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Abstract 

The most important characteristics of the electrospun fibers are their internal morphology and 

their diameter. They both depend on polymer’s parameters, but also on the process parameters. 

The motivation for this research is therefore to simulate the jet during electrospinning and analyze 

the effects of some of the parameters on the jet (and implicitly on fibers), without the necessity 

to perform the experiments each time. The calculations of the polymer’s behavior between the 

electrodes was based on the discrete model of Reneker. Thus, the jet was modeled as a system of 

beads connected by viscoelastic elements. The results were compared to the results obtained in 

the literature and showed good agreement. The results showed how the jet shape during 

electrospinning depends on each parameter. The ultimate goal was to establish the exact influence 

of the above-mentioned parameters on the fibers’ diameter. This would allow to set rough values 

of electrospinning parameters, which could be further fine-tuned, in order to obtain the fibers 

with expected characteristics. The beneficial effect of such simulations are time gain, but also 

reduced material consumption, maintenance costs etc. 

Keywords: electrospinning, mathematical modeling, Reneker model, parameters variation 

1. Introduction 

Electrospinning is a commonly used process to create nanofibers out of polymers. Because of a 

better ratio surface/volume, nanofibers have better mechanical properties (high porosity and 

permeability, ability to retain electrostatic charges…) than microfibers (Stepanyan  2016). As a 

result, they find application in the fields of biotechnology and biomedical, environmental 

engineering, defense and others that explore their advantageous mechanical characteristics (Karra 

2007). Research has been done in order to use nanofibers for cancer diagnosis (Ke 2015). 
Electrospun nanofibers have also been intensively explored as a tool for the architecture control 

of cardiovascular tissue engineering due to their physicochemical properties (Oh 2013). Further, 

nanofiber meshes can act as protective clothing from biological as well as chemical agents 
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because of their excellent potential for filtration (Gorji 2017). The applications mentioned above 

are only part of the various fields that use the mechanical properties of nanofibers. 

Another advantage is that nanofibers are not difficult to obtain. A typical electrospinning 

setup only requires a spinneret (syringe pump, syringe and a flat tip needle), a high voltage power 

supply and a collector plate, which is usually a conductor (Fig. 1). 

 

Fig. 1. Typical electrospinning setup 

Initially, the polymer solution is uncharged. As the potential difference is increased, the 

hemispherical droplet elongates and finally tends to a conical shape known as the Taylor cone. 

At a particular threshold potential difference, when the forces due to the electric field and the 

electrostatic repulsion overcome the surface tension forces, jet initiates. First, the jet is straight, 

but soon it loses stability against transversal distortions and enters a so-called whipping mode. 

This instability makes the jet loop in spirals with increasing radius (Karra 2007) (Stepanyan 

2016). As the jet progresses, it dries, solidifies and is deposited on the collector. Because of the 

instability of this process, the fibers are most likely to be randomly oriented on the collector 

(Vught, 2015). However, some researches focused on aligning the fibers from the unstable jet and 

collecting them in a more structural way. For instance, researchers from Virginia Commonwealth 

University made experiments based on the idea that with the right speed, the fibers can be 

collected on the cylinder’s surface and will be aligned in a regular pattern (Huang 2003). Other 

scientists tried to obtain aligned fibers by employing an auxiliary electrical field (Huang 2003). 

Further studies have shown that both collector geometry and speed affect the fiber orientation 

and diameter (Demirtas 2016). Because of the major importance of those characteristics 

(Stepanyan 2016), many researches have been conducted in order to define exactly which 

parameters impact on fibers’ internal morphology (orientation, mechanic characteristics, point of 

break, etc.) and diameter. One example of this is the research by Vong et al. that performed a 

parametric study to investigate the effects of the pillar morphology (height and thickness) and the 

electrospinning parameters (applied voltage and working distance) on the overall shape and size 

of the cone structure, as well as the fiber alignment (Vong 2018). 

Experience has shown that the diameter depends on the fluid’s parameters (concentration, 

molar mass, conductivity, volatility), but also on the equipment’s configuration (temperature, 

humidity, distance between electrodes, shape of collector, etc.) (Stepanyan 2016) and that the 

most critical phase for the final diameter is the whipping phase (Rafiei 2012), (Gadkari 2014). 
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This is due to the fact that during this phase, the electric field accelerates the jet which leads to a 

decrease in the jet diameter, by mass conservation. In addition, the electrostatic repulsion between 

due to excess charges in the solution stretches the jet. This stretching also decreases the jet 

diameter (Karra 2007). 

Several methods have been proposed to measure the fiber’s diameter and to define the exact 

impact of each parameter on it. Some scientists have tried to establish empirically a formula for 

the diameter that depends on the flow rate, the dielectric properties of the polymer and the air, 

the surface tension, the polymer’s viscosity, density and concentration, the current and the voltage 

applied. For example, Fridrikh et al. proposed an equation  
( )
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[N/m] is the surface tension between air and the polymer, Q [m3/s] is the flow rate of the solution, 

ε0 [-] is the air dielectric constant, I [A] the total current between the electrodes and χ[-] is the 

ratio between the initial length of the filament and the initial jet’s radius (L/R0). However, he 
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where c [kg/m3] represents the solution’s concentration, μ 

[Pas] is its viscosity, ε [-] the dielectric constant of fluid and E0 [V] the applied electrical field. 

This formula gives good solution for PEO water solution, but the main disadvantage is that 

experimentally it was only verified for one polymer solution.  

Other scientists have tried to evaluate the exact influence of only few of the parameters 

mentioned above on the final diameter. Deitzel et al. (Deitzel 2001) discovered that the 

morphology of the fibers is strongly dependent on parameters such as the feed rate of the solution, 

the applied voltage and material parameters, such as concentration, viscosity and surface tension. 

Some experiments show that the diameter and the gap distance are inversely proportional when 

the diameter and the feed rate or the viscosity are proportional. Some scientists tried also to 

evaluate the influence of the applied voltage and calculated numerically the 3D potential field 

using the Galerkin FEM method and FlexPDE software (Li 2015) but it remains ambiguous 

(Gadkari 2014). 

In order to evaluate the influence of the parameters on the final diameter, today’s researchers 

work on SEM images of fibers obtained after electrospinning and use Image analyzer software 

(like DiameterJ, FibraQuant 1.3) to calculate their diameter. MATLAB or JETSPIN (Lauricella, 

2016) is often used for calculations, to determine more efficiently and rapidly other characteristics 

like their length and their orientation but also to create 3D model of electrospinning. For the 

simulations, Finite Element Method has often been used (Gorji 2017). 

In addition to precise experimental measures, scientists try to establish general models of the 

electrospinning process. Thus, they can obtain more results without needing to repeat costly in 

time and materials experiences. However, electrohydrodynamic for the complete electrospinning 

process describing both the steady jet and instability region is extremely complex. Various 

mathematical models have been proposed until today to simulate the process of electrospinning, 

and none of them is steadfast to the theory (Rafiei 2012). Taylor for example, established the 

“leaky dielectrical model” that suits only few liquids with finite conductivity. In addition, one-

dimensional model, known as slender body model is used for inviscid, incompressible, 

axisymmetric, annular liquid jets under gravity (Feng 2002). Furthermore, Roozemond combined 

the “leaky dielectric model” and the “slender-body approximation” for modeling electrospinning 
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viscoelastic jets (Kornev 2011). Some continuum simulations have examined only the steady jet 

region of the electrospinning jet considering the governing equations pertinent to this regime, 

namely, the conservation of mass, the conservation of charge, the equation of motion and the 

electric field balance (Gadkari 2017)  (Feng 2003). Another paper by Šušteršič et al. also 

simulated electrospinning process from the needle to the collector, using commercial ANSYS 

and their in-house software PAK. They showed that computational approches such as FEM and 

FVM could be used to implicitly determine the homogeneity of the obtained electrospun fibers 

based on jet shape during electrospinning (Šušteršič 2018).We chose to base our model on a 

discrete model of Reneker. We did not find any literature that explained in details a clear, 

consistent simulation of the polymer jet from the needle to the collector. For example, some 

models in literature were based on mistaken equations or used coefficients as magic numbers 

without explaining their meaning. The most complete papers lacked of details especially on how 

to model the transition between the straight and the whipping phase of the jet. Therefore, our 

main motivation was to create a detailed and consistent simulation of the polymer jet in between 

the needle and the collector, compare it to the current state of art and conclude on the influence 

of some parameters on the electrospun fibers. The paper is organized as following. Second section 

gives the overview of the governing equations based on Reneker model, that are implemented in 

Matlab in order to obtain the trajectory or the polymer jet in between the needle and the collector. 

Third section, Results and Discussion, gives a comparison of the results obtained by other 

researchers, available in the literature, and our proposed model. Discussion is primarily based on 

the differences and similarity between the jet trajectories, but also on the obtained fiber diameter 

collected on the collector. 

2. Methods and materials 

1.1 Mathematical model 

Based on Renerker’s model, the jet is considered as a slender body, not affected by radial effects, 

and modeled as a system of beads connected by viscoelastic elements, with the same mass 𝑚 and 

the same charge 𝑒  and connected by viscoelastic elements (Fig. 2). It is assumed that the 

background electric field is axial and uniform, all the properties are constant, the effects of gravity 

and air drag are negligible (Vught 2015). It must be emphasized that Reneker did not simulate 

the jet initiation zone and did not take under consideration the evaporation and solidification of 

the polymer (Karra 2007). We should mention that some scientists have used a discrete model 

but did not neglect the gravity neither the air drag (Lauricella 2016). 
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Fig. 2. Schematic of the electrospun fiber model 

To describe the movement of the jet, the trajectory of each bead is examined. The position 

of bead 𝑖  is given by 
i i i ir x y z= + +i j k  where i, j and k are the unit vectors of the cartesian 

coordinate system’s axes, x, y, and z. 

According to Reneker’s model, the bead is submitted to four forces (Vught 2015; Feng 2002; 

Karra 2007): 

• The Coulomb force, exerted by all the other charged beads and depending on their 

electrical charge and the distance that separates them from bead i. 

 
( )2

3
1

N
i j

ci

j ij

j i

e r r
F

l=



−
=   (1) 

Where ( ) ( ) ( )
2 2 2

ij i j i j i jl x x y y z z= − + − + −  is the distance between the bead i and 

the bead j. 

• The electric force, derived from the potential difference between the pendant drop and 

the collector and only applied in the z direction. 
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• The viscoelastic force, that is due to the stress σ. This stress acts on an element between 

two beads. The viscoelastic force resulting on this bead equals to the stress multiplied 

by the cross area. The force acting on bead i results from the sum of the force generated 
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by bead i+ 1, that is defined to be positive and bead i−1, acting in opposite direction, 

thus negative. 

 2 21 1
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where  

σ is the stress pulling the bead I to bead i+1 or i-1. This stress is characterized by Maxwell’s 

model of a spring- damper system: 
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Note: A solution of this DES is proposed in Vugh’s report (Vught 2015) 

o ai,i+1 is cross sectional radius of the filament formed by the bead i and i+1 

Note: to calculate aij we use the equality settled by the conservation of the 

volume 2 2
0a L a l = ,. Here L is assumed to be the initial filament length and 

set as a length scale. 
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where: 

o α represents  the surface tension coefficient (N.m-1) of the polymer 

o 
1

iK
R

=  is the jet curvature calculated using the coordinates of beads (i-1), i 

and (i+1), and the definition of the curvature for three points (Vught 2015) 
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and the meaning of “sign” is as follows: 

• Sign(x)=1, if x>0 

• Sign(x)=-1, if x<0 

• Sign(x)=0, if x=0 

Newton’s second law gives us then: 
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And (5) projected on x, y and z leads to the equations of motion for each bead 
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Parameter  Description Unit 

V0 Applied Voltage  V 

µ Fluid’s viscosity Pa.s 

α Surface tension coefficient  N/m 

L  Initial filament length  m 

h Distance from the pendant 

drop to the collector 

m 

G Elastic modulus  Pa 

a0 Initial jet radius  m 

Table 1. Symbols employed and their definitions 

1.2 Simulation of electrospinning on MATLAB  

Jet’s trajectory is simulated using the software MATLAB R2017b Differential equations of 

motion are transformed into a state space notation consisting of first order differential equations 

that is used as input for MATLAB’s ode45 solver. To do so, all the position velocity and tension 

coordinates of the system are transformed to a new state vector, called U. Note that the name of 

U is arbitrary. The size of U depends on the number of beads present in the system. 

1.2.1 Differential equation of the stress σ 

The stress is characterized by the equation:   
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However here we have two time derivatives. We used the method described in Vugh’s report, 

to solve this equation. The equation is rewritten by moving all time derivatives to one side of the 

equation. This yields the following equation: 
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Note that in our state vector we will put 𝜎 and not σ.  

1.2.2 Expression of the state vector 

According to the explanations given above, the state vector for bead i has the following form  
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The whole state vector contains the information of all N beads. It is a column vector and its 

size is 8xN (N the number of beads). The first 8 lines contain the information (positions, 

velocities, stresses) for the first bead and then the lines 8x(i-1) to 8xi contain the information for 

the bead i. 

 ( )... ... ... ... ...
11 18 1 8 1 8

T
u u u u u u

i i N N
U =   (12) 

Based on equations (6), (7), (8) and (9) applied to 𝜎𝑖,𝑖+1, and 𝜎𝑖−1,𝑖, time derivatives of all the 

terms of the state vector are given. Those derivates depend on elements of the state vector. Thus, 

we can use the ode45 operator of MATLAB to solve the equation and obtain the state vector, and 

thus the trajectory of each bead. 

According to this model, some assumptions have been made concerning the first and the last 

bead. As the bead i undergoes the forces of bead i+1 and i-1 and for the first bead there is not 

bead i-1 and for the bead N there is not bead i+1, in the equations of motion of the first bead we 

consider that every member depending on the hypothetical bead i-1 equals to zero and for the 

bead N we make the same assumption for every member depending on bead i+1. 

To use this method the user has to define an initial state vector and a time vector called tspan. 

The output of ode45 is a time vector and a matrix. Each row of the matrix contains the results for 

the state vector’s elements for the corresponding time in the time vector. 



I. Ferouka et al.: Mathematicl Modeling of Polymer Trajectory During Electrospinning 

 

26 

1.2.3 Initial conditions  

As we mentioned, MATLAB ode45 solver needs an initial condition of the state vector. For the 

straight jet and according to the paper of Vught, initial state vector is defined as:  

 0
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T
h i
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  (13) 

Let us notice that for a straight jet, the curvature of the jet equals to 0. Thus, when we solve 

the equation in the case of a straight jet, the surface tension force equals to 0.  

In case of a whipping jet, it means that its x and y coordinated undergo some perturbation. 

We decided to take as initial vector: 
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For this choice we were inspired by Vught’s paper where the initial vector for whipping 

phase is taken as follows 1 
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2 2 *
10 0 10 cos 0 0 0 0

20 20

T

i i h i
U Lsin L

N

 − −    
=     

    
  (15) 

General formulas of time and space perturbation have been given in several papers such as: 

( )3   10ix Lcos t−= ; ( )310iy Lsin t−= (Y. Zeng, 2016) for time perturbation where ω is the 

perturbation frequency or 
3 2

10 *i

h z
x Lcos z

h





− − 
=  

 

3 2
10 *i

h z
y Lsin z

h





− − 
=  

 
(Dasri, 

2011) for space perturbation where λ is the wavelength of the perturbation. However, we decided 

not to use these formulas and fix the perturbation like in Vught’s paper in order not to limit the 

number of parameters of our study. 

Finally, the script has to cope with the introduction of new beads into the system and the 

removal of beads that have reached the collector There are several ways to do so but we decided 

to start integration with specified number of beads, which are reintroduced into the system after 

reaching the collector (Vught 2015). Options of ode45 solver have been used to stop integration 

when a bead reaches the collector and reintroduce it in the system as a new one. 

1.3 Materials 

In order to validate our model, we compared our results to those obtained in literature (Table 2). 

The reason why we focused on papers written by Vught and Dasri is that they also used the 

Reneker model as basis and used the same initial parameters. We then focused on Karra’s thesis 

who worked with dimensionless numbers V, FVE, Q and A and examined the influence of some 

parameters on the jet’s trajectory. Finally, we compared our results to the results of Feng’s review 

on this subject because he examined the influence of the parameters directly on the fibers’ 

diameter. 

                                                           

1 We take 103 as a denominator in the parenthesis of cos and sin instead of 20 for the matters of 

integration. 
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Reference  Initial Values of Parameters  Variations  

(Vught 2015) V [g1/2cm1/2/s] = 10000 In this review several parameters such 

as the number of beads (N), the 

viscosity (μ), the elastic modulus (G), 

the surface tension coefficient (α), the 

initial radius of the jet (a0) and the 

applied Voltage between the electrodes 

(V) have been modified to examine the 

influence of each parameter on the 

lateral displacement of the beads on the 

collector  

e [g1/2cm3/2/s] = 8.48 

m [g]= 0.283e-5 

G [g/cms2] = 106 

h [cm]=20 

μ [g/cms]=105 

ρ [g/cm3]=1.21e-3 

α [g/s2 ]=700 

ao [cm]= 150e-4 

N number of beads= 20 

(Dasri 2011) V [g1/2cm1/2/s] = 500 In this review the parameters mentioned 

above were modified to study their 

influence on the jet’s trajectory. 
e [g1/2cm3/2/s] = 8.48 

m [g]= 0.283e-5 

G [g/cms2] = 107 

h [cm]=20 

μ [g/cms]=105 

ρ [g/cm3]=1.21e-3 

α [g/s2 ]700 

ao [cm]= 150e-4 

Number of beads=50 

(Karra 2007) 
2

0

2

eV mμ
V

hLmG
= =100 

This review used dimensionless 

numbers. And varied the surface 

tension coefficient and the applied 

Voltage to examine their influence on 

the jet’s trajectory. 
2 2

3 2

e
Q

L mG


= =12 

2 2
0

2 2
A

a

mL G

 
= =9 

2 2
0πa μ

F
mLG

VE = =12 

h
H

L
= = 100 

μ [g/cms]=104 (1000 kg/ms) 

ρ [g/cm3]=1.21e-31000kg/m3 

α [g/s2 ]=700 

ao [cm]= 150e-4 

N number of beads =100 

(Zeng 2016) V [g1/2cm1/2/s] = 10000 In this review they examined the 

influence of the applied voltage and of 

the distance from the needle to the 

collector, on the fibers’ diameter. 

e [g1/2cm3/2/s] = 8.48 

m [g]= 0.283e-5 

G [g/cms2] = 106 

h [cm]=20 

μ [g/cms]=105 
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ρ [g/cm3]=1.21e-3 

α [g/s2 ]=700 

ao [cm]= 150e-4 

N number of beads 20 

Table 2. State of art of the influence of some parameters on electrospun polymer jet and 

nanofibers. 

3. Results and discussion  

We started by comparing our results with those of Vught (Vught 2015). In his report, the author 

examined the influence of each parameter on the lateral displacement of the beads on the 

collector.  

He first varied the number of beads from 10 to 100 and observed that the displacement 

increased with the number of beads (which seems logical). We obtained the same results with our 

model (Fig. 3 and Fig. 4). 

 

Fig. 3. Jet and displacement of the beads on the collector, N=10 

 

Fig. 4. Jet and displacement of the beads on the collector, N=50. 

In the above figures, that we obtained by implementing the same initial parameters as Vught 

(Table 2. State of art of the influence of some parameters on electrospun polymer jet and 

nanofibers), we can obviously see that the more beads we use in our system the more they are 

dispersed on the collector. 
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Then he focused on the effect of the viscosity. He used a system of 10 beads and the initial 

values of all the other parameters and varied the viscosity. He observed, when he decreased it to 

102 g/cms (the initial value was 106 g/cms) and increased it to 107 g/cms, the result was 

approximately the same. The following figures picture our results that we obtained by 

implementing the same parameters in our model. (Fig. 5 and Fig. 6) 

 

Fig. 5. Jet and displacement of the beads on the collector, N=10, μ=102 

 

Fig. 6. Jet and displacement of the beads on the collector, N=10, μ=107 

On contrary, we observe that with our model even though we increased the viscosity by 105 

the lateral displacement of the beads does not seem to vary a lot. 

The next parameter that could affect the displacement of the beads, according to our model 

is the surface tension coefficient. The experiences described in Vught’s paper show that if we 

increase the coefficient to 900 g/s2 (from 700 g/s2) the beads have a slightly smaller displacement 

and if we decrease it to 300 g/s2 the displacement becomes slightly larger. The following figures 

show how the variation of the surface coefficient affects the displacement in our model when we 

keep all other same parameters as in Vught’s paper (Fig. 7 and Fig. 8). 
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Fig. 7. Jet and displacement of the beads on the collector, N=10, α=900 

 

Fig. 8. Jet and displacement of the beads on the collector, N=10, α=300 

We almost can not see any remarkable difference which confirms the term “slighly” in 

Vught’s paper.  

Another parameter that could affect the trajectory of the jet is the elastic modulus G. The 

results in Vught’s paper show that if G is increased to 107 g/cms2 (from 106) the lateral 

displacement is smaller when if it is decreased to 105 g/cms2 the beads will be more dispersed on 

the collector. In turn we obtain the following results. 

 

Fig. 9. Jet and displacement of the beads on the collector, N=20, G=107 
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Fig. 10. Jet and displacement of the beads on the collector, N=20, G=105 

Like in litterature, we observe that the beads tend to form clusters when the elastic modulus 

is high but that when the elastic modulus is smaller, the beads tend to spread. 

Vught examined also the effect of the initial jet radius (when it leaves the needle) on their 

lateral displacement on the collector. He observed that if the radius is increased to 200e-4 cm 

(from 150e-4) the lateral displacement is larger and when it is decreased to 100e-4 cm the 

displacement is smaller. We obtained the following figures (Fig. 11 and Fig. 12) when using the 

same parameters as Vught and varied the initial jet radius 

 

Fig. 11. Jet and displacement of the beads on the collector, N=10, a0=200e-4 cm 

 

Fig. 12. Jet and displacement of the beads on the collector, N=10, a0=100e-4 cm 
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The small number of beads does not allow us to observe a tremendous difference. However, 

we can say that the beads are a bit more dispersed on the collector when the initial radius is higher  

Finally, he wanted to examine the effect of the applied voltage between the needle and the 

collector. In the paper the results are the following: if the voltage is drastically increased (from 

10000 V to 50000 V, meaning 5 times bigger) the displacement of the beads on the collector 

becomes slightly larger when it undergoes a small decreasing (from 10000 V to 5000 V) the 

displacement stays approximately the same. We on the other side observe that the more we 

increase the voltage the more the jet tends to get straight and have a smaller lateral displacement 

(Fig. 13 and Fig. 14), but according to other studies (Reneker 2000), the length of the straight 

part of the jet increases when the applied voltage is increased. 

 

Fig. 13. Displacement of the beads on the collector, N=20, V=50kV 

 

Fig. 14. Displacement of the beads on the collector, N=20, V=5kV 

We then compared our results to those in the paper of Dasri (Dasri 2011). He used the same 

initial parameters as in the paper of Vught (Table 2) and varied them in order to examine their 

impact on the jet’s trajectory.  

First, he varied the voltage applied between the needle and the collector. He increased it from 

500V to 1000V then 1500V and finally to 2kV. He observed the increasing of the applied voltage 

accelerates the beads and make them achieve the collector faster. We observed the same effect: 

when we kept the same parameters and varied the voltage we observed that our system of 50 

beads (same as in literature) tend to form a loop that is, at the same time, closer to the collector 

when the voltage is higher (Fig. 15). 
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Fig. 15. System of the beads t=0.0004s, N=50, V=500 V (up-left), V=1000 V(up right), 

V=1500 V (down left) V=2000 V (down right) 

He then observed the impact of initial radius and concluded that the lateral displacement of 

the beads on the collector was larger when the initial radius is increased (from 200e-4 cm to 500e-

4cm). When we tried to implement those parameters in our script with 50 beads the program met 

a problem of integration. However, Dasri obtained the same results as Vught, which we already 

verified, concerning the influence of the initial radius on the beads’ displacement. 

The next parameter that was examined was the elastic modulus. The results here show that 

decreasing the elastic modulus will obtain smaller area on the collector covered by the beads. We 

may notice that the first paper obtained opposite results. However, the figures in both papers show 

actually that the difference is slight when increase the modulus up to 100 times. Figures 16 (a) 

and (b) show our results when we implemented the parameters of Dasri in our script. We can also 

observe that there is a slight difference in the trajectory and the displacement of the beads. 
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Fig. 16. System of beads, (a) N=20, V=500 V, G=105, t=0.0005s, (b) N=20, V=500 V, 

G=107,t=0.0005s 

He then examined the influence of the surface tension coefficient of the viscosity on the 

trajectory. He observed (and we can notice on his figures) that both of those parameters did not 

have a significant influence on the beads’ trajectory. We may remark that Vught made the same 

observations. In turn we repeated the experience with the parameters in the paper of Dasri and 

observed that in fact the trajectory remained approximately the same if we change the surface 

tension coefficient from 300 g/s2 to 900 g/s2 (Fig. 17). We also see (Fig. 18) that the variation of 

the viscosity from 104 g/cms to 107 g/cms does not affect significantly the trajectory either. 

 

Fig. 17.1 System of beads, N=20, V=500 V, α=300 g/s2 (left)- α=900 g/s2 (right), t=0.0005s 

When he examined the effect of the initial radius of the jet he noted that increasing the jet 

radius to 500e-4 cm leads to a larger area of incoming beads on the collector plate, while 

decreasing the radius to 200e-4 cm obtains a smaller area. We met some problems of integration 

when we tried to put an initial radius of 500e-4 cm so we could not compare but this observation 

confirms the results of Vught. 

Finally, he examined the influence of the viscosity and observed that using μ=104 g/cms or 

μ=107 g/cms, the trajectory does not affect the trajectory. We implemented the same parameters 

in our script and obtained approximately the same trajectory when we varied the viscosity (Fig. 

18). 
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Fig. 18. System of beads, N=20, V=500 V, a0=100e-4cm,μ=104 g/cms (left)- μ=107g/cms 

(right), t=0.0005s 

Some literature used dimensionless parameters in order to make the equations dimensionless.  

2
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In the thesis of Karra we were given the values of α, μ and a0 which allow us to obtain 

V0,m,G,h,e that we use in our script out of the values of the dimensionless parameters and L. 

Actually, let’s name mLG=k (it appears in every group) and put every known variable on one 

side and every unknown on the other. 
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We tried to implement the parameters that are given in the thesis of Karra in our model. 

However, we met some problems of integration and couldn’t compare our results. 
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The last paper that we used to compare with our results is the report of Zeng (Table 2). In 

this paper dimensionless parameters and equations are used again but because they don’t give 

values for α, μ and a0 we could not deduce the values of V0,m,G,h,e. However, they examined 

the effect of the applied voltage and of the distance from the spinneret to the collector on the 

fibers’ diameter. In order to make our comparisons, we took the same parameters as in the first 

two papers (Table 2), varied the applied voltage or the distance between the electrodes as in 

literature and observed their influence on the radius of the fibers.  

In the paper of Zeng, they observed that an increase in the applied voltage from 7.5kV to 

17.5kV resulted in a slight increase from 101 to 138 nm and to a slight decrease from 138nm to 

123nmwhen the voltage was increased from 17.5 kV to 25kV. The general conclusion is that the 

applied voltage did not affect a lot the value of the fiber’s diameter. We obtained similar results 

(Fig. 19) when we used the same initial parameters as in the paper of Vught (Table 2) and 

increased the applied voltage as in the paper of Zeng (Zeng 2016). 

 

Fig. 19. Radius of the fibers (nm) according to the applied Voltage (V) 

Concerning the effect of the distance between the electrodes, they observed that when it was 

increased from 10cm to 30cm the diameter of the fibers decreased from 134nm to 10nm. We in 

turn observed a decreasing tendency of the fibers’ diameter when the distance between the 

electrodes increased (Fig. 20). 

 

Fig. 20. Radius of the fibers (nm) according to the needle-to-collector distance (cm) 

Fig. 3 and Fig. 4 confirm the results in Vught’s paper and show that, in an evident way, 

increasing the number of beads leads to a larger displacement of them on the collector. 

Fig. 5, Fig. 6 and Fig. 18 show that our model validates the observations of Dasri and Vught 

and that the viscosity does not impact the trajectory of the beads and their displacement on the 

collector in a noteworthy way.  
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Fig. 7, Fig. 8 and Fig. 17 show also that our model validates the observations of Dasri and 

Vught and that the value of the surface tension coefficient does impacts only slightly the trajectory 

and the displacement of the beads in a random way. 

Fig. 9 and Fig. 10 show that the more we increase the elastic modulus the less the beads will 

spread on the collector, which confirms the theory of Vught. 

Fig. 16. (a) and (b) show, on the other hand, that the elastic modulus influences slightly the 

trajectory of the beads as noticed Dasri. However, the applied Voltage here was 500 V when in 

the paper of Vught the applied voltage was 10000 V, which accelerates the beads and could 

explain the more remarkable effect of the elastic modulus in this paper than in the paper of Dasri. 

Fig. 20 confirms the observations that appear in the paper of Feng and show that the fibers’ 

diameter evolves  

Fig. 13 and Fig. 14 show that a higher voltage tends to make the jet straighter and decrease 

the lateral displacement. Vught on the contrary observed that the applied Voltage did not affect a 

lot the trajectory. 

Fig. 15 shows that the higher the applied voltage is, the more the beads are accelerated, which 

confirms the theory of Dasri. Fig. 19 confirms the results exposed in the paper of Feng and shows 

that the value of the applied voltage between the needle and the collector affects only slightly the 

value of the fibers’ diameter. 

In most cases, our model verifies the results of existing simulations, which shows that our 

model is valid and allows defining the influence of each parameter on the beads trajectory in 

between the needle and the collector. We have not managed to understand to what are due the 

problems of integration when they occur but other minor differences could be because we do not 

use the same method to reintroduce beads in the system or that we do not use the same initial 

perturbation. 

4. Conclusions 

We used the discrete model of Reneker to simulate the trajectory of the electrospun polymer from 

the needle to the collector. The trajectory and the velocities of the system of beads that formed 

the polymer in this model were calculated according to the second law of Newton and thanks to 

Matlab solver ode45. This model allowed us to evaluate the influence of some parameters 

(viscosity, initial radius, surface tension, elastic modulus…) on the trajectory and the 

displacement of the beads on the collector. Except some problems of integration, most of our 

results show good agreement with reports from literature. This will allow us in further studies to 

determine the optimal parameters to obtain optimal fibers without needing to repeat costly 

experiences. Further studies will also consist in modifying the script in order to obtain a more 

realistic jet that goes from straight to whipping jet. 
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