–diffusion–reaction 
equation on 2D unstructured meshes. In their research, FVM was used to discretize the governing 
equations while FEM was applied to determine the gradient quantities at cell faces. The adaptive 
discontinuous FVM was presented by Liu et al. (2011) to solve the elliptic boundary value 
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problems on triangular meshes. They utilized residual a posteriori error estimation in the adaptive 
refinement procedure. 

Considering the abovementioned efforts, it may be concluded that most researches focused on 
the adaptive technique in the context of FVM, which has been developed for fluid mechanics 
problems. Thus, adaptive FVM in solid mechanics could be a novel strategy. 

The presented numerical solution may introduce spurious oscillations, which is related to pseudo-
explicit time integration of Galerkin Finite Volume Method (GFVM) formulations. These 
oscillations could smear the numerical solution, and consequently may result in the loss of 
accuracy. In this research, a new damping coefficient relation is firstly introduced to damp the 
unwanted oscillations of the pseudo-explicit solution of Cauchy equations to preserve the 
efficiency of the iterative pseudo-explicit procedure. The GFVM solution results show that this 
relation increases the rate of the convergence and effectively damps the numerical oscillations. 
Later, the effects of mesh refinement on the proposed damping coefficient are studied. The 
obtained numerical results show that the proposed coefficient is not sensitive to the spatial 
discretization. In addition, the effects of the introduced coefficient on the accuracy of the 
numerical results are also studied.  

As already mentioned, the large scaled and complicated problems include calculation of the large 
stiffness matrix using FEM. Bearing in mind that solving simultaneous equations directly is 
expensive in such problems and leads to very high computational cost and low efficiency, this 
research presents a fast, efficient and accurate matrix free FV algorithm, which gives high-
precision results at a very low computational cost. In this research, the QAGFVA implemented 
in FORTRAN is used to solve the PDEs governing stress–strain fields. In addition, both direct 
and iterative FEMs are implemented in FORTRAN to evaluate the efficiency and robustness of 
the presented FV technique. The 2D automatic adaptive procedure is used for more accurate 
simulation of the plane elasticity problems using GFVM and FEM. Finally, an error estimator is 
used to discover the regions of high error, then the mesh refinement is performed to increase 
computational accuracy. The accuracy and efficiency of the presented method are evaluated by 
comparing the computational results of displacement and stress with the analytical solutions and 
numerical results of others. 

In the first section, Cauchy equations, the governing equations of solid mechanics, are briefly 
described. The discretized form of Cauchy momentum equation is derived using GFVM in 
section 2.1. Further on, the new damping coefficient relation is introduced to damp the 
undesirable numerical oscillations, associated with pseudo-explicit solution of Cauchy equations. 
In section 3, the equilibrium equation and Generalized Minimum Residual Method (GMRES) are 
described in Finite Element framework. Consequently, the error estimation analysis and h-
adaptive method are presented. Ultimately, the numerical examples are provided to validate the 
proposed model. 

2. Galerkin finite volume method  

2.1. Plane–elasticity equations 

The Cauchy momentum equation is a PDE, which can be derived by applying the Newton's 
second law to a control volume in a continuum. This equation can be expressed in Equation (1) 
as the governing equation of solid mechanics.  

 ij Vir
Vf f
t

σ ρ ∂
∇ + + =

∂
  (1) 
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Where ρ and V are the material mass density and velocity, respectively. ijσ  and f are the stress 
tensor and body force. Virf CV= −  is the viscous damping force, which is added to eliminate the  
numerical oscillations resulted from the quasi-explicit solution of the system of equations. C is 

the damping coefficient 3

kg
m s

 
 
 

. 

For 2D problems in x y−  coordinate system, the stress tensor is presented as following: 

 
T

xx yy xyσ σ σ σ =     (2) 

The compatibility relations for strain-displacement are: 
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The stress–strain relation is expressed as: 
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Which for plane–stress is defined as follow: 
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2.2. Galerkin finite volume formulation 

GFVM discretizes the Cauchy momentum equation using the Galerkin method and integrating 
over the domain. In this method, a suitable weight function φ  is selected. The weight function 
should be integrable and its values on the boundaries of the corresponding node, Γ , is equal to 
zero. Now, both sides of the Cauchy equation are multiplied by the weight function, and the 
resulted equation is integrated over the domain as Equation (6): 

 ( ) ( ). . . .ij
Virn n

j nn

Vd f d f d d
x t
σ

φ φ φ φ ρ
Ω Ω Ω Ω

 ∂ ∂ Ω + Ω + Ω = Ω    ∂ ∂  
∫ ∫ ∫ ∫   (6) 
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Fig. 1. Control Volume of node "𝑛𝑛" with triangular elements 

The weight function φ  could be chosen as the linear shape function of the triangular element. 
Therefore, for a constant-strain triangular element, the weight function equals to 1 in the node 
“n” and 0 in the other nodes of the control volume (Figure 1). 

By defining 1 2i i iL i jσ σ= +
 

, the first term of the left hand side of the Equation (6) can be 
expressed as:  

 ( ) ( ). . . | .ij
i i inn n

j n

d L d L L d
x
σ

φ φ φ φΓ
Ω Ω Ω

 ∂
Ω = ∇ Ω = − ∇ Ω  ∂ 

∫ ∫ ∫   (7) 

The first term in the right hand side of the above equation is eliminated due to the zero value of 
the weighting function on Γ . Moreover, the second term in the right hand side of the Equation 
(7), which includes the spatial derivatives, can be rewritten as follows: 

 ( ) ( )
3

1

1. .
2

i i
n ll

L d L lφ
=Ω

∇ Ω ≈ − ∆∑∫   (8) 

In which ( )1l∆  is the normal vector of boundary edge 1 from the nth nΩ  sub-domain. In addition, 
FDM is used to discretize the time-dependent term on the right hand side of Equation (6). In order 
to simplify the remaining terms of Equation (6), the following equation is used: 

 ( ) ( ).
3

n
n ndφ χ χ

Ω

Ω Ω ≈  
 ∫   (9) 

In which χ  is the body force or viscous damping force. Finally, the discretized form of the 
Cauchy momentum equation in the ith direction is rewritten as follows:  

( ) ( )( ) ( ) ( ) ( )
( )

( ) ( ) ( )
1

21 1

1

3 . 2 , 1, 2
2

k kN kSk k k kn n n
ii i i ikn n n n

lln n

u uCfu t F l u u i
tρ ρ ρ

−
+ −

=

  −
  = ∆ ∆ + − + − =

 Ω ∆  
∑  

 (10) 

In which, ( ) 1k

nu +  is the displacement of the node “n” in the 𝑖𝑖th direction at iteration ( )1k + . nΩ  
is the area of the control volume, and N is the number of boundary edges of Ω  control volume. 
The time step ( )t∆  in Equation (10), has no physical interpretation. In fact, it is just a virtual 
parameter, which has been used to converge the iterative solution.  

The discretized form of components of the stress field are defined as: 
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In which, An is the area of the triangular element (Sigma notation is applied on three sides of an 
element) (Figure 1). The stress values are computed in the center of the triangular elements. 

2.3. Proposed damping coefficient 

The nC  parameter in Equation (10) is a damping coefficient used to damp the undesirable 
oscillations. Here, the damping coefficient relation is introduced to filter the numerical 
oscillations associated with matrix–free GFVM solution. 

The ideal linear viscous damper has been adopted as a dissipative method in the present research. 
The damping coefficient, [ ] [ ] [ ]( )C K Mα β= + , is computed by calculating the stiffness and 
mass matrices and estimating α  and β . These parameters have arbitrary values. However, they 
should be large enough to eliminate the spurious oscillations and small enough not to leave 
negative impact on the accuracy of the results. The calibration of these parameters is necessary 
to obtain the accurate numerical results. In this paper, NASIR* (Sabbagh–Yazdi 2016) solver, 
which performs stress analysis using GFVM on unstructured meshes, is used. Since the 
implemented numerical method is a matrix-free technique, the damping coefficient matrix 
calculated using the above equation is not suitable to use in NASIR. Therefore, a relation of the 
damping coefficient is introduced in Equation (12) that could be easily implemented in NASIR 
solver. This relation quickly eliminates the numerical oscillations associated with pseudo–explicit 
GFVM solution of the Cauchy momentum equations. 

 ( )2 3/ |1 | *nC E Vol n E ρ= − −   (12) 

In Equation (12), ( ), ,Vol n Eρ  are the area of the control volume, the material mass density and 
Young’s modulus, respectively. Equation (12) automatically estimates the correct damping 
coefficient of structural problems for pseudo–explicit matrix–free GFVM procedure regardless 
of α  and β  parameters. In addition, Equation (12) is independent of mass and stiffness 
matrices. Fast computation and convenient implementation in the applied numerical code are the 
other merits of the proposed damping coefficient.  

In order to verify the proposed numerical damping, the external load is applied using three 
different ways. The first way is called Length Scale, which gradually applies the given load. The 
second way is Sudden Loading, which suddenly applies the load without the numerical damping. 
The last one is called Numerical Damping, which suddenly applies a given load and uses the 
proposed damping coefficient. The results presented in Section 5 confirm that the numerical 
oscillations are effectively damped using the proposed damping coefficient. Besides, this 
coefficient increases the rate of the convergence of the QAGFVA algorithm. Moreover, the 
numerical results show that the proposed coefficient is not sensitive to the spatial discretization.  

 
* Numerical Analyzer for Scientific and Industrial Requirements.  



Journal of the Serbian Society for Computational Mechanics / Vol. 13 / No. 1, 2019 
 

 

63 

3. Finite element method  

3.1. Equilibrium equations 

Solid mechanics problems could be formulated in terms of minimizing the potential energy 
function Π as Equation (13): 

 
1

1 , 0
2

T T T T
b s i

i iV V S

dv f f pε σ δ δ δ
δ=

∂Π
Π = − − − =

∂∑∫ ∫ ∫   (13) 

Finally, the equilibrium equations could be rewritten in a matrix form as follows: 

 [ ]{ } { }K u F=   (14) 

Where [ ] { },K u  and { }F  are the global stiffness matrix, displacement vector and load vector, 
respectively. More details about the Finite Element techniques are provided in Reddy and 
Gartling (2010). 

Equation (14)(14) indicates a system of simultaneous linear equations. There are two main types 
of methods for solving systems of linear equations: (1) direct methods, in the sense that they 
converge to the exact solution in a finite number of steps; and (2) iterative solution methods, 
which present an approximate solution to the system of equations. 

Gaussian elimination algorithm is a well-known method for solving simultaneous linear 
equations. The Gaussian elimination method requires ( )3 22 / 3n O n+  operations, and 2n n+  
storage amounts for solving a system of n linear equations, presented in Equation (14). This 
method reduces the coefficient matrix to the identity matrix. Thus, it can be quite expensive if n 
is large (Reddy and Gartling 2010). 

Because of round-off errors, the direct methods have less efficiency than iterative methods when 
they are applied to large system of equations.  In addition, the amount of storage space required 
for iterative solutions is much less than the direct methods. As a result, iterative methods are more 
attractive than direct methods, especially for sparse matrices. 

The iterative methods are classified in different groups such as the basic iterative methods 
(splitting methods, Jacobi, Gauss-Seidel, Successive over Relaxation (SOR)), the Chebyshev 
iterative method, the Krylov subspace methods (Conjugate Gradient Method (CGM), Generalized 
Minimal Residual (GMRES), etc.). The GMRES method is widely used for solving very large 
and non-symmetric linear systems. Therefore, the authors decided to use it for the iterative FEA. 

3.2. The generalized minimal residual (GMRES) method 

GMRES method can be used for both symmetric and non-symmetric systems. It generates a 
sequence of orthogonal vectors for symmetric systems. However, in the absence of symmetry this 
can no longer be done with short recurrences; instead, all calculated vectors should be saved. The 
common form of GMRES is based on a modified Gram-Schmidt orthonormalization procedure 
and uses restarts to control storage requirements.  

Note that the system of linear equations ( )F Ku=  with matrix K  and vector F  can be solved 
by GMRES. This method approximates the exact solution by n nu K∈  that minimizes the norm 
of residual n nr Ku F= − . The orthonormal vectors 1 2, ,..., nq q q  form nK , and are obtained from 
Arnoldi process. The vector n nu K∈  can be written as: 

http://mathworld.wolfram.com/Gram-SchmidtOrthonormalization.html
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 n n nu Q y=   (15) 

Where nu  is the approximation of the solution at the next iteration and ny  minimizes the norm 
of the residual and all vectors iq  form all columns of nQ  matrix 

The Hessenberg matrix ( )nH  is derived from the Arnoldi process as following: 

 
1 nn nKQ Q H+=   (16) 

Therefore: 

 
12 nn nKu F H y eγ− = −   (17) 

where: 

 ( )1 01,0,0,0,...,0 ,Te F Kuγ= = −   (18) 

Where 0u  is the first trial vector. Finally vector nu  can be found by minimizing the norm of the 
residual ( )nr  as Equation (19): 

 
1nn nr H y eγ= −   (19) 

This process is repeated if the residual nr  is not yet small enough (Kelley 1995). 

4. Adaptive strategy  

The solution of most problems is partially uniform in the computational domain, but local 
phenomena such as strong discontinuity destroy monotonicity. Thus, uniform meshes are not a 
desired choice to solve governing PDEs. In other words, using large elements will lead to 
unacceptable results in regions experiencing aforementioned phenomena, but using small 
elements throughout the computational domain will increase the computational efforts without 
significant improvement in some regions of the domain (Tabarraei and Sukumar 2005). 
Therefore, to obtain more accurate Finite Element solution, either more accurate shape functions 
must be used or meshes must be refined in the regions of high error. 

Various adaptive strategies have been produced which are: 1) h–refinement which tends to refine 
the size of elements; 2) p–refinement, which uses more accurate shape function by increasing the 
order of polynomials of approximation; 3) r–refinement in which the location of computational 
nodes are modified; 4) hp–refinement, which refines the size of elements and increases the order 
of shape functions; 5) hpr–refinement, which is  combination of the abovementioned procedures 
(Palani et al. 2006). 

The Aim of the adaptive strategy is to produce more accurate solution with the least 
computational cost. This strategy is a well-known method in both solid mechanics and 
computational fluid dynamics. Some applications of the adaptive strategy in solid mechanics are 
the simulation of crack growth (Phongthanapanich & Dechaumphai 2004; Meyer et al. 2006; 
Khoei et al. 2008; Palani et al. 2006), stress analysis of problems with steep gradients and 
singularities, and stress analysis of elastic problems subjected to concentrated loads, contact 
problems, etc. (Afshar et al. 2012; Lee & Oden 1994). The adaptive method is also used for the 
numerical simulation of fluid flow (Ilinca et al. 2000; Jasak and Gosman 2000a, 2000b; Jasak and 

https://en.wikipedia.org/wiki/Hessenberg_matrix


Journal of the Serbian Society for Computational Mechanics / Vol. 13 / No. 1, 2019 
 

 

65 

Gosman 2003). Owing to the fact that all adaptive strategies need the value of error to improve 
the mesh, so a proper error estimator plays a significant role. 

4.1. Error estimation analysis 

Three main sources of errors are round-off error, convergence error and discretization error. 
When the real numbers are shown by a finite number of digits, the round-off errors are common. 
The numerical solution requires an iterative process. The convergence error are due to improper 
truncation criteria of iterative process (Versteeg and Malalasekera 2007). The discretization error 
is attributed to the modeling of the computational model with limited degrees of freedom (DOF) 
instead of the continuum. In addition, the governing equations could be satisfied only in weak 
sense and in a global point of view. Besides, the boundary conditions are also not fulfilled in an 
exact manner (Palani et al. 2006). The error estimated in this section belongs to discretization 
errors. 

A posteriori error estimator is required to investigate the analysis accuracy of problems with 
unknown exact solution and as a stopping criterion in the adaptive procedure (Flaherty 2005). It 
is recommended that a good error estimator has all the following properties: 1) the error is given 
in terms of absolute values, 2) it represents reliable information about the error distribution, 3) it 
can be easily calculated, based on the last solution, 4) it also works well on coarse meshes, 5) it 
can be used for all forms of the equations., 6) it slightly overestimates the actual error (Jasak and 
Gosman 2000a). Many studies have focused on error estimation which most researches could be 
classified into 5 categories: 1) residual based methods (Jasak and Gosman 2003), 2) post–
processing methods (Jasak and Gosman 2003), 3) duality methods (Jasak and Gosman 2003), 4) 
solution of local problem (Bank and Weiser 1985), and 5) hierarchical basis error estimation 
(Bank and Smith 1993). The first two methods are used more than the others. For more details 
about the error estimation techniques in FEM, the reader is referred to (Zienkiewicz and Zhu 
1987; Zienkiewicz and Taylor 2000; Palani et al. 2006). 

The error estimators in FVM are still under development in comparison with FEM. Richardson 
extrapolation is an error estimator, which is widely used in FVM. It needs two solutions on two 
different meshes (Jasak and Gosman 2003). There are good references about the error estimation 
techniques of FVM (Ilinca et al. 2000; Jasak and Gosman 2003). 

This research is focused on the post–processing adaptive technique of the Galerkin Finite Volume 
Method. In fact, the error is identified as the difference between the numerical solution and the 
corresponding recovered result. In addition, Babuška et al. showed that the post–processing 
methods are accurate and robust and these methods provide more accurate error estimation than 
the residual based methods (Zienkiewicz et al. 1999).  

In the present study, the displacement of the node “n” in ith direction at iteration ( ) ( ) 11 , ,k
i nk u ++  

and the element stress, 1
n

k
ijσ + , are numerical solution. For convenience, the above-mentioned 

variables are denoted as ( ),i iju σ . The corresponding computational errors may be presented as 
follows:  

 ,Ex Ex
u i i s ij ije u u e σ σ= − = −   (20) 

In which, Ex
iu  and Ex

ijσ  are the exact values. Since there is no information about the exact 

solution of the problem, the recovered solution ( )* *,i iju σ  could be used instead of the exact 
solution: 
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 * *,u i i s ij ije u u e σ σ≅ − ≅ −   (21) 

The difference between the corresponding values, given in Equation (21), represents the point 
wise errors of the displacement and stress and the point wise errors are difficult to compute. The 
estimated error, based on the integration process, could be used as Equation (22) which provides 
error estimation in a global point of view (Palani et al. 2006). 

 
1/2

T
s se e De d

Ω

 
= Ω 

 
∫   (22) 

Where D is the constitutive matrix. The above equation takes into account the contribution of all 
elements (Equation (23)) and represents the global norm of error. 

 ( ) ( ) ( ) ( )
1
22 22 2 2

11 21 22 33
1 1

2
Ncel Ncel

x x y y xy iii i i i
i i

e e dS D dS dS D dS D dS D d
= =

  = = + ∗ + + Ω    
∑ ∑   (23) 

Where:  

 

*

*

*

x xx

y y y

xy xy xyi

dS
dS
dS

σ σ

σ σ

σ σ

   −
  

= −  
  

−    

  (24) 

Where Ncel represents the total number of elements in the computational domain and 
i

e  is the 
element error norm. The matrix D For plane-stress problems has been presented in Equation (5) 
and for plane–strain problems, D is represented as following: 

 
( )

( )( )

( )
( )

11 12 13

21 22 23

31 32 33

1 0
1

1 0
1 1 2

1 20 0
2

D D D
E

D D D D
D D D

υ υ
υ

υ υ
υ υ

υ

 
 − 
 − = = −   + −    −   
  

  (25) 

After computing the global norm of error and the local element error norm, the permissible error 
norm for each element could be computed considering the target percentage error Aimη , and total 
number of elements as: 

 ( ) Aim i
i Aim

e
e

Ncel

η ∗
=   (26) 

Thus, the new size of each element is given by Equation (27), in such a way that the desired 
percentage error is achieved (Zienkiewicz and Zhu 1987). 

 ( ) ( )
( )

*

1 ,old i i
new ii

i Aim
i

eH
H

eφ

ψ
χ

χ
= =   (27) 

Where φ  is the minimum of the two orders: (1) the intensity of singularity; and (2) the order of 

shape function. ψ  is considered to be equal to 1
3

 for triangular elements. 
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In the present paper, the Superconvergent Patch Recovery (SPR) technique is used to compute 
the recovered solution. According to SPR technique, the recovered stress field is assumed to be 
a continuous polynomial expansion with unknown coefficients.  

 ( )*
0 2 ... ,n

ij i nx y y F x yσ α α α α α= + + + + =   (28) 

Where ( ),F x y  is the vector of polynomial terms and α  is a vector, which contains all the 
unknown coefficients. The unknown coefficients could be obtained by minimizing the norm of 
the difference between the new field and the approximate solution as follows: 

 
( ) ( ){ }2

1
, ,

0
K K ij K K

k

i

F x y x y
ζ

α σ

α
=

 
∂ − 

  =
∂

∑
  (29) 

Where ζ  represents the number of sampling points. To recover the stress at a given node, all 
elements, which are common to the node, are found. In fact, a patch of elements is constructed to 
recover the stress at each given node. The patches for nodes N1, N2 and N3 could be seen in 
Figure 2. In the next step, according to the location of sampling point in a constant-strain 
triangular element, the value of stress in each element is assigned to the central (sampling) point 
of that element. Consequently, the SPR technique is applied to the patch, and the best polynomial 
is fitted to the stress values of sampling points. Finally, the value of recovered stress is computed 
in grid nodes. The recovery phase is performed for all stress components of all grid nodes. Then 
value of stress in each element is computed by fitting the recovered stress at its nodes. 

 
Fig. 2. The element patch for fitting procedure 

4.2. h–refinement 

At the first stage of the analysis, the computational domain is discretized into a coarse but uniform 
triangular mesh, using an automatic 2D unstructured mesh generator. In this stage, Delaunay 
triangulation technique (Thompson et al. 1999) may be applied to the domain. One of the key 
steps in the implementation of the adaptive re-meshing technique is new mesh generation, which 
is based on the approximate solution. More precisely, according to the errors of the first analysis, 
which is performed using the uniform mesh, the new size of each element in all regions of the 
solution domain is computed. Later, a new mesh is regenerated using this data.  

4.3. Data transfer operator 

As was mentioned before, using the initial uniform mesh, a rough solution of the problem is 
found. In the next step, error estimation is performed over all mesh to find all regions of high 



S. R. S. Yazdi et al.: A Proposed Damping Coefficient of Quick Adaptive Galerkin Finite Volume Solver... 

 

68 

relative error. Subsequently, a new non-uniform mesh is generated using the new element sizes, 
which are computed by Equation (27). It is clear that the new mesh uses fine elements in the 
regions of high error and coarse elements in other regions. It is a good idea to continue the analysis 
with the new mesh to avoid restarting all previous computations. To achieve more performance, 
it is required to transfer the solution history of the old mesh to the new mesh. In such case, all 
variables must be transferred to the new mesh during the adaptive procedure (Jasak and Gosman 
2000b).  

So far, several methods have been proposed by different researchers to transfer computational 
data between two meshes. Because the transferred variables have not been derived from the new 
mesh and some incompatibilities may appear. For example, the transferred stress field may not 
match with the applied loads. Thus, it is better to transfer fewer variables between two meshes. 
In this study, just the displacement field is transferred from the old mesh to new one. 
Consequently, the stress–strain field is achieved by the stress analysis on the new mesh using the 
transferred displacements. 

In the first step of the procedure of data transfer, each grid node of the new mesh is searched 
within the old mesh. For node “N” of the new mesh, the triangular element in the old mesh, which 
contains the node, is found. Then, the displacement field at node “N” of the new mesh is obtained 
by fitting the nodal displacements of the old element using the least square manner (Figure 3).   

 
Fig. 3. The patch of elements 

5. Verification of the developed adaptive algorithm 

5.1. Uniaxial loaded plate with holes 

Many researches are focused on the effects of geometrical discontinuities. A uniaxial loaded plate 
with variety of circular holes is one of the comprehensive tests in this context. Sometimes, 
designers use the larger safety factors to cover errors due to inaccurate estimation of the stress 
concentration factor around the holes. Researchers have made efforts to reduce the stress 
concentration factor around these geometrical discontinuities. One solution is to introduce the 
defense holes that smooth the stress field and reduce the stress concentration factor around the 
main holes. An adaptive method can lead to more accurate prediction of the stress field. A 
benchmark test case, with variable–diameter defense holes, to study the effects of the defense 
holes (shown in Figure 4) is considered for the evaluation of the results of the present Quick 
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Adaptive Galerkin Finite Volume Analysis (QAGFVA). The mechanical properties used in the 
QAGFVA are provided in Table 1. 

 

Fig. 4. Schematic illustration of plate with main and defense holes 

Mechanical Properties Value (Unit) 
Elasticity Modulus 200E GPa=  

Density 37854 kg
m

ρ =  

Poisson's ratio 0.3v =  
Stress 10000σ =  

Table 1. Mechanical properties of specimen 

Due to the symmetry, only one quarter of the plate is considered as the computational domain 
and the symmetric boundary condition are used on the edges in the symmetry planes to simulate 
the full plate. The initial mesh is shown in Figure 5. As can be seen, the linear triangular elements 
are used to discretize the computational domain. 

 
Fig. 5. Initial unstructured meshes for adaptive Finite Volume analysis 

The initial mesh is adapted during the adaptive analysis, and finally the optimal mesh is achieved 

considering a target relative error of five percent. The refined mesh for 2
3

d D=  is shown in 

Figure 6.  

https://en.wikipedia.org/wiki/Poisson%27s_ratio
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Fig. 6. The refined mesh for 𝑑𝑑 = 2𝐷𝐷
3�  

The stress concentration factor, computed across the width of plate, are compared to the published 
FEA results (Meguid 1986). Computational results across the width of plate for the main and 
larger defense hole are presented in Figure 7, which shows the high precision of the QAGFVA. 
From Figure 7, it could be observed that the classic Finite Volume Analysis uses coarse elements 
in high stress concentration regions and causes less accurate numerical results, while QAGFVA 
provides more precious results. 

 
Fig. 7. Variation of stress concentration factor across the plate width (a) the Main hole; (b) the 

Defense hole 

 
Fig. 8. Maximum principal stress contours computed by the developed model 

S1: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
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Figure 8 shows the contour of the maximum of principle stress for 2
3

d D= . Figure 9 presents 

the converged displacement and stress in x directions at an optional node with coordinates 
(0.2105, 0.0830). If a body with negligible physical damping is suddenly subjected to an external 
load, computational difficulties due to lack of numerical diffusion may happen. Thus, the gradual 
load imposing technique was adopted in the previous studies (Sabbagh–Yazdi and Amiri–
SaadatAbadi 2013). Although this technique could prevent the oscillations, it needs more 
iterations to impose completely loading for equilibrium cases. As a remedy, in this research the 
damping coefficient has been presented to overcome numerical difficulties. According to the 
following figures, the best convergence rate is seen in the curve of Numerical Damping. The 
relative error between the numerical values of stress and displacement and the theoretical values 
is fully damped after few iterations using this damping coefficient. 

 
Fig. 9. The convergence of the computed numerical results at an optional node 

To provide a better understanding of the effects of gradual load imposing technique and the 
efficiency of the proposed damping coefficient, the convergence of the logarithm of root mean 
square of the computed displacement in x,y direction, which is calculated by Equation (30), is 
shown in Figure 10 for three FVM computational models and corresponding loading strategies. 

 
( )1

1log

N
k k
i i j

j
u u

RMS
N

+

=

 
− 

 =  
  
 

∑
  (30) 

Where ( )k
i j

u  and N are the displacement of thj  node in thk  iteration, in direction i  and the 

number of nodes, respectively. 
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Fig. 10. The convergence history of the logarithm of root mean square of the displacements in 

x,y direction 

In order to evaluate the efficiency of the presented Adaptive Finite Volume technique, direct 
Finite Element and GMRES Methods were developed in FORTRAN. The required computational 
time, which is needed by Central Processing Unit (CPU) to perform the analyses, is considered 
as a performance criterion. The CPU times of adaptive analysis for three above-mentioned 
methods are given in Table 2. As can be seen, the present model has a very high performance, 
compared to the direct Finite Element. Besides, QAGFVA overcomes the GMRES, according to 
CPU time criterion.  

Method Number of 
Nodes 

Number of 
Elements 

CPU Time 
(Second) 

Adaptive Finite Volume Analysis 
(QAGFVA) 1691 3164 4.53 

Adaptive Finite 
Element Analysis 
(AFEA) 

Direct 1598 3105 85.14 
Iterative 
(GMRES) 1587 3097 7.31 

Table 2. The comparison of CPU time for different numerical methods 

The evolution of the error distribution along the adaptive procedure could be seen in Figure 11. 
As expected, the error distribution becomes more uniform when the adaptive procedure is used.  

 
Fig. 11. The error distribution 
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5.2. Cantilever beam under concentrated load 

The presented QAGFVA is performed on a two-dimensional fixed–free cantilever beam 
supporting the concentrated load at the free end (Timoshenko and Goodier 1982; Afshar et al. 
2012) which schematic figure is shown in Figure 12. Parameters h, b and l are the height, width 
and length of the cantilever beam, respectively. F is the applied concentrated load at the free end.  

 
Fig. 12. Schematic illustration of the cantilever under concentrated load 

According to analytical results, the horizontal and vertical displacement along X–axis are given 
as (Timoshenko and Goodier 1982): 

 
( ) ( )

( ) ( ) ( )

2
2

2
2 2

3 2 2
6 4

3 3 4 5
6 4

x

y

Fy hu x l x y
EI

Fy hu x l x l x y x
EI

υ

υ υ

  
= − + + −  

  
 

= − − + − + + 
 

  (31) 

in which, E, I are the Young’s modulus and the moment of inertia, respectively. The stress in x 
and y directions and the shear stress filed are calculated as follows: 

 
( ) 2 3

2, 0, ;
2 4 12x y xy

F l x y F h bhy I
I I

σ σ σ
−  

= = = − − = 
 

  (32) 

Owing to the fact that the analytical solution is independent of the Poisson’s ratio, it is applicable 
to the cantilever beam under pure flexure (Timoshenko and Goodier 1982). Therefore, Poisson’s 
ratio is assumed to be zero in the QAGFVA. The geometrical and mechanical properties of the 
test case are presented in Table 3. 

Geometrical Properties Mechanical Properties 
Length 12.0l m=  Young ‘s Modulus 1000E Pa=  

Width 1.0b m=  Point Load 1F N=  

Height 2.0h m=  Density 32600 kg
m

ρ =  

Table 3. Geometrical and Mechanical Properties for a Cantilever 

The 2D adaptive plane–stress analysis is performed assuming unit width because 1 h>> . Figure 
13 shows the initial mesh, which is utilized for the present Finite Volume computations. The 

http://en.wikipedia.org/wiki/Moment_of_inertia
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initial mesh is adapted during the adaptive analysis and finally an adaptive mesh, which contains 
the desired target relative error (10%), is obtained. The refined mesh is depicted in Figure 14. 

 
Fig. 13. Unstructured initial mesh for QAGFVA 

 
Fig. 14. The refined mesh for cantilever 

By applying a 1N load, the maximum computed displacement, and the maximum bending stress 
are equal to 0.90 m, 17.7 Pa, respectively. The maximum displacement occurs at the free end. 
The computational results of the QAGFVA presents approximately 2% deviation from the 
analytical solution.  

Comparison of the vertical displacement, yu , and stress in x direction, xσ , (along the upper 
surface of the beam) with the analytical results are presented in Figure 15. As shown in Figure 
15, the computed results of the present modeling show good agreements with the analytical 
solutions. 

 
Fig. 15. Variation of the computed results along X axis 

In addition to the QAGFVA, both direct Finite Element and GMRES methods are used to study 
the efficiency of the QAGFVA. The CPU time of adaptive analysis for three above-mentioned 
methods, which is given in Table 4, confirms the accuracy, robustness and efficiency of the 
presented technique.   
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Method Number of 
Nodes 

Number of 
Elements 

CPU Time 
(Second) 

Adaptive Finite Volume 2000 3660 11.6 

Adaptive Finite 
Element 

Direct 1997 3649 108 
Iterative 
(GMRES) 2001 3667 9.15 

Table 4. Comparison of CPU time for adaptive analysis using different numerical methods 

To have a good perspective on the convergence procedure, the computed displacements in x, y 
directions are presented in Figure 16. Additionally, the logarithm of root mean square of the 
computed displacement in x direction is shown in Figure 17. 

 
Fig. 16. Convergence of the computed displacements 

 
Fig. 17. Convergence of the logarithm of root mean square of the displacements in direction x 

Figure 18 shows the error distribution of the computational domain along the adaptive analysis. 
Using the estimated error, a new mesh with more uniform error distribution is created.  
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Fig. 18. The error distribution of the cantilever beam 

The CPU time of structural analysis using the QAGFVA and the GMRES methods is depicted in 
Figure 19. As it can be seen, the efficiency of the GMRES is significantly reduced when the 
number of computational nodes increases, but the QAGFVA maintains its efficiency. So the 
QAGFVA is the suitable method for large scale structures. 

 
Fig. 19. Computational time comparison between the iterative methods, the QAGFVA and 

GMRES Method 

6. Conclusion  

An efficient and accurate Quick Adaptive Galerkin Finite Volume (QAGFVA) algorithm is 
introduced to solve plane elasticity problems. The method uses an unstructured mesh of constant 
strain triangular elements. To have a more accurate comparison, the authors have developed the 
direct and iterative Finite Element technique in FORTRAN. The iterative Finite Element method 
(GMRES) minimizes the norm of the residual vector over a Krylov subspace at every step. 

In order to increase the rate of the convergence of (QAGFVA) procedure, a damping coefficient 
relation is proposed, which is able to effectively eliminate the unwanted numerical oscillations 
that associate with pseudo-explicit solution of GFVM formulations. The ideal linear viscous 
damper is known as an efficient method to damp the spurious oscillations arising from 
discretization of time dependent equations using the numerical methods. However, the damping 
coefficient of prior damping systems should be adjusted by applying an appropriate set of 
parameters. Therefore, a damping coefficient relation is introduced that does not need to calculate 
the stiffness and mass matrices. Additionally, it automatically estimates the proper damping 
coefficient of structural problems for pseudo–explicit matrix–free QAGFV procedure. The 
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convenient implementation and fast numerical computation are the other merits of the introduced 
relation. 

Following the adaptive mesh refinement strategies, which have been implemented in the context 
of the Finite Element Method, the h–refinement technique is adopted for the shape-function-free 
QAGFVA. A posteriori error estimator, which is based on the superconvergent patch recovery, 
is used to predict the regions of high error. 

The numerical results show that the QAGFVA requires less CPU time in comparison to direct 
and indirect Finite Element Analyses. The presented results confirm that the QAGFVA not only 
is an accurate numerical solution, but also has a better performance, especially in meshes with 
large number of nodes. 
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