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Abstract 

In finite element method, reducing the bandwidth of sparse symmetric matrices plays a key 

role to have an efficient solution. This problem can be simulated as a vertex numbering problem 

on a graph, where each edge represents two connected nodes in finite element mesh. In this paper, 

a new algorithm is proposed for a nodal ordering of the standard and randomly structured graphs 

to reduce the bandwidth of sparse symmetric matrices. A fast search algorithm for the location of 

pseudo-peripheral nodes is presented. This algorithm results in a bandwidth smaller than or equal 

to some existing algorithms such as the Cuthill–Mckee (CM) and the modified Gibbs–Poole–

Stockmeyer (MGPS). With this approach, the bandwidth is reduced in more than 50% of 

instances of benchmark tests compared with the outcomes of the existing algorithms. 

Keywords: Bandwidth reduction, finite element method, sparse symmetric matrix, pseudo-

peripheral nodes. 

1. Introduction 

Application of the finite element analysis (FEA) in many problems in structural engineering 

involves the solution of sparse systems of simultaneous equations with the form (1):  

 Ax b   (1) 

where ‘A’ is a n×n sparse zeros patterned symmetric matrix, called stiffness matrix, ‘x’ is the 

unknown variable vector and ‘b’ is the right-hand side vector. ‘n’ denotes the number of degrees 

of freedom.  

To improve the accuracy of the solution in FEA many degrees of freedom are usually needed 

which leads to very high computational and memory cost in the analysis process. But if the nodes 

are reordered properly, the bandwidth of the sparse matrix will be reduced, and a great deal of 

the computational effort and memory will be conserved.  

For the stiffness sparse symmetric matrix A with entries aij, the ith bandwidth of A is defined 

as the difference between the first and last non-zero element of the ith row of the matrix. This 

parameter is correspondent to the maximum difference in the node numbers within element i. The 

bandwidth of matrix A is defined as the maximum bandwidth of all rows. 

  max | 0i j a
ij

      (2) 
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The minimizing the bandwidth of the stiffness matrix can be studied by using graph theory 

and its adjacency matrix. In this paper, a renumbering algorithm is proposed which is based on 

the determined level structure (Doss and Arathi, 2016). They modified the GPS algorithm 

introducing a pseudo peripheral node finder algorithm. The main feature of the proposed 

algorithm in this paper is to achieve a predefined bandwidth by an appropriate ordering of the 

nodes in each level and forward-backward searching through the nodes. This algorithm also can 

determine that such preset bandwidth is unreachable mathematically. The proposed algorithm is 

applied to several different types of standard and random structured graphs and the obtained 

results are compared with the existing algorithms. 

The solution of sparse systems of simultaneous equations forms a considerable part of the 

computational cost needed in finite element analysis. This computational effort is directly 

proportional to the square of the bandwidth of stiffness matrix. Thus, a lot of algorithms have 

been proposed for the reduction of the bandwidth of these sparse matrices. These algorithms can 

be categorized into two main types: direct and iterative algorithms. In direct algorithms, the nodes 

are renumbered before the construction of the stiffness matrix. The first extensive study of direct 

methods for bandwidth reduction was proposed by Cuthill and McKee (1969) by an automatic 

nodal renumbering scheme is known as the Cuthill-McKee (CM) algorithm. They used a 

spanning tree to find the shortest route tree of the graph model of the structure. Kaveh (1977) 

improved the algorithm using special types of the shortest route by the appropriate choice of the 

starting nodes. King and Levy presented algorithms for minimizing the profile and wavefront of 

a sparse matrix (King, 1970; Levy, 1971). A reversed CM algorithm (RCM) developed by George 

(1971) that reversed the numbering in CM algorithm and led to the same bandwidth reduction. 

 In all of these algorithms, the appropriate selection of the starting node plays a key role in 

bandwidth reduction. In 1976, one of the most popular algorithms for the bandwidth reduction 

was proposed called GPS algorithm (Gibbs, Poole and Stockmeyer, 1976). This algorithm is 

based finding the points of a pseudo-diameter to make maximum depth, for example, a pair of 

vertices which are at a maximum distance apart. The bandwidth reduction in this algorithm is 

comparable to the previous ones while being several times faster. Sloan (1986) developed an 

algorithm to reduce the bandwidth using the points of a pseudo-diameter and relabeled the nodes 

by introducing the priority of each node to determine a good starting point. To select a proper 

starting node and a suitable transversal for nodal numbering of graph models of skeletal 

structures, a new connectivity coordinate system has developed (Kaveh, 1991). He also presented 

a bandwidth reduction method based on ant colony optimization algorithm (Kaveh, 2011). A 

heuristic algorithm for the purpose of modification of CM algorithm for the pathological cases 

has been described byEsposito et al.(1998). Boutora et al. (2007) came up with a strategy to apply 

a reverse numbering for all the triangular mesh nodes in the permutation vector. An improved 

GPS algorithm was proposed by introducing width-depth ratio to find the pseudo-peripheral 

nodes with the distance which is the diameter in a graph (Wang et al., 2009; 2012). An easy 

bandwidth reduction algorithm was presented on standard L-structured and Z-structured graphs 

(Doss et al., 2011). A method was developed based on modified GPS algorithm to choose the 

pseudo peripheral nodes of the standard structured and random graphs (Arathi et al. 2012). They 

recently improved their method and suggested a new algorithm which leads to better results 

compared to the modified GPS algorithm (Doss and Arathi, 2016).  

In this work, a new algorithm for the renumbering the nodes of the graph is presented to 

reduce the bandwidth of stiffness matrix. The level structure introduced in modified GPS 

algorithm is used, and the final level structure has been specified using two-level structures for 

the pair of endpoints of pseudo-diameter. After determining the levels, a set of numbers can be 

assigned for each level. Assuming a predefined bandwidth a set of acceptable numbers can be 

assigned to each node. The nodes are labeled with a priority of minimum connection to the next 

level. This arrangement leads to find the critical node in all of the permutations and many 
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unnecessary permutations will be deleted from search algorithm and makes the algorithm very 

fast. Since the search is accomplished with all of the effective permutations, the numbering for 

the predefined bandwidth will be found if there would be any solution with GPS level numbering. 

If no number can be assigned to a node, then the predefined bandwidth will be unreachable. 

The outline of the paper is as follows. Section 2 introduces the basic concepts and basic 

procedures of the new algorithm. Pseudo-code of the algorithm is also given in this section. In 

section 3, several numerical results demonstrating the robustness and the potentiality of the 

proposed algorithm are presented and compared with the known algorithms. Finally, some 

concluding remarks are given in Section 4.  

2. Nodal ordering algorithm  

An appropriate node renumbering of the standard structured or random graphs based on the 

modified GPS node finder is presented here to reduce the bandwidth of stiffness matrix 

efficiently. Firstly a preset aim bandwidth is considered, and in each step, all the numbered nodes 

are checked not to exceed the aim bandwidth. If no numbers would be available to satisfy this 

condition, a backward renumbering of previous nodes is carried out. If these backward 

modifications go to the first node no backward modification is applicable, and the aim bandwidth 

is unreachable, and a larger aim bandwidth should be reconsidered. To reduce the effort of 

renumbering process the order of nodes for renumbering is determined by an efficient algorithm 

based on the connectivity degree of the nodes. Before the renumbering process, the level 

structures are constructed on the base modified GPS algorithm (Doss and Arathi, 2016). 

2.1. Preliminary definitions 

Let ( , )G V E  be a standard or random structured graph in which the elements of ( )V G  and 

( )E G  are sets of nodes and edges, respectively. 

 ( ) { | }
1, 2, ,

V G v
i i n




  (3) 

 ( ) { | }
1,2, ,

E G E
j j m




  (4) 

If v
i

 and v
j

 are connected together,  ,v v
i j

would be a member of ( )E G and in adjacency 

matrix 0a
ij
 .  

The level structure as an essential part of the numbering process is defined as the partitioning 

of the ( )V G into subsets ( )
1

L G , ( )
2

L G , ... , ( )L G
k

, in which ( )
1

L G is the root node of the level 

structure and for 1i  , ( )L G
i

is the set of all unassigned nodes which are neighbors to nodes in 

( )
1

L G
i 

.  

The Breadth First Search (BFS) algorithm is applied to determine level structures in the 

graph. The node with the minimum degree is selected as the tree root for starting point. Then the 

adjacent nodes would be investigated before moving to the next level nodes. 
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2.2. Pseudo peripheral node finder algorithm 

An appropriate selection of starting nodes will lead to a proper construction of level 

structures which have an essential role in the bandwidth reduction of the graph. Hence, in this 

section, a method for finding pseudo peripheral node based on modified GPS is expressed below 

(Doss and Arathi, 2016): 

1) Select a starting node from the all of the possible nodes of graph G with the minimum degree 

for searching forward and call it “s”. 

2) Suppose that )(GV  is partitioned to the all possible levels for searching forward as below: 

 ( ) { ( ), ( ),..., ( )}
,1 ,2 ,

L s l s l s l s
f f f f k

   (5) 

Apply the BFS algorithm for the starting node as the first level ( ( ) { }
,1

l s s
f

 ). Then the nodes 

which have the shortest distance (ds,h,min) from the node “s” would be obtained as the second level 

nodes. This procedure would be continued for the other nodes of the graph by increasing the 

distance from the starting node “s” until the last level with the maximum distance is found. 

 ( ) | { ( ) | ( ) }
, 2, , , , ,min

l s v V G d v d
f h h k s h s h

  


  (6) 

3) According to the constructed level structure, if the last level consists of a single node, the 

algorithm stops here and will be continued according to section 2.3. Otherwise, an arbitrary node 

adjacent to the node with the minimum degree in the last level will be chosen and named “e”. 

4) Suppose that ( )V G  is partitioned to all possible levels for searching backward as below: 

 ( ) { ( ), ( ),..., ( )}
, , 1 ,1

L e l e l e l e
b b k b k b




  (7) 

Now, the node “e” is selected as the starting node (the first level related to the node “e” i.e. 

( ) { }
,

l e e
b k

 ). Then apply the BFS algorithm again. Similar to the step 2, the nodes which have 

the shortest distance (de,t,min) from the node “e” would be chosen as the second level. This process 

would go on for the other nodes of the graph forasmuch the last level with the maximum distance 

from the beginning node “e” is constructed. 

 ( ) | { ( ) | ( ) }
, 1, ,1 , , , min

l e v V G d v d
b t t k e t e t

  
 

  (8) 

5) Let *E be the set of nodes having the same forward and backward level numbers as below: 

 
* ( ) ( )

, , 1,...,
E v l s l e

f h b h h k

   
   

    

  (9) 

6) Subtract nodes of *E  from the graph G and suppose
1

SG ,
2

SG ,…, SG
Z

 be partitions of the 

graph *G E  in such a way that each subgraph contains connected nodes and unconnected  nodes 

will be placed in different subgraphs. The greatest subgraph is defined as the subgraph containing 

largest number of nodes. If there would be several different greatest subgraphs with the same 

length, the subgraph which contains the node with minimum distance to starting node is selected 

as greatest subgraph. This leads to minimum bandwidth in backward level numbering in this 

subgraph.  
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7) The final numbering of levels for all of the nodes of the graph is determined according to the 

following conditions: 

The level number of the nodes of E* are evident, since they have the same backward and 

forward level number. The nodes which are in the greatest subgraph (GSG) would be numbered 

with the backward level number to connect to the previous layer, and the other subgraphs are 

numbered according to the forward level number to balance the number of nodes in each layer 

which leads to fewer bandwidth. 

2.3. The proposed node renumbering algorithm 

An important step in the proposed algorithm is the renumbering of nodes in each of the level 

structures. An appropriate arrangement of the nodes in each level will be lead to a reduced final 

bandwidth of the graph. Therefore a forward-backward method is proposed to find the proper 

renumbering in each level to satisfy the preset aim bandwidth. After constructing the levels, an 

appropriate set of numbers can be assigned to the nodes of each level. 

Consider the set { , , , }
1 2

N n n n
k

 in which k is the number of levels and ni is the number 

of nodes in ith level. For the first level (i=1), the nodes are respectively assigned by numbers 

from the set {1,2,…,ni} with the priority of minimum connection to the second level. Hence, a 

node with the minimum connection is assigned by number 1 as a starting point, and then all other 

nodes are numbered respectively. If some nodes have the same number of connections to the next 

level, there will be (ni-1)! states of numbering for each node. 

For the second level and above (i ≥ 2), a number from the set 
1 1

1, 2,...,

1 1 1

i i i
n n n n
i k k k

k k k

   
      

    

can be assigned to each of the nodes in the ith level. Thus, a 

permutation of numbers can be assigned to the all nodes in each level which some of them is 

irrational and sometimes impossible. However, considering the bandwidth as an objective 

criterion (βe) according to equation (10), it is significantly possible to reduce the states of 

numbering considerably for each of the nodes in the ith level ( 'n
i

). 

 min( ') min( ')
1

n n
i i e

 


  (10) 

where 
in   is a numbered node in the ith level and 

1in 
  is an adjacent numbered node in the (i-

1)th level. To minimize the effort of renumbering process, the numbering procedure must be 

carried out for the nodes with the minimum possible cases of numbering. If the assigned number 

for each node did not satisfy the chosen bandwidth, the next number from the set 
in would be 

assigned to the node. This procedure would be continued as far as the last node was numbered. If 

none of the numbers in the set satisfy the bandwidth, the previous level should be considered 

again and the next number in the set will be assigned and the procedure will go on forward. If the 

backward modification reaches to the first level and no number in the first set is remained, the 

numbering process should be iterated from the start point with a new aim bandwidth (βe+1). 

A detailed pseudo-code of the proposed algorithm including modified GPS level structure 

construction (Doss and Arathi, 2016) and node renumbering algorithm is given below: 

PROPOSED ALGORITHM (G, fnn[ ])  

◃ Input: A graph G=G(V, E). 

◃ Output: The array fnn[u] containing final nodal numbering for all vertices u ∈ V [G]. 

                 MINIMUM DEGREE (G) 
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                  ◃ Module 1: To find the source vertex s1. 

                for u ∈ V [G] do 

                            degree[u] = length[Adj(u)] 

                find u∗ ∈ v[G] with least degree[u] ◃In case of tie choose an arbitrary vertex 

                s1 ← u∗ 

                BFS(G, s1, ds1[ ]) ◃ Module 2: Call BFS algorithm with source vertex s1 for the 

input graph G 

                                       ◃to determine the level structure 

                 ◃ Input: A graph G=G(V, E), source vertex s1 

                 ◃ Output: The array ds1[u] containing shortest distance values for all vertices u ∈ V 

[G] 

                 ◃ from the source vertices s1. 

                for each vertex u ∈ V [G] - {s1} 

                              do ds1[u] ← ∞ 

                              π[u] ← N I L 

                ds1[s1] ← 0 

                π[s1] ← N I L 

                Q ← ∅ 

                ENQUEUE(Q,s1) 

                while Q != ∅ 

                                  do u ← DE QU EU E(Q) 

                                       for each v ∈ Adj[u] 

                                             do if ds1[v] = ∞ 

                                                      then π[v] ← u 

                                                          ds1[v] ← ds1[π[v]] + 1 

                                                               ENQUEUE(Q,v) 

◃ Module 3: To find the second source node s2 for the backward search. 

◃ Construction of set S∗ which has all vertices at the last level. 

                d∗ ← max{ds1[v] : v ∈ G} 

                S∗ ← {v ∈ V [G]/ds1[v] = d∗} 

◃ If S∗ contains one vertex then proceed with the final numbering technique fnn[ ]. 

                If |S∗| = 1◃ i.e. if size of S∗ is single element. 

                then go to module final node numbering fnn[ ] 

                else 

◃ Selection of the second source vertex s2 from which backward BFS is performed 

◃ From stemp the vertex with minimum degree in the last level is identified 

◃ Through stemp the source s2 of the backward BFS is found. 

                stemp ← MINIMUM DEGREE(S∗)◃ calling Module 1 to find the least degree nodes 

in S∗ 

                s2 ← Adj[stemp] ◃ The vertex s2 which is adjacent to the least degree node stemp is 

chosen 

                                        ◃with ties broken arbitrarily. 

◃ Module 4: Perform backward BFS with the source vertex s2. 

◃ Here, the initial distance value is taken as d∗ 

               BACKWARD-BFS(G, s2, ds2[ ]) 

                ◃ Input: A graph G=G(V,E), source vertex s2 

                ◃ Output: The array ds2[u] containing shortest distance values for all vertices u ∈ V 

[G] 

                ◃ from the source vertices s2. 

               for each vertex u ∈ V [G] - {s2} 

                             do ds2[u] ← ∞ 
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                                  π[u] ← N I L 

               ds2[s2] ← d∗ 

               π[s2] ← N I L 

               Q ← ∅ 

               ENQUEUE(Q,s2) 

               while Q != ∅ 

                          do u ← DE QU EU E(Q) 

                               for each v ∈ Adj[u] 

                                   do if ds2[v] = ∞ 

                                       then π[v] ← u 

                                                ds2[v] ← ds2[π[v]] - 1 

                                                ENQUEUE(Q,v) 

◃ Module 5: Finding the first largest component with ds1[v] = 2. 

◃ Separation of the graph into components. 

              S^ ={ Collection of all vertices v ∈ G/ds1[v] = ds2[v]} 

              G∗ =G-S^ ◃ Let G1, G2, . . . , Gk be the k number of components (subgraphs) after the 

                        ◃ removal of S^ arranged in the descending order according to their size. 

◃ Computing the first largest component in which a vertex with ds1[v] = 2 appears 

              tag←TRUE 

              for (i=1;i ≤ k and tag;i++) 

                           if(v ∈ Gi and ds1[v] = 2) 

                               i∗ = i ◃ i∗ is the first largest component with a vertex v with ds1[v] = 2. 

              tag ← FALSE 

◃ Module 6: Fixing the final level numbering. 

◃ The level number for all the vertices in the first largest component which contains a vertex 

with ds1[v] = 2, 

◃ the level number is assigned as ds2[v]. For the remaining components, ds1[v] is assigned for 

all vertices. 

             for v ∈ V [G] 

                          if v ∈ Gi∗ then 

                                 l[v]=ds2[v] 

                          else 

                                 l[v]=ds1[v] 

Module 7: Fixing the final node numbering  

n = |number of levels| 

do I = 1 to size(n); 

     a = |the node that has minimum connection to back levels|; 

     b = |the node that has maximum connection to forward levels|; 

     C = |find possible numbers in level (I) |; 

do i = 1 to size(C) 

           A = minimum(C) 

           B = maximum(C) 

           Creating permutations between A & B 

           Checking aim bandwidth of graph 

if bandwidth is satisfied 

                 Go to next level; 

else 

choose next number in the set 
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Finding the best numbering of graph vertices or graph bandwidth optimization is a NP-

Complete problem that cannot be solved in polynomial time on a deterministic Turing machine. 

After layering procedure, the set of numbers which can use in each layer is clear. Hence, the 

algorithm can search solutions very quickly. But when the number of vertices in each layer 

increases, finding the best numbering in each layer turns into a NP-Complete problem. To prevent 

this shortcoming the proposed algorithm considers a desirable bandwidth and starts from the node 

with a priority of minimum connection to the next level to satisfy the predefined bandwidth. If 

the existing bandwidth exceeds desirable bandwidth, then the numbering in layer will change 

quickly. By this trick and using “for in for” programming for each layer the problem can be solve 

with an acceptable cost. 

3. Numerical examples 

To illustrate the capability of the proposed renumbering algorithm, two finite element models 

are considered in detail. Some other benchmark examples are investigated and the results of 

reduction bandwidth are summarized in tables 3 and 4. In the finite element analysis, the three-

noded triangular elements are used in both examples and their equivalent graphs are constructed. 

To investigate the effect of proposed renumbering technique, the evaluated reduced bandwidth is 

compared with the known algorithms such as such as the Cuthill–McKee (CM), the GPS and 

modified GPS.
 

3.1. A rectangular plate under tension 

The first example is of a rectangular plate with a finite crack subjected to uniform tension 

loading. The geometry of the problem and finite element mesh with an arbitrary initial numbering 

are shown in Fig. 1. The equivalent structured graph is constructed with 13 vertices and initial 

bandwidth equal to 12 as shown in Fig. 2. The proposed algorithm is described for this graph in 

detail in two distinctive parts as follows: 

 

Fig. 1. Rectangular plate under tension: a) geometry, b) finite element mesh. 

 The pseudo peripheral node finder algorithm: 

1- From Fig. 2, the node 3 is chosen as the starting node “s” among all possible nodes 

with the minimum degree including {3,7,9}. 

2- A forward BFS algorithm for the starting node 3 as the first level is applied. This 

leads to a level structured graph with 5 levels as shown in Fig. 3 (first numbers). 

3- In the last level (5th level) consisting of nodes {8,9}, the node 8 as the node adjacent 

to the node 9 with minimum degree is chosen as the starting node “e” for backward 

search. 
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4- A backward BFS algorithm for the starting node 8 is applied as shown in Fig. 3 

(second numbers).  

5- The set E* including nodes {3,11,13,12,1,2,5,4,8} with the same forward and 

backward level numbers is partitioned (Fig. 4). 

6- Subgraphs SG1, SG2 and SG3 are partitioned as illustrated in Fig. 4. Then the 

subgraph SG1 as the greatest subgraph (GSG) is numbered with the backward level 

number and the subgraphs SG2 and SG3 are numbered according to the forward level 

number, and final numbering of nodes is obtained as shown in Fig. 5. 

 

Fig. 2.  Structured graph of rectangular plate with 13 vertices. 

 

Fig. 3. Two level structures of forward and backward BFS algorithm, with rooted at node s = 3 

and e = 8. 
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Fig. 4. Subgraphs E*, SG1, SG2 and SG3 of Graph G. 

 The proposed renumbering algorithm: 

1- As shown in Fig. 5, the nodes in each level are respectively assigned by the sets of 

numbers including {1},{2,3},{4,5,6,7,8},{9,10,11} and {12,13}. 

2- For the first level, no.1 from {1} is assigned because it is the lonely single node in 

this level. 

3- For the second level, it is assumed that the aim bandwidth is 2 (βe=2). Due to the 

same states of numbering for the nodes 13 and 11, each number from the set {2,3} 

can be assigned to the nodes arbitrarily.  

4- As shown in Fig. 6, by assuming no.2 for the node 13 and no.3 for the node 11 in 

the 2nd level and βe=2, the set {4,5,6,7,8} would be the possible states of numbering 

for the existing nodes in the third level. By allocating no.4, no.5 and no.6 to the 

nodes 7, 12 and 1, the corresponding bandwidth would be 3. Thus, the numbering 

procedure is returned to the previous level and the order of node 2,3 are reversed. 

But the obtained bandwidth would be 3 once more. Hence, the aim bandwidth of 2 

is impossible for this graph and βe must be increased to 3. By repeating this 

procedure, it can be found that βe=3 was still not satisfied because three nodes are 

connected to node 2 and the numbering process must be iterated for all the levels 

based on βe=4. At last, as depicted in Fig. 7, in the third level set of {4,5,6} is 

assigned to the three nodes connected to node 2 which satisfy bandwidth of 4. Then 

no.7 goes to the node connected to node 3 and finally no.8 is assigned to the node 

which is not connected to any of previous level nodes. This numbering satisfies aim 

bandwidth of 4 and this process is repeated for the next levels to obtain final 

numbering as shown in Fig.7.  
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Fig. 5. Final numbering of levels and sets of assigned numbers for each level. 

 

Fig. 6. Bandwidth changes by renumbering the nodes in each level. 

 

Fig. 7. Final numbering of the nodes with the aim bandwidth of 4. 
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The assigned numbers to the nodes in each level and maximum obtained bandwidth for each 

level are presented in Table 1. 

Level Number 
Assigned numbers to the nodes 

in each level 

Maximum 

Bandwidth 

1 1(3) 
2 

2 2(11), 3(13) 

4 

3 4(7), 5(12), 6(1), 7(2), 8(6) 

4 

4 9(5), 10(4), 11(10) 

4 
5 12(9), 13(8) 

Table 1.  Maximum obtained bandwidth for each level. 

                        
Fig. 8. Rectangular plate: Bandwidth of the interconnectivity matrix, a) Initial bandwidth, b) 

Reduced bandwidth. 

Fig. 8 shows the performance of bandwidth reduction in the interconnectivity matrix based 

on renumbering the nodes of the graph. The original matrix bandwidth with initial numbering and 

the resultant matrix bandwidth after applying the proposed renumbering algorithm are shown in 

Fig. 8.a and Fig. 8.b respectively. It demonstrates the improvement in the bandwidth reduction 

process.
 

3.2. A circular plate under concentrated loads 

The next example is of a circular plate which under two concentrated compressive forces. 

Figure 9 shows the geometry of the problem and finite element mesh with an arbitrary initial 

numbering and 49 nodes. Constructing the equivalent graph illustrates that this numbering 

produces initial bandwidth of 48. This example was investigated (Doss and Arathi, 2016) where 

they improved the reduced bandwidth to 10 and using the proposed algorithm it has been further 

reduced to 9. The pseudo peripheral node finder algorithm and renumbering algorithm are 

described below in this special case. 
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The pseudo peripheral node finder algorithm: 

As shown in Fig. 10, from all minimum possible degree nodes consisting of 

{1,2,5,8,11,14,17,22}, the node 1 is selected as the starting node “s”. By applying a forward BFS 

algorithm for the node 1 as the first level, a level structured graph with 7 levels is obtained. Then 

the node 16 adjacent to a node with minimum degree at last level (7th level) is chosen from 

{2,9,10,11,12,13,8,15,16,17,18,19,14} to be the starting node “e” for backward search. The set 

E* is constructed including nodes {1,49,43,37,31,36,35,30,16}. The final numbering of levels is 

accomplished as shown in Fig. 11. 

 

 

Fig. 9. Circular plate under compressive force: a) geometry, b) finite element mesh. 
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Fig. 10. Equivalent structured graph of circular plate with 49 vertices. 

 

Fig. 11. Final numbering of levels. 
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Fig. 12. Final renumbering of the nodes with maximum bandwidth of 9. 

The proposed renumbering algorithm: 

The implemented renumbering algorithm in this example is similar to the previous one. The 

smallest bandwidth of this graph with well-known algorithms was 10 and thus, aim bandwidth is 

taken 9 to investigate the improvement ability of the proposed algorithm. The node 5 with the 

minimum connection to the second level is selected as the starting node is selected and the 

algorithm proceeded level by level. In each level, retaining aim bandwidth is checked and some 

forward-backward modification is also carried out to final renumbering is achieved as shown in 

Fig. 12. The maximum bandwidth between levels is attained according to the Table 2.  

No. of levels 
Assigned numbers (to the nodes) 

in each level 

Maximum 

Bandwidth 

1 1(5), 2(6), 3(4), 4(7), 5(3), 6(2), 7(1) 
7 

2 
8(39), 9(34), 10(44), 11(29), 12(49), 13(9), 

14(24), 15(10), 16(11) 
9 

3 
17(38), 18(33), 19(43), 20(28), 21(48), 

22(27), 23(23), 24(12) 
8 

4 
25(37), 26(32), 27(42), 28(47), 29(26), 

30(22), 31(13) 
9 

5 
32(31), 33(41), 34(36), 35(46), 36(21), 

37(25), 38(8) 
9 

6 39(30), 40(40), 41(45), 42(20), 43(35), 44(15) 

7 
7 45(16), 46(19), 47(18), 48(14), 49(17) 

Table 2.  Maximum obtained bandwidth for each level. 
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Fig. 13. Circular plate: Bandwidth of the interconnectivity matrix, a) Initial bandwidth, b) 

Reduced bandwidth. 

A considerable improvement in the bandwidth reduction of interconnectivity matrix after use 

of the proposed renumbering algorithm is illustrated in Fig. 13. The results in bandwidth 

reduction problem in these two examples and some other benchmark problems are compared with 

the existing CM, GPS and modified GPS algorithms below in Table 3 and Table 4. These tables 

show that the bandwidth is reduced for some cases and the same bandwidth is obtained in some 

other cases. If the level structure of modified GPS algorithm has been used, the obtained 

bandwidth is the minimum possible bandwidth of the graph. Table 4 illustrates that the proposed 

algorithm is more effective in L-structured graphs with 7 points. The formation of L-structured 

graphs with 7 and 9 points are demonstrated in Fig. 14. The techniques of bandwidth reduction 

of these graph types are investigated by previous researchers (Doss et al., 2011). 
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NO. 
No. of 

nodes 
No. of edges 

Original 

bandwidth 

Reduced bandwidth 

CM GPS 
Modified 

GPS  

Proposed 

algorithm 

1 13 25 12 5 5 4 4 

2 24 68 48 7 5 5 5 

3 34 96 20 9 8 8 8 

4 49 119 48 15 12 10 9 

 Table 3. A comparison of reduced bandwidth in proposed algorithm with CM, GPS and 

modified GPS on some standard graphs. 

NO. 
No. of 

nodes 
Structures 

Original 

bandwidth 

Reduced bandwidth 

CM GPS Modified GPS  
Proposed 

algorithm 

1 21 
L-Structured 

with 7-point 
6 7 7 7 5 

2 33 
L-Structured 

with 7-point 
8 7 7 6 5 

3 21 
L-Structured 

with 9-point 
6 7 7 6 6 

4 33 
L-Structured 

with 9-point 
8 7 7 6 6 

Table 4. A comparison of reduced bandwidth in proposed algorithm with CM, GPS and 

modified GPS on some L-structured graphs. 

 

(a)                   (b) 

Fig. 14. Formation of a) a 7-point L-structured graph, b) a 9-point L-structured graph. 

4. Conclusion 

In the present paper, an improved nodal ordering algorithm was presented for bandwidth 

reduction of structured and random graphs. A modified renumbering process was proposed to 
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improve the bandwidth reduction process. The technique was associated with the modified GPS 

algorithm to provide an efficient level structure construction. In this algorithm, the priority of 

nodes was modified to reduce the effort of renumbering process based on the connectivity degree 

of the nodes. The aim bandwidth can be chosen, so that overcomes the bandwidth obtained by 

other well-known algorithms. A forward-backward modification is presented to control the 

certainty of the aim bandwidth in different levels. This algorithm also can determine that such 

predefined aim bandwidth is reachable or not with the constructed level structure. Several 

numerical examples were modeled with arbitrary graphs. It was shown how the proposed 

renumbering algorithm could reduce the value of bandwidth of stiffness matrix considerably in 

L-structured graphs. 
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