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Abstract 

In this paper, a numerical algorithm is presented to simulate the three-dimensional transient 

incompressible flow using a meshless local Petrov-Galerkin (MLPG) method. In the proposed 

algorithm, the forward finite difference (FFD) and MLPG methods are employed for 

discretization of time derivatives and solving the Poisson equation of the pressure, respectively. 

The moving least-square (MLS) approximation is considered for interpolation, while the 

Gaussian weight function is used as a test function. Furthermore, the penalty approach is applied 

to satisfy the boundary conditions. Moreover, in two examples, the accuracy and efficiency of 

this approach is compared with the exact solutions.  

Keywords: Meshless Local Petrov-Galerkin; Forward finite difference; Moving least Squares; 

Gaussian weight function; Three-dimensional laminar flow; Transient incompressible flow. 

1. Introduction 

In the last few decades, a number of numerical techniques have been presented to solve the 

Navier-Stokes equations and for simulation of fluid flow. The computational fluid dynamics 

(CFD) techniques consisting of the finite difference, the finite element and the finite volume 

methods have achieved a lot of success in computer modeling of fluid flows. However, there are 

some drawbacks in these methods. For example, the mesh generation stage for these techniques 

is a far more time-consuming and expensive task, especially in three-dimensional problems or 

for those with moving boundaries. Therefore, it is necessary to find appropriate methods to 

overcome the difficulties associated with the mesh generation.  

In recent years, a set of new methods known as meshfree or meshless methods has been 

developed to solve these problems. Among the meshfree methods, the Meshless local Petrov-

Galerkin (MLPG) method introduced by Atluri and Zhu in 1998 has been well-known and one of 

the most successful of them (Atluri and Zhu 1998). The MLPG method does not need any mesh 

for either field interpolation or background integration. So far, considerable efforts have been 

made to use the MLPG method to solve various problems in the solid and fluid mechanics fields 

such as elasticity (Atluri and Zhu 2000; Baradaran et al. 2011; Bagheri et al. 2011; 

Mahmoodabadi et al. 2014), elastodynamics (Batra and Ching 2002; Soares et al. 2012; Heaney 

et al. 2010), fracture (Feng et al. 2009), crack analysis (Sladek et al. 2010; Sladek et al. 2012), 
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heat transfer (Sladek et al. 2004; Baradaran and Mahmoodabadi 2009; Baradaran and 

Mahmoodabadi 2010; Mahmoodabadi et al. 2011; Karagiannakis et al. 2016; Li et al. 2018), 

vibrations (Andreaus et al. 2005; Gu and Liu 2001; Gu and Liu 2001a; Rashidi Moghaddam and 

Baradaran 2017), plate and shell (Sladek et al. 2007; Li et al. 2008; Sladek et al. 2013; Vaghefi 

et al. 2016), convection-diffusion (Chen et al. 2018), Klein–Gordon equation (Darani 2017), 

electric-field integral equation (Honarbakhsh 2017), metal removal in laser drilling (Abidouab et 

al. 2018) and fluid flow (Arefmanesh et al. 2010; Najafi et al. 2012). 

On the other hand, some researchers have tried to analyze and solve the fluid flow problems. 

For instance, Lin and Atluri used the MLPG method to solve incompressible Navier-Stokes 

equations for stokes flow and lid driven cavity flow problems (Lin and Atluri 2001). The 

application of the MLPG approach to simulation of incompressible flow was presented in Wu et 

al (2005). In that study, the MLPG formulation with some modifications was used for an irregular 

domain with scattered nodal distribution. Arefmanesh et al. employed the MLPG method with 

the unity weighting function to solve the Navier–Stokes and energy equations for non-isothermal 

fluid flow based on the stream function and vorticity formulation (Arefmanesh et al. 2008). A 

stabilized MLPG method for steady state incompressible flow was studied in (Wu et al. 2010). In 

that work, the streamline upwind Petrov–Galerkin method was used to overcome oscillations in 

convection-dominated problems. Mohammadi (2008) presented a new type of upwind scheme to 

stable the convection operator in the streamline. Avila et al. (2011) developed a novel MLPG-

mixed finite volume method to analyze the steady state stokesian equations (Avila et al. 2011). 

Simulation of two-dimensional unsteady incompressible flow is done by the MLPG method and 

with a forward difference scheme for the time derivatives in Sataprahm and Luadsong (2014). In 

one of the latest researches, Enjilela and Arefmanesh proposed a stabilized two-step Taylor-

characteristic-based MLPG method to solve laminar fluid flow and heat transfer problems 

(Enjilela and Arefmanesh 2015). The results of that work shown that very good agreements exist 

between the results obtained using the proposed meshless method with those obtained using the 

conventional methods.  

Although there are some studies about the simulation of laminar fluid flow using the 

meshless methods, to the best of the author’s knowledge, the analysis of three-dimensional 

transient incompressible fluid flow problems using the MLPG approach is still not studied. This 

motivates the present study for extension of the MLPG formulation to solve the three-dimensional 

transient incompressible Navier-Stokes equations in the primitive variables form. More precisely, 

in order to solve the Poisson equation of the pressure in the three-dimensional domain, the MLPG 

method is employed and combined with the FFD technique. 

The rest of the paper is organized as follows. Section 2 presents the problem formulation and 

Discretization of time derivatives and the algorithm. In Section 3, details of MLPG formulation 

and local weak forms, moving least squares (MLS) approximation and the considered weight 

function are described. Section 4 illustrates the numerical examples and the related validations. 

Finally, Section 5 concludes the paper. 

2. Problem and analysis algorithm 

2.1 Problem formulation 

The governing equation for unsteady incompressible viscous fluid flow as the three-dimensional 

Navier-Stokes equation together with the continuity equation in the convection term, i.e., non-

conservative form can be written as: 
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where u , v  and w  are the velocities  in x , y and z  direction, respectively. p  shows the 

pressure, xf , yf  and zf
 
are the body force. Re  represents the Reynolds number. Equations (1) 

to (3) are the momentum equation and Equation (4) is the continuity equation. The boundary 

conditions can be assumed to be: 

 = = = = uu u v v w w p p on   (5) 

where u  and  Γ𝑞 are subset of   which satisfy   = u q . 

2.2 Discretization of time derivatives and the algorithm 

To deal with the time derivatives, a time stepping method based on the following approximations 

is employed. 
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 Using Equations (12), (16) and (20), the following relations are obtained. 
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Substitution Equations (21 to (23) into Equation (4), yields Equations (24) and (25). 
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Equation (25) is the poisons equation with the non-zero source term. The numerical 

implementation of the procedure described from Equations (12) through (25) can summarized as 

follows: 
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2. Solve the pressure Poisson’s equation 
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3. Theory and numerical solution 

3.1 MLPG formulation and local weak forms 

The meshless local Petrov-Galerkin approach is constructed over a local sub-domain which is 

located inside the global domain. Here, the local sub-domain s  is either a sphere or a part of a 

sphere. A generalized local weak form of Equation (25) over a local sub-domain s  can be 

written as 
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boundary conditions are specified on it. In general,  =s s sL  where s  is a part of the 

local boundary located on the global boundary and sL  .is the other part of the local boundary 

located in the global domain (Figure 3). In equation (33) a penalty parameter 𝛼 is used to impose 

the essential boundary conditions. By using 
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where 𝑛𝑖  (𝑖 = 1, 2, 3)
 
are the components of outward unit normal vector to the sub-domain 

boundary s  usually composed of three parts; the internal boundary sL , the boundary for the 

essential (Dirichlet) conditions

 

su  and the boundary for the natural (Neuman) conditions sq .  

 
=
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where = 1 2 3
ˆ ˆ ˆ ˆ ˆ[p ,p ,p ,...p ]TNp  is the pressure vector. The stiffness matrix K and the load vector 

f  are defined as follows. 
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3.2 Moving least squares (MLS) approximation 

In the MLPG method, the field variable (x)u  could be approximated by the MLS technique. This 

approximation is based on three components: (1) a weight function of compact support associated 

with each node, (2) polynomial basis functions, and, (3) a set of coefficients that depend on the 

position x of the point. First, a sub-domain x  located in the problem domain   and called 

the domain of definition of the MLS approximation for the trial function at the point x  is 

considered. 

Then, the unknown trial approximation (x)hu
 
of the function (x)u is defined using the 

following equation (Atluri and Zhu 1998). 
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Two examples of p (x)T
in the three-dimensional problems are as follow (Atluri and Zhu 1998). 

 = =p (x) [1,x,y,z] forlinearbasis 4T m   (40) 

 = =2 2 2p (x) [1,x,y,z,x ,y ,z ,xy,xz,yz] , 10T for quadratic basis m   (41) 

The m  unknown parameters (x)ja
 
can be determined by minimizing the weighted discrete 

2
L

 
norm, defined as (Atluri and Zhu 1998): 

 
=

=  2

1

ˆ(x) (x)[p (x ) a(x)-u ]
n

T
i i i

i

J   (42) 



Journal of the Serbian Society for Computational Mechanics / Vol. 12 / No. 2, 2018 
 
135 

where (x)iw is the weight function associated with the node i  with  (x) >0i  
for all x  located 

at the domain of influence of ix , ix
 
denotes the regarded node i , n  is the number of points in 

the domain of influence of x , x for which the weight functions  (x) >0i  (Figure1), and ˆiu

refers the fictitious nodal value and not the nodal value of the function hu  at the point ix . 

Minimization of (x)J  in Equation (42) with respect to (x)a leads to the following linear relation 

(Atluri and Zhu 1998). 
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If Equation (43) is solved for (x)a , it yields (Atluri and Zhu 1998): 
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As it can be seen from Equation (47), the unknown coefficients (x)a can be obtained only if 

(x)A defined by Equation (43) is non-singular. Hence, a necessary condition for a well-defined 

MLS approximation is that at least m  weight functions are non-zero (i.e. n m ) for each sample 

point x  (Atluri and Zhu 1998). 
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 (x)i  
is usually called the shape function of the MLS approximation corresponding to the node 

i . 

The spatial derivatives of the shape function  (x)i  are (Atluri and Zhu 1998): 
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() ()/i ix . The derivative of −1A in Equation (50) can be computed by taking the 

derivative of − =1A A I . Thus, 
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The second partial derivatives of  (x)i are obtained as: 
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It should be noted that the shape functions  (x )i j  derived from the MLS approximation do 

not satisfy the Kronecker delta criterion  (x )i j ij . Therefore, they are not nodal interpolants 

and the name “approximation” is used, i.e.  ˆ(x ) uh i iu  (Figure 2 illustrates the distinction 

between iu  and ˆiu  for a simple one dimensional case).  

This property makes the satisfaction of the essential boundary conditions more difficult than 

that in the finite element method. Several techniques have been developed to enforce the essential 

boundary conditions, such as: Lagrange multipliers (Belytschko et al. 1994), modified variational 

principles (Dolbow and Belytschko 1998), and the penalty method (Atluri and Zhu 1998). In the 

current research, the penalty method is implemented to enforce the essential boundary conditions. 

 

Figure 1. The illustration for the domain of influence and the domain of integration 

 

Figure 2. Distinction between 𝑢𝑖 and  �̂�𝑖  (Atluri and Zhu 1998) 
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3.3 Weight Function 

An important ingredient in the meshless method is the weight function introduced in Equation 

(42). It should be non-zero only over a small neighborhood of a node (the domain of influence) 

in order to generate a set of sparse discrete equations. 

More precisely, on a compact support of a node, it should be positive and increasing as 

|𝑥 − 𝑥𝑖|  
is decreasing. Furthermore, it is desirable that  (x)i be smooth, if  (x)i is 

1C

continuous, then for the polynomial basis, the shape functions  (x)i  are also
1C continuous (Lu 

et al. 1994). Here, the Gaussian weight function commonly used for the meshless methods is 

implemented. 

 ( )

 − − −
  
 − − =  
 
 
 

2 2

2

exp[  (d / c ) ] exp[  (r / c ) ])
             0 d

1 exp[  (r / c ) ]
0                                                                                           d

k k
i i i i

i ik
i iI i i

r

x r   (54) 

where 𝑑𝑖 = |𝑥 − 𝑥𝑖| is the distance between the sampling point x  and the node ix , and ir
 
is 

the radius of the domain of influence of the weight function  (x)i . The parameters ic  and k  

in Equation (54) regulate the shape of the Gaussian weight function  (x)i . In fact, there is not 

any accurate theory to determine a proper value for the parameter 𝑐𝑖. Lu et al. recommended a 

method to choose this constant as the distance from the node ix
 
to the third nearest neighboring 

node (Lu et al. 1994). The domain of influence ir  can be chosen as 3.5i ir c so that the weight 

function  (x)i covers a sufficient number of nodes to ensure the non-singularity of matrix A  in 

Equation (49). The parameter k  in Equation (54) is usually set at 1. 

The first derivatives of a Gaussian weight function  (x)i  can be calculated as: 
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In the case that id  is equal to zero, the first derivatives of   (x)i   may be written as: 
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Similarly, the second derivatives of the weight function can be computed as: 
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Furthermore, for the case that id is equal to zero, the second derivatives of  (x)i  may be 

written as: 
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  (62) 

More details about these derivatives have been illustrated in Tanojo (2007). 

4. Results of numerical examples 

In this section, the introduced strategy based on the meshless local Petrov–Galerkin method is 

applied to analyze three-dimensional transient incompressible Navier–Stokes equations in two 

examples. The global domain is considered as a cubic geometry (Figure 4) with 𝑎 = 𝑏 = 1 and 

the node distribution with 64 regular nodes is regarded (Figure 5) for the both numerical 

simulations. Furthermore, other effective parameters are set as follows. The final time solution 

𝑡 = 0.1, the time step ∆𝑡 = 0.0001, the weight function parameters 𝑐𝑖 = 0.4 and 𝑟𝑖 = 1.7, the 

radius of the sub-domain 𝑟𝑜 = 0.01, the penalty parameter 𝛼 = 1017 and finally 𝑅𝑒 = 100. 

 

Figure 3. An overview of the MLPG method definitions (Mahmoodabadi et al. 2014) 
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Figure 4. The cubic geometry for the numerical simulations 

 

Figure 5. The regular node distribution with 64 nodes 

4.1 Example 1 

Boundary conditions and initial conditions of this example are as follows: 

 
−= − − − 2 2 /Rep(0,y,z,t) ( 0.25 0.25cos2y z )e    t

  (63) 

 
−= − − − 2 2 /Rep(1,y,z,t) ( 0.25cos(2) 0.25cos2y z )e t

  (64) 

 
−= − − − 2 2 /Rep(x,0,z,t) ( 0.25cos2x 0.25 z )e t

  (65) 

 
−= − − − 2 2 /Rep(x,1,z,t) ( 0.25cos2x 0.25cos(2) z )e t

  (66) 

 
−= − − 2 /Rep(x,y,0,t) ( 0.25cos2x 0.25cos2y)e t

  (67) 

 
−= − − − 2 /Rep(x,y,1,t) ( 0.25cos2x 0.25cos2y 1)e t

  (68) 

 − − − 2p(x,y,z,0)= ( 0.25cos2x 0.25cos2y z )   (69) 

The analytical solutions for this problem are: 
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−= − /Re(x,y,z,t) sin e tu x   (70) 

 
−= − /Re(x,y,z,t) sin e tv y   (71) 

 
−= + /Re(x,y,z,t) (cosx cosy)e tw z   (72) 

 −= − − − 2 2 /Re1 1
(x,y,z,t) ( cos2x cos2y z )e

4 4
tp   (73) 

 =0xf   (74) 

 = 0yf   (75) 

 −= 2 /Re2 cos cos  t
zf z x y e   (76) 

The obtained numerical solutions for the pressure and velocities are shown in Figures 6 

through 9 and compared with those of the analytical approach. These comparisons obviously 

depict the ability and effectiveness of the proposed strategy to solve the three-dimensional fluid 

flow problems.  Moreover, Figures 10 and 13 illustrate the surface plots of the numerical and 

analytical solutions for the pressure distribution and the velocities. As shown in these figures, the 

results of MLPG method agree with the values obtained by analytical solution. The convergence 

of the MLPG approach has been demonstrated in these figures. 

 

Figure 6. The pressure distribution (P (Kg/m2)) for Example 1 
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Figure 7. The velocity of X direction (U (m/s)) for Example 1 

 

Figure 8. The velocity of Y direction (V (m/s)) for Example 1 

 

Figure 9. The velocity of Z direction (W (m/s)) for Example 1 
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Figure 10.  Surface plots of the numerical and analytical solutions for pressure distribution (P 

(Kg/m2)) for Example 1 

 
 

 

Figure 11. Surface plots of the numerical and analytical solutions for X direction velocity (U 

(m/s)) for Example 1 

r0 U (m/s) V (m/s) W (m/s) P (Kg/ms2) 

0.01 7.0194×10-3 6.3572×10-3 1.5506×10-3 5.6371×10-3 

0.05 7.0194×10-3 6.3572×10-3 1.5506×10-3 3.2735×10-3 

0.1 7.0194×10-3 6.3572×10-3 1.5506×10-3 5.3504×10-3 

0.2 7.0194×10-3 6.3572×10-3 1.5506×10-3 4.2712×10-3 

Table 1. Obtained errors for different values of the radius of the sub-domain for Example 1. 
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ri U (m/s) V (m/s) W (m/s) P (Kg/ms2) 

1.7 7.0194×10-3 6.3572×10-3 1.5506×10-3 5.6371×10-3 

3 7.0194×10-3 6.3572×10-3 1.5506×10-3 3.1005×10-4 

5 7.0194×10-3 6.3572×10-3 1.5506×10-3 1.5224×10-4 

Table 2. Obtained errors for different values of radius of the domain of influence of the weight 

function for Example 1. 

 

Figure 12. Surface plots of the numerical and analytical solutions for Y direction velocity (V 

(m/s)) for Example 1 

 

Figure 13. Surface plots of the numerical and analytical solutions for Z direction velocity (W 

(m/s)) for Example 1 

M U (m/s) V (m/s) W (m/s) P (Kg/ms2) 

64 7.0194×10-3 6.3572×10-3 1.5506×10-3 5.637×10-3 
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125 7.0194×10-3 6.3572×10-3 1.5506×10-3 8.815×10-5 

216 7.0194×10-3 6.3572×10-3 1.5506×10-3 1.129×10-9 

Table 3. Obtained errors for different number of nodes for Example 1. 

Table 4. Obtained errors for different values of the time steps for Example 1. 

In Table 1, the effect of the value of the radius of the sub-domain has been investigated on 

the accuracy of the results. For these simulations, N=64, t=0.01, ∆t=0.0001 and ri=1.7 have been 

utilized. It can be observed from this table that this parameter doesn’t affect the algorithm 

accuracy, and the solution process is not dependent on the radius of the sub-domain. 

In Table 2, the effect of the value of the radius of the domain of influence of the weight 

function on the accuracy of the results has been examined with N=64, t=0.01, ∆t=0.0001 and 

r0=0.01. It can be seen that increasing this parameter would decreased the error and increased the 

solution accuracy of the pressure distribution. 

The results of changing the value of the number of nodes on the velocities and pressure 

distributions have been studied in Table 3. For these simulations, r0=0.01, t=0.01, ∆t=0.0001 and 

ri=1.7 have been utilized. It can be noted from this table that increasing the numbers of nodes 

would significantly improve the solutions accuracy. 

In Table 4, the effect of the value of the time steps has been considered on the accuracy of 

the results with N=64, t=0.01, ∆t=0.0001, r0=0.01 and ri=1.7 have been utilized. It can be 

observed from this table that for small values of this parameter, the algorithm has an acceptable 

performance. 

4.2 Example 2 

Boundary conditions and initial conditions of this example is as follows: 

 
−= − +2 2p(0,y,z,t) 0.5( 2y )e    tz   (77) 

 
−= − +2 2p(1,y,z,t) 0.5(1 2y )e tz   (78) 

 
−= +2 2p(x,0,z,t) 0.5( )e tx z   (79) 

 
−= − +2 2p(x,1,z,t) 0.5( 2 )e tx z   (80) 

 
−= −2 2p(x,y,0,t) 0.5( 2y )e tx   (81) 

 
−= − +2 2p(x,y,1,t) 0.5( 2y 1)e tx   (82) 

 = − +2 2 2(x,y,z,0) 0.5( 2y )p x z   (83) 

∆t U (m/s) V (m/s) W (m/s) P (Kg/ms2) 

0.005 6.8971×10-3 4.7887×10-3 1.9386×10-3 4.5802×10-2 

0.001 6.9632×10-3 4.0436×10-3 2.1486×10-3 4.1782×10-2 

0.0005 6.9733×10-3 4.1354×10-3 2.1040×10-3 3.6819×10-2 

0.0001 7.0194×10-3 6.3572×10-3 1.5506×10-3 5.637×10-3 
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The analytical solutions for this problem are: 

 
−= − +(x,y,z,t) (x 2y )e tu z   (84) 

 
−= − +(x,y,z,t) (x 2y )e tv z   (85) 

 
−= − +(x,y,z,t) (x 2y )e tw z   (86) 

 = − +2 2 2(x,y,z,t) 0.5( 2y )ep x z   (87) 

 
−= − +(x z) t

yf e   (88) 

 −= −(2 ) t
xf y z e   (89) 

 −= −(2y x) t
zf e   (90) 

In order to challenge the feasibility and efficiency of the introduced scenario, the pressure 

distribution and the velocities of three different directions are presented in Figures 14 to 17 for 

t=1, 2 and 3 s. As evidenced by the overall assessment based on these figures, the extended 

MLPG method could successfully implemented to analyze three-dimensional transient 

incompressible fluid flow. Moreover, for more validations, Figures 18 and 19 respectively 

illustrate the contours of the pressure and X direction velocity distributions. It can be mentioned 

that according to Equations (84) to (86), the contours of Y and Z directions are same as the 

presented results in Figure 19. This results are also validated by the obtained results using the 

MLPG method. 

 

Figure 14. The pressure distribution (P (Kg/m2)) for Example 2 
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Figure 15. The velocity of X direction (U (m/s)) for Example 2 

 

Figure 16. The velocity of Y direction (V (m/s)) for Example 2 
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Figure 17. The velocity of Z direction (W (m/s)) for Example 2 

 

Figure 18. Surface plots of the numerical and analytical solutions for pressure distribution (P 

(Kg/m2)) for Example 2 
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Figure 19. Surface plots of the numerical and analytical solutions for velocities distribution for 

Example 2 

r0 U (m/s) V (m/s) W (m/s) P (Kg/ms2) 

0.01 1.5485×10-3 1.5485×10-3 1.5485×10-3 2.3343×10-8 

0.05 1.5485×10-3 1.5485×10-3 1.5485×10-3 2.2735×10-8 

0.1 1.5485×10-3 1.5485×10-3 1.5485×10-3 1.7504×10-8 

0.2 1.5485×10-3 1.5485×10-3 1.5485×10-3 3.2952×10-8 

Table 5. Obtained errors for different values of the radius of the sub-domain for Example 2. 

ri U (m/s) V (m/s) W (m/s) P (Kg/ms2) 

1.1 1.5485×10-3 1.5485×10-3 1.5485×10-3 1.3024×10-4 

1.3 1.5485×10-3 1.5485×10-3 1.5485×10-3 2.3454×10-8 

1.7 1.5485×10-3 1.5485×10-3 1.5485×10-3 1.7504×10-8 

2 1.5485×10-3 1.5485×10-3 1.5485×10-3 9.6643×10-9 

Table 6. Obtained errors for different values of radius of the domain of influence of the weight 

function for Example 2. 

M U (m/s) V (m/s) W (m/s) P (Kg/ms2) 

64 1.5485×10-3 1.5485×10-3 1.5485×10-3 1.7504×10-8 

125 1.5485×10-3 1.5485×10-3 1.5485×10-3 4.2523×10-9 

216 1.5485×10-3 1.5485×10-3 1.5485×10-3 2.7484×10-11 

Table 7. Obtained errors for different numbers of nodes for Example 2. 

∆t U (m/s) V (m/s) W (m/s) P (Kg/ms2) 

0.05 1.5485×10-3 1.5485×10-3 1.5485×10-3 2.3454×10-8 

0.01 3.0792×10-4 3.0790×10-4 3.0789×10-4 1.8313×10-8 

0.001 3.0865×10-5 3.0838×10-5 3.0827×10-5 2.0401×10-8 

Table 8. Obtained errors for different values of the time steps for Example 2. 
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In Table 5, the effect of the value of the radius of the sub-domain has been investigated on 

the accuracy of the results. For these simulations, N=64, t=0.1, ∆t=0.05 and ri=1.3 have been 

utilized. It can be observed from this table that this parameter doesn’t affect the algorithm 

accuracy, and the solution process is not dependent on the radius of the sub-domain. 

In Table 6, the effect of the value of the radius of the domain of influence of the weight 

function on the accuracy of the results has been examined with N=64, t=0.1, ∆t=0.05 and r0=0.1. 

It can be seen that increasing this parameter would decreased the error and increased the solution 

accuracy of the pressure distribution. 

The results of changing the value of the number of nodes on the velocities and pressure 

distributions have been studied in Table 7. For these simulations, r0=0.1, t=0.1, ∆t=0.05 and 

ri=1.3 have been utilized. It can be noted from this table that increasing the numbers of nodes 

would significantly improve the solutions accuracy. 

In Table 8, the effect of the value of the time steps has been considered on the accuracy of 

the results with N=64, t=0.1, ∆t=0.0001, r0=0.1 and ri=1.3 have been utilized. It can be observed 

from this table that for small values of this parameter, the algorithm has an acceptable 

performance. 

5. Conclusion 

This study deals with the development of a meshless local Petrov-Galerkin method for solving 

the three-dimensional transient incompressible Navier–Stokes equations based on the local weak 

forms. The MLS approximation is used for constructing the trial functions, while the imposition 

of the essential boundary conditions is carried out by using the penalty approach. Comparisons 

of the obtained numerical results with the exact solutions reveal that the introduced scenario 

operates very well in terms of solution accuracy, convergence and reliability.  
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