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Abstract 

Improvement of the airfoil NACA 4415 aerodynamic performances by flow control using a 
passive technique was achieved in this study. Gothic-shaped vortex generators were added at the 
profile upper surface. Vortex Generators (VG) were used to avoid boundary layer separation at 
the profile trailing edge, thus reducing the drag force and improving aerodynamic performances. 
A numerical simulation with fluent code was performed. A parametric study was carried out to 
determine optimal disposition and dimensions of the VG. Six VG parameters were tested; 
thickness (E), height (H), length (L), aspect ratio (r), incidence angle (α) and the VG position 
relative to the chord of the profile (XVG). The results show an increase in the lift coefficient for 
the profile with vortex generators in the range of high attack angles. Optimal dimensions and 
positions of the VG were obtained. 

Keywords: Aerodynamic performances, Lift coefficient, Drag coefficient, Vortex generators, 
Numerical simulation 

1. Introduction 

Flow control is important in aerodynamics. It is used to manipulate flows by passive or active 
techniques to improve the aerodynamic airfoils performances (lift augmentation, drag reduction, 
noise minimization and avoiding or postponing boundary layer separation). The active methods 
involve external power, whereas the passive methods use surface or geometrical modifications of 
the flow by incorporating inserts or additional devices (Mebarki & al 2016). Avoiding boundary 
layer separation leads to preventing pressure losses in the trailing edge of airfoils reducing the 
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drag force (Tibbiche 2016). The improvement of the lift force for high incidence angle and low 
velocity lead to the reduction of the runway length. This is particularly interesting for aircraft in 
areas with low aeronautical infrastructure potential (Lu et al. 2011). Vortex generators (VG) are 
widely used in passive control method to prevent flow separation on airfoils. These devices are 
small plates with different shapes and sizes at an angle to the incoming flow. The VG are oriented 
so they create longitudinal vortices, which enhance mixing high-momentum fluid from the outer 
flow down into the boundary layer near the surface (Wang et al. 2017). Since the final 
configuration cannot be changed during their application, they have to be implemented in an 
optimum position. Finding an optimum position is an important point for the aerodynamic 
performances of passive flow control system (Moshfeghi et al 2017). In the last decade, several 
researches have been devoted to passive flow control methods using vortex generators to improve 
the aerodynamic performances of airfoils (Lu et al. 2011, Cai et al. 2017, Mdouki 2017, 
Moghaddam1 et al. 2017 and Ahmed et al. 2017). Zhen et al. (2011) investigated experimentally 
and numerically the effects of passive vortex generators on Aludra unmanned aerial vehicle 
(UAV). An array of VG has been attached on Aludra UAV’s wing and good agreement was 
obtained between experimental and numerical results. Their parametric study shows that higher 
maximum lift coefficient is achieved when the VG are placed near the separation point. Fouatih 
et al. (2016) provides an experimental optimization of a NACA 4415 airfoil equipped with vortex 
generators to control the flow separation. A new configuration including micro generators behind 
the conventional VG was also investigated as a potentially interesting solution. The results show 
that triangular shape vortex generators are best suited to control boundary layer separation. It was 
found that micro vortex generators are very effective to control the flow. Tebbiche et al. (2015) 
studied the effect of a new VG configuration, delta wing shape, placed on line on the suction 
surface of a curved profile (NACA 4412). The experimental study conducted in a wind tunnel 
shows an improved lift coefficient with an increase of 20% and one degree delay of the stall 
incidence. The prediction of the flow patterns around the vortex generators and the effects of 
changing their position and the incidence angle of the wind relative to the profile have been 
studied by several researchers (Forster et al. 2014 and Benazieb et al. 2015). The results indicate 
that the knowledge of these effects could be successfully applied to other wing profiles and 
designs. Vidhyasri et al. (2017) used vortex generators to reduce the fuel consumption and 
improve the vehicles driving performances by reducing the drag force. Various shapes of vortex 
generators (gothic, parabolic, ogive, rectangular and triangular) were designed and analyzed 
using CFD solver. Optimal results were obtained. Flow control using "V" shape vortex generators 
was investigated experimentally by Tebbiche et al. (2014). The VG were placed at the suction 
side of Naca 0015 profile in order to minimize the induced drag. Optimal drag coefficient was 
obtained taking into account several parameters such as the VG height, the position from the 
leading edge and the aperture. The effects of VG attached at different locations and at various 
attack angles have been studied by Gopinathan et al. (2015), Kumar et al. (2016) and Agarwal et 
al. (2016). They found that at small attack angles, the VG have insignificant effects with a small 
decrease in the lift force and a small increase in the drag force. However, at larger attack angles 
the lift force increases and the drag force decreases significantly. Belamadi et al. (2016) have also 
found that, the passive control system using VG improves aerodynamic performance only over a 
specific range of attack angles. Tebbiche et al. (2014) studied the flow control using a new vortex 
generators shape with counter-rotating vortices, obtained by modifying a configuration already 
investigated. An optimized geometry form in this paper was found by experimental design 
method. The results show an increase in the relative lift force estimated at about 14% and a 
decrease in the drag force about 16%. 

In this study, a passive technique was used to control the separation of the boundary layer using 
vortex generators. Gothic-shaped vortex generators were attached at the upper surface (extrados) 
of NACA 4415 profile to improve its aerodynamic performances (lift augmentation and drag 
reduction). The Newtonian, incompressible and three dimensional Reynolds-averaged Navier-
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Stokes equations were adopted in this study. The Realizable k-ε turbulence model was used. The 
governing equations were solved using Fluent ANSYS 15.0 software, based on the finite volume 
method. The optimal disposition and dimension of the VG was determined through a parametric 
study. The results show that the vortex generators can effectively improve the aerodynamic 
performance of the NACA 4415 profile in the range of high attack angles. On the other hand, an 
optimal position and the optimal dimensions of the VG was obtained. 

2. Mathematical modeling 

In this study, the fluid was considered Newtonian and incompressible. The fluid flow was 
assumed three-dimensional, turbulent and stationary. The continuity and the momentum 
conservation equations are given by: 
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The Reynolds stress equation is given by:  
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where δij is the Kronecker function 

μt is the eddy viscosity which is given by:  
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The Realizable k-ε turbulence model was chosen. It is a mathematical approach similar to k-ε 
standard model and is characterized by the following equations:  
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The constant values are given by: 
1C ε =1.44, 2C =1.9, kσ =1, εσ =1.2 

The Aerodynamic coefficients are:  

The pressure coefficient 

 2
0( ) / ( / 2)pC P P U∞= − ρ  (7) 

The lift coefficient 

 2/ ( / 2)L yC F SU∞= ρ  (8) 
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The drag coefficient 

 2/ ( / 2)D XC F SU∞= ρ  (9) 

The boundary conditions are: 

At the inlet, the velocity is equal to 21m/s, corresponding to a 215000 Reynolds number. 

At the outlet, the following parameters are imposed:  

 0,   0,    0U P T
y y y

∂ ∂ ∂
= = =

∂ ∂ ∂
 (10) 

At the top and bottom of the domain symmetrical conditions are imposed. 

3. Numerical resolution procedure 

The governing equations were solved with Fluent ANSYS 15.0 software, based on the finite 
volume method. The SIMPLE algorithm was used for the resolution of the pressure-velocity 
coupling. The pressure-based solver, the standard pressure interpolation scheme and the implicit 
formulation method were chosen. For more accurate results, the second-order upwind scheme 
was adopted in the momentum equation discretization.  

3.1. Grid independence study 

A grid independence study was conducted to select an optimum mesh number which guarantees 
that the solution is independent of the mesh resolution. The independence from the mesh size was 
evaluated through the lift and drag coefficients variations. For that purpose, two different grids 
(tetrahedral and quadratic grids) with different refinement were tested. The grids were generated 
by Gambit mesh generator software. The grid details are presented in Table 1. 

Mesh type   Elements’ numbers  Nodes’ numbers   

Tetrahedral 1 438493 82776 

Tetrahedral 2 711851 127690 

Tetrahedral 3 2482909 431264 

Tetrahedral 4 6286679 1076933 

Quadratic 1 2863978 3086286 

Quadratic 2 529416 589350 

Table 1. Mesh details  

The lift and drag coefficients variations with the angle of attack obtained by simulation were 
compared to Fouatih et al. (2016) results. The comparisons are presented in Figures 1 and 2. 
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Fig. 1. Lift coefficient calculated numerically for different grids compared to Fouatih et al. 

(2016) results 

 
Fig. 2. Drag coefficient calculated numerically for different grids compared toFouatih et al. 

(2016) results 

We note a discrepancy between Fouatih et al. (2016) results and quadratic grid 1 and 2 for the 
attack angle β > 8°, and tetrahedral grid 1 and 2, for the attack angle β > 14°. There is a good 
agreement between Fouatih et al. (2016) results and tetrahedral grid 3 and 4. Finally, Tetrahedral 
3 was adopted in the simulation because of its lowest number of elements and nodes, and hence 
the lowest computation time. The chosen mesh is shown in Figure 3.  
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Fig. 3. The used mesh 

3.2. Validation of the numerical procedure 

The lift and drag coefficients variations with the attack angle obtained in our numerical procedure 
was compared to these obtained by other authors. Zhen et al. (2011) obtained their results for a 
Reynolds number equal to 213000. Pope et al. (1966) results were obtained for a Reynolds 
number equal to 250000. The results of Fouatih et al. (2016) and Efstratios (1988) were obtained 
for a Reynolds number equal to 200000. The numerical results in our simulation were obtained 
for Reynolds number equal to 2150000. The lift and drag coefficients variations with the angle 
of attack are shown respectively in Figures 4 and 5. It is clear that a good agreement is reached 
between the numerical results and these in the literature.  

 
Fig. 4. Lift coefficient calculated numerically compared to these obtained by different authors 
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Fig. 5. Drag coefficient calculated numerically compared to these obtained by different authors  

4. Results and discussions 

The aim of this study was the use Gothic-shaped vortex generators to improve the aerodynamic 
performances of the NACA 4415 profile. The vortex generators were used at the extrados of the 
profile as shown in Figure 6.  

 
Fig. 6. Vortex generators position on the NACA 4415 profile 

A parametric study was carried out based on different geometric parameter of the used vortex 
generators (Figure 7): thickness (E), height (H), length (L), aspect ratio (r = H/L), the wind 
incidence angle (α) and the vortex generators position relative to the chord (XVG). This study 
was carried out with the NACA 4415 profile with a wingspan of 0.15 m and a chord of 0.15 m. 
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Fig. 7. Vortex generators geometric parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Vortex generators geometric dimensions  

4.1. Effect of the vortex generators 

The effect of the vortex generators on the performances of the NACA 4415 profile is illustrated 
in Figures 8 and 9. The vortex generators have the following geometric dimensions: E = 0.2 mm, 
r = 0.33, α = 20° and XGV = 20 %. The results show an increase in the profile lift coefficient 
with VG beyond the attack angle 10° compared to the profile without VG. However, the drag 
coefficient is not significantly affected.  

The Lift-to-Drag coefficient ratio (CL/CD) illustrated in Figure 10 shows that the efficiency of the 
VG appears for high attack angles (10°≤ β ≤18°).  

Geometric parameters Dimensions 

Thickness             E (mm) 0.2 0.5 1 / 

Height                  H (mm) 3 5 7  

Length                  L (mm) 10 15 20  

Aspect ratio          r = H/L 0.25 0.33 0.35 0.5 

Incidence angle    α (°) 15 19 20 21 

Position                XVG (%) 20 30 40 / 

Distance                λ (mm) 25 25 25 25 
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Fig. 8. Lift coefficient variations with and without vortex generators 

 
Fig. 9. Drag coefficient variations with and without vortex generators 
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Fig. 10. Lift-to-Drag coefficient ratio with and without vortex generators 

4.2. Parametric study 

For the parametric study, different geometric parameters were tested to determine the vortex 
generators disposition and dimensions which give optimal aerodynamic performances of the 
NACA 4415 profile. For this purpose, six parameters were tested (Table 2).  

4.2.1. Thickness effects 

Figures 11 and 12 show the effect of the vortex generators thickness on the lift and drag 
coefficients respectively. The results were obtained for XVG = 20 %, α = 20° and r = 0.33. 

High values of the lift coefficient were obtained for the VG with a thickness of 0.2 mm for high 
attack angles (10°≤ β ≤18°). The drag coefficient corresponding to this thickness value (E = 0.2 
mm) remained lower than the other values (E = 0.5 and 1 mm). 

 
Fig. 11. Lift coefficient for different vortex generators thickness 
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Fig. 12. Drag coefficient for different vortex generators thickness 

The VG with 1 mm thickness are not suitable; they lead to a reduction in the aerodynamic 
performance of the profile for high attack angles (12°≤ β ≤18°) compared to the profile without 
VG. The Lift-to-Drag coefficient ratio (Figure 13) shows that the VG with a thickness of 0.2 mm 
optimal aerodynamic performances appear in the range of high attack angles (10°≤ β ≤18°) 
compared to other values. In the range of low attack angles (0°≤ β ≤10°) the optimal aerodynamic 
performances were obtained for the NACA 4415 profile without VG. The VG with 1 mm 
thickness leads to the degradation of the profile aerodynamic performances. 

 
Fig. 13. Lift-to-Drag coefficient for different vortex generators thickness  

4.2.2. Height effects 

The effect of the vortex generators height on the lift and drag coefficients are shown in Figures 
14 and 15, respectively. The vortex generators length was taken equal to 15 mm. It is clear that 
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the best performances (high values of the lift coefficient and low ones of the drag coefficient) are 
obtained for the VG with 5 mm height for high attack angles (10°≤ β ≤18°).  

 
Fig. 14. Lift coefficient for different vortex generators heights  

 

Fig. 15. Drag coefficient for different vortex generators heights 

The Lift-to-Drag coefficient ratio (Figure 16) shows that the optimal aerodynamic performances 
of the profile are obtained with a VG heights equal to 5 mm for high attack angles (10°< β ≤18°). 
For low attack angles (3°≤ β ≤10°) the optimal aerodynamic performances are obtained for 3 mm 
VG heights. The NACA 4415 profile without VG is better for very small attack angles (0°≤ β 
≤3). VG with 7 mm thickness leads to the profile aerodynamic performances degradation. 
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Fig. 16. Lift-to-Drag coefficient for different vortex generators heights.  

4.2.3. Length effects 

Figures 17 and 18 illustrate the effect of the vortex generators length on the lift and drag 
coefficients respectively. We can see that, the optimal profile performances are obtained for a 
VG length equal to 15 mm for high attack angles (10°< β ≤18°). In figure 19, the Lift-to-Drag 
coefficient ratio variation shows that the optimal aerodynamic performances of the profile are 
obtained with a VG length equal to 15 mm for high attack angles (10°< β ≤18°). For low attack 
angles (0°≤ β ≤10°) the NACA 4415 profile without VG has better aerodynamic performances. 

 
Fig. 17. Lift coefficient for different vortex generators lengths.  
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Fig. 18. Drag coefficient for different vortex generators lengths  

 

Fig. 19. Lift-to-Drag coefficient for different vortex generators lengths  

4.2.4. Incidence angle effects 

The incidence angle effects on lift and drag coefficients are shown in Figures 20 and 21, 
respectively. We can notice that, for low attack angles (0°≤ β ≤10°) the angle of incidence has 
little effect on the profile aerodynamic performances. For high attack angles (10°< β ≤18°), the 
profile optimal performances are obtained for the incidence angle α = 20°.  
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Fig. 20. Lift coefficient for different vortex generators incidence angles  

 

Fig. 21. Drag coefficient for different vortex generators incidence angles  

Regarding the Lift-to-Drag coefficient ratio (Figure 22), we can notice that: 

- In the range of very low attack angles (0°≤ β ≤3°) the NACA 4415 profile without VG has 
the best aerodynamic performances.  

- For low attack angles (3°≤ β ≤12°), the incidence angle α = 15° has the best performances.  

- For attack angles (12°≤ β ≤15°), the incidence angle α = 19° gives the best performances.  

- For high attack angles (15°< β ≤18°), the incidence angle α = 20° gives the best performances.  
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Fig. 22. Lift-to-Drag coefficient for different vortex generators incidence angles  

4.2.5 The XVG position effects 

The effect of the position of the vortex generators relative to the chord (XVG) has been studied 
for a thickness E = 0.2 mm, an incidence angle α = 20° and an aspect ratio r = 0.33. The results 
are shown in Figures 23 and 24 representing the lift and drag coefficients variation respectively.  
We can notice that, in the range of low angles of attack (0°≤ β ≤10°) the position XVG has a little 
effect on the profile aerodynamic performances. However, for of high attack angles    (10°< β 
≤18°) the XVG position has a significant effect. Regarding the Lift-to-Drag coefficient ratio 
(Figure 25), we can notice that: 
- For low attack angles (0°≤ β ≤8°) the NACA 4415 profile without VG has the best 

aerodynamic performances.  
- For attack angles (8°≤ β ≤12°), the position XGV = 40% has the best performances.  
- For attack angles (12°< β ≤14°), the position XGV = 30% gives the best performances.  
- For high attack angles (14°< β ≤18°), the position XGV = 20% gives the best performances.  

 
Fig. 23. Lift coefficient for different XVG positions of the vortex generators 
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Fig. 24. Drag coefficient for different XVG positions of the vortex generators 

 

Fig. 25. Lift-to-Drag coefficient for different XVG positions of the vortex generators 

4.2.6. The aspect ratio effects 

The effect of the vortex generators aspect ratio on the lift and drag coefficients are shown in 
Figures 26 and 27. The results show that, in the range of low attack angles (0°≤ β ≤10°), the 
NACA 4415 profile without VG has the best aerodynamic performances. However, in the range 
of high attack angles (10°≤ β ≤17°) the optimum aerodynamic performances have been obtained 
for the aspect ratio r = 0.33. This finding is confirmed by the lift-to-drag coefficient illustrated in 
Figure 28. 
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Fig. 26. Lift coefficient for different aspect ratio of the vortex generators 

 

Fig. 27. Drag coefficient for different aspect ratio of the vortex generators 
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Fig. 28. Lift-to-Drag coefficient for different aspect ratio of the vortex generators 

We can conclude from this parametric study that the position and the dimensions of the vortex 
generators affect the aerodynamic performances of NACA4415 profile. In the range of low attack 
angles (0°< β ≤10°), the NACA 4415 profile without VG has the best aerodynamic performances. 
In the range of high attack angles (10°< β ≤18°), the efficiency of the VG is preponderant. The 
optimal dimensions of the VG are: E = 0.2 mm, H = 5 mm, L = 15 mm, r = 0.33 and α = 20°.  

Concerning the optimal XVG position, the best performances of the profile were obtained for the 
position XVG = 40% in the range of attack angles (8°≤ β ≤12°). In the range of attack angles 
(12°< β ≤14°), the position XVG = 30% gives the best performances and in the range of high 
attack angles (14°< β ≤18°), the position XVG = 20% gives the best performances.  

The velocity and pressure contours with and without vortex generators are shown in Figures 29 
and 30, respectively. The results are presented for an attack angle equal to 14° and for VG optimal 
dimensions (E =0.2 mm, H = 5 mm, L =15 mm, XVG = 20 % and r = 0.33). The attached VG 
can significantly affect the pressure distribution at the profile intrados and extrados. This 
improves the aerodynamic performance of the profile. On the other hand, the presence of the VG 
can avoid flow separation at the trailing edge and prevents pressure losses in the trailing edge 
reducing the drag force. 

 
Fig. 29. Pressure contours around the NACA4415 profile: (a) without VG, (b) with VG. 
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Fig. 30. Velocity contours around the NACA4415 profile: (a) without VG (b) with VG. 

 

5. Conclusions 

In this paper, the improvement of aerodynamic performances of the airfoil NACA 4415 by 
passive flow control using vortex generators was investigated numerically. The numerical 
simulation procedure was validated by comparing the results with other authors’ results. The 
results show that the vortex generators improve effectively the lift coefficient of the profile for 
high attack angles. For low attack angles, the best aerodynamic performances were obtained for 
the airfoil without vortex generators. The parametric study for different geometric parameters led 
to optimal dimensions of the vortex generators. An optimal position relative to the chord of the 
profile (XVG) was found:  

For attack angles (8°≤ β ≤12°), the profile best performances were obtained for the position XGV 
= 40%.  

For attack angles (12°< β ≤14°), the position XGV = 30% gave the best performances and for 
high attack angles (14°< β ≤18°), the position XGV = 20% led to the best performances of the 
airfoil. 
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