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Abstract 

A generalization of the smeared concept for field problems, published in recent papers of the 

author and his collaborators, is presented in the paper. A composite smeared finite element CSFE 

is formulated. This generalization can serve as a theoretical background for further applications. 

A selected numerical example, related to convective-diffusive mass transport within a cancerous 

tissue, illustrates efficiency and accuracy of the smeared models. Further, a smeared methodology 

is extended to mechanical problems. A theoretical background is given in detail, with introducing 

a composite smeared finite element for mechanics CSFEM, which can further be tested and 

modified. Finally, a consistent derivation is presented for the continuum constitutive tensor 

corresponding to a fibrous structure. 
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1. Introduction 

The space is, with exception of a vacuum, occupied by material substances (solid, fluid, gases) 

and generally contains different material constituents. There special cases in engineering or 

bioengineering where the space is filled with one constituent only. Then, in solving problems of 

physical fields or mechanical deformations we deal with one constitutive law fundamental for 

that constituent. By applying the basic principles and numerical methods (such as the finite 

element method, FEM) it is possible to obtain solutions for a given problem. However, in physics, 

engineering or medical science, composite media are mostly present, such as in geology (soils, 

rocks), according to Sowers (1979), or in living organisms (Kojic et. al 2008) (tissue, biological 

fluids), and the mathematical and computational models are more complex.  We further consider 

only these models, where computational models are based on the FEM. 

One approach in modeling problems within complex, composite media is to divide the entire 

domain into subdomains occupied by a constituent, with the corresponding laws and properties, 

and formulate the subdomain models. Then, the next step is to model the interactions at the 

domains common boundaries and generate the model for the entire system and solve for the 

unknowns describing the problem. This approach requires, in general, significant effort to specify 
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all internal boundaries between domains, if they are visible; often, it is not possible, such as, for 

example, in tissue composed of complex extracellular space, cells, cell organelles, etc. It is 

therefore desirable to have simpler models, which take into account media complexity, but which 

give satisfactory accuracy. 

In last few years the author introduced a smeared concept for the physical fields in 

biomechanics and implemented, in collaboration with his team, into the code PAK (Kojic et. al 

2016a). Here are listed the basic references where this methodology has been employed (Kojic 

et. al 2016b, 2017a, 2017b, 2017c, 2018, Milosevic et. al 2018a, 2018b). In this paper we 

summarize the previous work in a way to present the methodology as general, with appropriate 

generalized mathematical expressions, for the field problems in composite media. Besides this, 

we introduce a general concept of smeared methodology for mechanics of composite media; this 

can serve as a background for further testing of the concept with possible modifications. 

2. Field problems – summary of the fundamental equations and FE formulation 

2.1 Fundamental equations for the gradient driven field problems 

Diffusion. The constitutive law for diffusion is known as Fick’s law, 

 i

i

c
Q D

x


= −


  (1) 

and the mass balance equation is 

 0,       ,  1, 2,3
V

i i

c c
D q sum on i i

t x x

   
− + + = = 
   

  (2) 

Here, c is concentration, Qi flux in direction xi, D is diffusion coefficient and qV is a source 

term. We keep the conditions simple, without convection and assuming isotropy, for easier 

presentation of the smeared methodology. The generality is kept in assumption that the diffusivity 

D can be a function of concentration, i.e. it can be D=D(c). 

Heat conduction. The constitutive relation is described by the Furrier law, 
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and the balance equation is 

 0,       ,  1, 2,3
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where T is temperature, QTi is thermal flux, K(T) is thermal conduction coefficient,  is density, 

cT is specific heat, and qTV is a source term. 

Electrostatics.  We start with the constitutive law 

 e

i

i

V
J G

x


= −


  (5) 

where G is electric conductivity and Ve is electrical potential. The continuity equation for the 

current density can be derived from Maxwell Equations (1873) in a from 
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where the current density components Di can be related to the potential Ve  as 

 e

i

i

V
D
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= −
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where ε is dielectric constant. Finally, the continuity equation is 

 
2 2

e

i i i i

V Ve G
t x x x x


 

= −
    

  (8) 

1D-conditions. The above listed equations are applicable to the 1D-conditions, except 

equation (8), i.e. we have for diffusion and heat transfer, 

 0
V

c c
D q

t x x

   
− + + = 
   

  (9) 

 0
T V

T T
c K q

t x x


   
− + + = 

   
  (10) 

where x  is the axis of propagation. 

Transport through membranes. Different domains of a composite media are often 

separated by membranes, or walls in case of the 1D domains. It is necessary for the presentation 

of the smeared methodology to list fundamental equations for transport through boundaries of the 

domains; in living organisms these are vessel walls or cell and organelle membranes. In case of 

diffusion and heat transfer these relations can be written as: 

 ( )w w in out
Q D c c= −   (11) 

and 

 ( )w in outwTQ K T T= −   (12) 

with the flux oriented outward (from in to out); Dw and Kw are wall diffusivity and conductivity, 

respectively. In case of electrical field, the wall electrical flux relies on the so called cable theory, 

according to Winslow (1992). The outlet electrical flux (current density) can be expressed as 

 ( ) in out

m m in out m

V V
I G V V C

t t

  
= − + − 

  
  (13) 

where Gm is membrane conductivity and Cm is specific membrane (wall) capacitance.    

2.2 Finite element formulation 

In order to transform the above governing equations into the FE equations of balance for a single 

finite element, we implement a standard Galerkin weighting method (Kojic et. al 2008). The 

incremental-iterative form of balance for a time step Δt and iteration i can be derived in the form 

 

( )
( ) ( ) ( )( ) ( ) ( )

1
1 1 1 11 1

i
ii i i iext V t

t t

−
− − − − 

+  = + − − − 
  

M K Φ Q Q M Φ Φ K Φ   (14) 



M. Kojic et al.:  Smeared Concept as a General Methodology in Finite Element Modeling of Physical Fields and... 

 

4 

where 
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where Φ stands for concentration, temperature or electrical potential as nodal variables; NI are 

interpolation functions, V is element volume; cm is mass coefficient (=1 for diffusion and =  ρcT 

for heat conduction); instead of D we have K for heat transfer and G for electrical field.  For 

electrical potential we have that the “mass” matrix is 

 
, ,

,       ,  1,2,3
IJ I k J k

V

M N N dV sum on k k= =   (16) 

Note that for 1D problems the equations have the same form as the above, with no summation 

on k (k=1)  and that the element volume is V=AL, where A is cross-sectional area and L is the 

element length. 

For modeling transport through the membranes (walls) we introduced connectivity elements 

at each node (Fig. 1), by using double nodes at the same space position, with one node belonging 

to one side of the boundary between two domains. The connectivity element does not have the 

length, only cross section which is equal to the boundary surface belonging to the FE node. Then 

the balance equation of the form (14) is applicable. Assuming linear distribution of concentration 

or temperature along the membrane thickness, we have the “mass” and transport matrices as 

 
11 22 12 21

11 22 12 21

1 1
,      = =

3 6
m m m m

w m

mm mmM M c A h M M c A h

K K K K D A

= =

= = − = − =

  (17) 

where Am is the area of the surface belonging to the node, hm is the membrane thickness (of course, 

in case of heat conduction we have Kw instead Dw, and Gm for electrical conduction); cmm=1 for 

diffusion, and mm cm Tmc = for heat conduction.  In case of electrical conduction the non-zero 

terms of the “mass” matrix are 

 
11 22 mem m

M M A C= =   (18) 

3. Smeared model for field problems 

3.1 A general formulation of composite smeared finite element (CSFE) 

We first describe the model which includes continuum domains, 1D domains and connectivity 

elements. Schematics of such FE model, which will further be called ‘detailed model’, is shown 

in Fig. 1. It is assumed that each compartment has its own FE mesh of continuum elements, while 

1D domains (as blood vessels or fibers) have their own 1D finite elements with the coordinate 

axes depicted at one of these compartments. The connectivity element at the node common for 

the two domains is shown in space and enlarged (at the top of the figure), as well as the 

connectivity element A,B for coupling  1D and surrounding domain. It can be seen that the 

detailed model requires significant effort for the model generation, and in case of complex 

medium as tissue, the model generation would be an impractical or even impossible task. This 
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task would be much more demanding if instead connectivity elements, continuum FEs are 

employed for membranes. 

 

Fig. 1. Schematic of detailed model of a composite medium, 2D representation (diffusion is 

assumed). 

The goal of smeared model is to formulate a composite continuum finite element which 

should include all constituents (continuum and 1D) in a way that the true physical fields, 

corresponding to detailed model, are represented in a smeared (a kind of average) sense, with, of 

course, satisfactory accuracy. A schematic of the smeared model, for the same detailed model in 

Fig. 1, is shown in Fig. 2a, where continuum elements are present only. There are few conceptual 

steps to formulate such composite smeared finite element (CSFE). 

First, it is necessary to transform 1D fundamental equations into the corresponding 

continuum representation. The derivation of the Darcy and diffusion tensors is given in (Kojic et. 

al 2017a); here we present a generalized form of that derivation. We start with the fact that the 

gradient driven flux in a 1D domain (compartment) K, with the cross-section AK - due to a gradient 

/
i

x    - can be expressed as 

 ( )

( )

,        i

K K K K K Ki i

i i i

K K

x
Q D A D A D A no sum on i

x x x x

     
= = = 

    
  (19) 

where DK is the transport coefficient for the domain, / x  is the gradient of the field   in the 

direction x of the 1D domain, and
iK  are directional cosines of the x  axis. Further, the 

component 
jKQ  in direction jx due to all gradients of the /

i
x   is 

 
( )

,        ,  1,2,3Q Q D A sum on i iKj Kj K K Kj KiK i xi i


= = =


  (20) 

and the flux per unit area due to all 1D domains is 
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where 

 
tot K

K

A A=    (22) 

is the total area of all 1D compartments. Therefore, the transport tensor corresponding the 1D 

domains is 

 
1

j i j

Ktot

i K K K KD D A
A

=    (23) 

The next important statement in the CSFE formulation is that the volume of each domain has 

its own field within the corresponding domain volume. Hence, the FE node of the CSFE has 

number of nodal variables K  (‘degrees of freedom’) equal to the number of domains Nd, as 

shown in Fig. 2b. The domain volume VK is related to the total space volume as  

 ,    and   d    
K V K V

K KV r V V r dV= =   (24) 

where 
V

Kr  is the volumetric fraction. Finally, we include connectivity elements to couple 

corresponding domains. Namely, at each node are specified connectivity elements coupling two 

domains, according to the above described connectivity elements. The cross-sectional area 
JK

A

of a connectivity element at node J can be expressed in the form 

 

Fig. 2. Schematic of the smeared model. a) Smeared FE mesh for the detailed model in Fig. 1; 

b) Composite smeared finite element CSFE with different domains and nodal ‘degrees of 

freedom’ K , and connectivity element at node J  between two domains. 

 ( ) ( )    
JK AV K AV K

J J

K K KA r V r r V= =   (25) 

where 
AV

Kr  is the area coefficient, i.e. 

Next, we write the incremental equation (21) in the form 

 K

AV

K

K A
r

V
=   (26) 
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and (VK)J  is the volume belonging to the node J. Note that all the surfaces, volumes and the 

volumetric and area ratios, are assigned to nodes, which in practical application is convenient to 

model any non-homogenous properties. 

The above concept has been implemented to diffusion (including convection) and fluid 

transport through capillary network and tissue, with demonstration of accuracy of the smeared 

methodology (Kojic et al. 2017a, 2017b, 2018).  To improve the smeared model accuracy, a 

correction function was introduced in (Milosevic et al. 2018a). Additional effects present in drug 

delivery, such as partitioning, can be included in the connectivity elements, as shown in our 

references. The smeared model can be extended to composite media with fibers in a way shown 

in (Milosevic et al. 2018b). 

Here we demonstrate accuracy of the smeared model on one example. Other applications are 

given in the cited references. 

3.2 A Numerical example – a tissue sample from a pancreatic tumor 

We have selected a small 50x50 micron size 2D tissue sample taken from images of cancerous 

tissue (E. J. Koay, MD Anderson Cancer Center, Houston, Kojic et al. 2018) shown in Fig. 3a. It 

was assumed that there are two types of cells, with different cytosol properties, and with three 

organelles within each cell.  First group is assumed to be healthy cells (24 cells), second group is 

assumed to be tumor cells (21 cells). Contours of cells and organelles are shown in Fig. 3b. It is 

assumed that there are 6 capillaries (blue contours), 4 lymph nodes (red contours), and 45 cells 

inside the model. Model geometrical data are as follows (lengths in microns): 

Capillaries:  6, Diameter dmean = 3.97, wall thickness = 0.62, vol fraction rV = 0.0247  

Tissue: 50x50  Atotal = 2500,  Atissue = (1 - 0.0247) * Atotal = 2438  

Cell 1 (24): rV = 0.307, Dmean = 6.30    

Organelles: 1) rV = 0.334, Dmean =3.64; 2) rV = 0.034, Dmean = 1.16; 3) rV = 0.03,  Dmean = 1.10  

Cell 2 (21):  rV = 0.257, Dmean = 6.16  

Organelles: 1) rV = 0.257, Dmean =3.17; 2) rV = 0.051, Dmean = 1.39; 3) rV = 0.056,  Dmean = 1.46 

 

Fig. 3.  Diffusion 2D model of tissue a) Image of pancreatic cancer tissue, b) Contours of 

capillaries,  lymph, cells and organelles; c) Smeared model with nodal concentrations to be 

calculated. 

Detailed model: Number of FE nodes: 69457, FE elements in Cells: 41763, FE nodes in cells 

~ 42000, FE elements in capillary domain: 4290, FE nodes ~ 4400, FE elements in extracellular 

space (tissue) domain: 18486. Number of equations in detailed (true) model ~ 87943 = 18486 + 

69457 (with pressures in ECM and concentration in cells) 
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Number of equations in smeared model ~ 1200 

Diffusion coefficients and partitioning within cells: 

• Cell1: DC1 = Dv1 = Dv2 = Dv3 = 100 ,   P = 1 

• Cell2: DC2 = Dv1 = Dv2 = Dv3 = 100,   P = 10  (at both extracellular/cell and inter-

cellular/organelle border) 

Pressure field of detailed and tissue domain of smeared model in shown in Fig. 4. Mean 

pressure in extracellular space of the detailed model is 0.57 Pa, while it is 0.608 Pa when using 

the smeared model. 

 

Fig. 4. Pressure field after t = 0.5s. a) Detailed model; b) extracellular space of smeared model. 

Concentration field of detailed and tissue domain of smeared model, for two time moments 

(t = 0.5s and t = 10s) is shown in Fig. 5. 

 

Fig. 5. Concentration field in extracellular space (tissue domain) of detailed and smeared 

model, for t = 0.5s (upper panel) and 0s (lower panel). 
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Accuracy of the smeared model is verified using constant and bolus function of concentration 

in capillaries. Results are presented in Figs. 6 and 7. 

 

Fig. 6. Concentration vs Time for detailed and smeared model, with convection included and 

const c(t). a) Extracellular space and Cell type 1; b) Cell type 2 (partitioning P = 10); c) 

Organelle 1, partitioning P = 10 of Cell type 2. 

 

Fig. 7. Concentration vs Time for detailed and smeared model, with convection included and 

bolus c(t) (cmax in bolus is 270M): a) Extracellular space and Cell type 1; b) Cell type 2 

(partitioning P = 10);  c) Organelle 1 of Cell type 2 (partitioning P = 10). 

This example illustrates applicability of the smeared model, its efficiency and accuracy. 

4. Smeared method in mechanics 

In this section is presented a theoretical background for a smeared model in mechanics by 

considering a composite medium. The presented concept may serve as a basis for modeling tumor 

growth and in other applications. As a background with no work-out examples, the concept 

requires further testing, and refining or correction. 

4.1 Motivation 

As a motivation, consider a tissue medium composed of extracellular matrix and cells as solids, 

and fluid (interstitial fluid) present in the extracellular space. The cell is also a complex structure, 

with cell membrane surrounding the interior containing fluid component (cytosol) with the 

cytoskeleton as the supporting structure. The tissue medium is schematically shown in Fig. 8. As 

depicted in the figure, the stresses presented in this mechanical system consist of: 

• stress in the extracellular space e
σ , which can be expressed as 'e e e

m= +σ σ σ   where 'eσ  

is deviatoric stress and e
mσ  is the mean stress; 
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• stress in fluid 
f f f

= −σ σ p , where 
f
σ  

is viscous stress and f
p is fluid pressure;  

• stress in cells c
σ which also can be decomposed into deviatoric 'cσ and pressure c

p  

(negative mean stress) 'c c c= −σ σ p  ; 

• sliding stresses: between fluid and extracellular matrix ef
τ , between cells and fluid cf

τ

, and between cells and extracellular matrix ce
τ .   

 

Fig. 8. Schematic of tissue composed of extracellular space with: extracellular matrix and 

interstitial fluid, and cells. 

In resisting to the external loading, all these stresses will produce a mechanical work. So, 

virtual power, corresponding to the virtual velocities in the entire system; and within elementary 

volumes of constituents, and at elementary sliding surfaces, is: 

 

e e e f f f c c c
ij ij ij ij ij ij

ef ef ef cf cf cf ce ce ce
relrel rel

W e dV e dV e dV

v dA v dA v dA

      

     

= + +

+ + +
  (27) 

where e
ije , f

ije and c
ije are strain rates within the constituents; 

rel

efv , 
rel

cfv  and
rel

cev
 
are relative 

velocities at the contact surfaces;  edV , fdV and cdV are elementary volumes; and  
ef

dA , 
cf

dA  

and cedA are elementary contact surfaces. This expression represents a fundamental relation for 

the development of computational scheme. We will further introduce a generalization of the 

above model and define some details for the formulation of a smeared concept in mechanics of 

composite media. 

4.2 A general formulation of the expression for virtual power for composite media 

Here are introduced several assumptions for the formulation of a general smeared model: 

a) There is a supporting medium (or the basic medium, with the index ‘b’) in which are 

embedded other deformable domains. In Fig. 9 these domains are denoted as domains 1,2 

Nd. 
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b) The velocity within a domain ‘k’ is k
v . At the boundary between a domain and the 

supporting medium, velocities for the supporting medium and for the domain k are 

expressed in the local coordinate system,  

 ,        b b k b k k k k k k
n t n tv v v v= + = +v n t v n t   (28) 

where ,b k
n nv v  and ,b k

t tv v  are velocity components in direction of the boundary normal k
n and 

tangent k
t  to the domain. We impose the condition that normal components are the same, while 

there is a relative velocity kb
tv , i.e. 

 ,     -    b k bk k b
n n t t tv v v v v= =   (29) 

a) At the boundary between two domains, we also use local coordinate system and express 

velocities as 

 1 1 1,     k k k k k k k k k k
n t n tv v v v+ + += + = +v n t v n t   (30) 

and  

 1 , 1 1,     -    k k k k k k
n n t t tv v v v v+ + += =   (31) 

where , 1k k
tv +  is relative sliding velocity of the domain ‘k+1’ with respect to domain ‘k’. 

b) The stress due to sliding between a compartment ‘k’ and the supporting medium is bk
τ , 

while between ‘k’ and ‘k+1’ is , 1k k+
τ . 

c) Elementary surfaces between supporting medium and the medium ‘k’, and between two 

media are bkdA and , 1k kdA + , respectively. 

 

Fig. 9. Schematic of velocities and stresses at the interfaces. 

The virtual power due to stresses, analogous to the expression (28), is 
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, 1 , 1 , 1

1 1 1

d d dN N N
stress b b b k b k bk bk bk k k k k k k

ij ij ij t t

k k k

W e dV e dV v dA v dA        
−

+ + +

= = =

= + + +     (32) 

Virtual power due to inertial forces is 

 
1

dN
in b b b b k k k k

i i i i

k

W v v dV v v dV    
=

= − −   (33) 

4.3 Finite element formulation 

Finite element balance equations for continuum space, for a time step and iteration i, have a 

standard form (Kojic et. al 2008), 

 
( ) ( ) ( )1 int 1 in 1( )1 i i ii ext

t

− − − 
+  = − + 

 
M K V F F F   (34) 

where V are nodal velocities, ext
F  are external forces at the element nodes; int

F and in
F are 

internal forces due to stresses and inertial forces. In general, the matrices and nodal vectors can 

be expressed as 

 
( ) ( ) ( ) ( )int 1 1 in 1 1

,     

,      

V V

V

T T

i i i iT

dV dV

dV



− − − −

= = 

= = −

M N N K B CB

F B σ F MV
  (35) 

where N is the interpolation matrix, and B is the geometric matrix with the derivatives with 

respect to spatial coordinates; and C is the constitutive matrix; details are given elsewhere e.g. 

(Kojic et. al 2008). At the contact nodes we transform the velocities from the local to global 

coordinate system and include into the balance equation. For a better convergence, a 

transformation of the local stiffness matrix to the global system may be performed. The 

interaction forces, due to relative velocities at the contact boundary k, k+1, at a node J can be 

modeled by introducing a connectivity element at the node, for which the balance equation is 

 ( )
( )

( )
( )1

, 1 , 1 , 1 , 1
IJ IJ

J J

t i t i
k k k k k k k kK V K V

−
+ + + + = −   (36) 

where ( ), 1

J

t
k kV + is tangential velocity at node J for domains k+1 and k, and the matrix , 1

IJ

k kK +  is 

 , 1 , 1 , 1k k

IJ J

k k k kK A + + +=   (37) 

Here, , 1
J

k kA + is the area of the contact surface belonging to the common node J, and , 1k k + is 

the resistance (viscous) coefficient. The balance equation for connectivity elements between a 

domain k and supporting medium has the form (36). 

The condition that normal velocities at the common boundary are the same can be achieved 

by assigning the same equation number for both domains, as is assumed above. But, also, this can 

be achieved by introducing connectivity elements in normal directions (as for the tangent above), 

so that we introduce the balance equation of the form (36), 

 
( ) ( )

( ) ( ) ( )
( )1, 1 , 1, 1 , 1n n

IJ IJ
J J

n i n ik k k kk k k kK V K V
−+ ++ + = −   (38) 

where 
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( ), 1 , 1 , 1n
IJ J n

k k k k k kK A E
+ + +=   (39) 

The elastic modulus , 1
n

k kE +  can be taken sufficiently large to provide the desired condition 

in the normal directions. 

4.4 A smeared finite element formulation 

Here, we introduce a smeared FE formulation for mechanics in a way analogous to field problems 

described above and in our listed references, specifically in reference (Kojic et al. 2018). The 

concept of the smeared finite element is shown in Fig. 10. 

 

Fig 10. Composite smeared finite element for mechanics, CSFEM (2D representation). The 

element volume is composed of the supporting medium of volume Vb and different domains 

with volumes V1 to dN
V . The nodal degrees of freedom include velocities in coordinate 

directions, and tangential and normal components for the domains boundaries. Connectivity 

elements couple velocities at the boundaries. 

The volumes of the domains are specified by the volumetric fractions as in case of field 

problems, so that the volumetric fraction of the supporting medium is 

 
1

1
d

V V

N
b k

k

r r
=

= −    (40) 

The continuum balance equations for each of the domains have the form presented above for 

detailed model, within the domain volume 
V

k kV r V= . 

The nodal tangent and normal forces, 
i

t
JF

 
and 

i

n
JF , due to connectivity elements, in 

directions of the global axes xi, are 

 ( )
( )

( )
1

, 1 , 1
IJi i

J J

t i
t k k k k t
J AF K V r

−
+ += −   (41) 

and 
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( ) ( )

( )
( )

1, 1 , 1n
IJi i

J J

n ik kn k k n
J AF K V r

−+ += −   (42) 

where ( )i
J

t
Ar and ( )i

J

n
Ar are fractions of the boundary surfaces (area fractions) tA and nA , in 

directions of the global coordinate axes xi. In case of 2D circular domain, the area fractions are   

2 /
i i

t n
A Ar r = = ; in case of a rectangular domain with dimensions a and b, with the side with 

dimension a lying along x-direction, the area fractions are: ( )/
x y

t n
A Ar r a a b= = + , 

( )/
y x

t n
A Ar r b a b= = + . Note that the local stiffness matrices may be transformed into the global 

system for better convergence (details not given here). 

Finally, we present relations which can be used for transforming 1D balance equation of 

supporting fibers into a continuum form. There are various media with fibrous structure, as 

extracellular space or cell interior with cytoskeleton (shown in Fig 11a), and, from the practical 

implementation, it would be desirable to have a continuum representation of a complex network 

of fibrous structure. A sketch of a fibrous structure is shown in Fig. 11b.  

 

Fig. 11. Fibrous structure. a) Cytoskeleton within a cell (from Wikipedia); b) Schematic of 

fibrous structure within a finite element, stresses within fibers and the smeared nodal forces 

components equivalent to the forces within fibers. 

The equivalent (smeared) nodal forces within a finite element may be derived as follows. Let 

strains at a Gauss point be (engineering strains – one index notation (Kojic et al. 1998, 2008), 

then, for a fiber K, the strain 
K

e
 
is 

 
1K j j

Ke T e=   (43) 

where the transformation matrix 
1 j

KT 
contains terms with directional cosines of the fiber K. The 

stress 
K


 
within the fiber is 

 
1K K j j

KE T e =   (44) 

where EK is elastic modulus of the fiber (also, a nonlinear constitutive law can be used). Now, we 

introduce a fiber geometric coefficient gK as 
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1

K K K

ref

g A L
V

=   (45) 

where LK are fiber lengths within a reference volume Vref  (a cube with equal lengths). Stresses in 

the global system 
i

K are 

 
1 1 1i i K i j j

K K K K KT E T T e   = =   (46) 

Virtual power per volume dV of the finite element (for a fiber K) is 

 
1 1K i i K K K i j j i ij j i

K K K KW e dV g E T T e e dV E e e dV     = = =   (47) 

and 

 
1 1ij K K i j

K

fib K KE g E T T =    (48) 

is the elastic constitutive tensor for all fibers. The nodal forces due to stresses within fibers are 

shown for a node J. 

5. Conclusions 

The presented generalization of the smeared concept, initiated by the author and tested in papers 

published recently together with his collaborators, offers a broad theoretical basis for applications 

in problems of physical fields. The material laws in these problems rely on the gradient governed 

changes in the physical space. Besides numerous examples in the cited reference which illustrated 

efficiency, accuracy and applicability of the smeared methodology, one typical numerical 

example is included in the paper. 

The smeared methodology extended to mechanical problems can serve as a starting approach 

(with possible improvements and corrections) in further applications of this concept to various 

complex problems in biomedical and general engineering and science. 
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