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Abstract 

The present work is concerned with the flexural analysis of single layer orthotropic, two-layer 

antisymmetric and three-layer symmetric laminated beams subjected to uniformly distributed 

thermo-mechanical loads. The thermal load is varying linearly across the thickness of laminated 

beams. A combination of uniformly distributed thermal load with uniformly distributed 

transverse mechanical load is taken into consideration for the flexural analysis of laminated 

beams. A sinusoidal shear deformation theory is used. The displacement field of theory consists 

of sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. 

Governing equations and boundary conditions of theory are obtained by using the principal of 

virtual work. The theory obviates the need of shear correction factor and satisfies the shear stress 

free conditions at the top and bottom of the beam. Stresses and displacements in orthotropic, 

antisymmetric and symmetric cross ply laminated beams are obtained by using sinusoidal shear 

deformation theory. The results obtained by present theory are compared with Timoshenko beam 

theory, classical beam theory and also with the results which are available in the literature 

wherever possible. 

Keywords: Cross ply laminated beams, sinusoidal shear deformation theory, thermal stress, 

thermo-mechanical loads, equivalent single layer theory 

1. Introduction  

Composite structures are widely used in industry, aerospace engineering, under water and 

automotive structures due their excellent properties such as high strength to weight ratio and high 

stiffness to weight ratio. This make them ideally suited for use in weight sensitive structures. 

Laminated beams are widely used in aircrafts and watercrafts. The effect of temperature on 

displacements and stresses in the laminated beam attracts more attentions. Laminates can be 

subjected to severe thermal conditions through heating. The inter-laminar stresses are the main 

cause of failure when the laminates are subjected to severe thermal loading. This is due to the fact 

that thermal expansion coefficients in the direction of fibers are usually smaller than in transverse 
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direction resulting high inter-laminar stresses at the interfaces. Therefore, there is a need to 

predict the inter-laminar transverse shear stresses accurately.  

Several theories exist in literature for the flexural analysis of composites structures. They 

have been extended to thermoelastic problems as well. Classical laminate beam theory (CBT) 

presented by (Tanigawa et al. 1989) is based on the Euler-Bernoulli hypothesis and leading to 

inaccurate results for moderately thick beams, because transverse shear strains are neglected. The 

first order shear deformation theory of (Mindlin, 1951) when applied to beams is known as 

Timoshenko beam theory (TBT). The transverse shear strains are assumed to be constant along 

the thickness of laminates; hence transverse shear stresses remain constant along the thickness of 

laminates and stress-free boundary conditions are not satisfied at the top and bottom of the 

laminates. Further, it requires a shear correction factor to obtain the correct stresses and 

displacements. In the present work, a shear correction factor of 5/6 has been used.  

A higher order shear deformation theory takes into account transverse shear strains and 

obviates the need of shear correction factor. A non-constant polynomial expression for the out of 

plane displacement is considered by (Kant et al. 1997) with a higher order theory. An exponential 

function has also been used by (Soldatos et al. 1997) with higher order theory. All these studies 

have a displacement-based approach. On the basis of mixed formulations, other approaches are 

formulated and presented by (Carrera, 2000b). A finite element model is also applied to beams 

by using higher order shear deformation theory and presented by (Kant et al. 1988). A 

thermoelastic solution of linear uncoupled thermo-elasticity has been presented for certain 

problems of flexure of composite laminates by (Bhaskar et al. 1996). Both mechanical and 

thermo-mechanical tests for thin and thick beams are presented by (Philippe et al. 2009) in order 

to evaluate the capacity of newly developed three node beam finite elements including transverse 

and normal effects in the analysis of laminated beams. This work focuses on the necessity to take 

into account the transverse normal stress, especially for thick beams. Within the framework of 

thermal problems, different approaches have been developed; including mixed formulations 

presented by Tessler et al. (2001) and displacement based developed by Ali et al. (1999).  

The higher order shear deformation theories with sinusoidal functions in terms of thickness 

coordinates to include thickness effect are termed as trigonometric or sinusoidal shear 

deformation theories. Trigonometric shear deformation theory has been developed by Touratier 

(1991). Various problems of plates have been investigated including bidirectional bending when 

acted upon by mechanical and thermal load. Thermal stresses and displacements for orthotropic, 

antisymmetric and symmetric laminates subjected to nonlinear thermal load using trigonometric 

shear deformation theory have been presented by Ghugal et al. (2013). This paper includes 

bidirectional bending of plates. A closed form solution to assess multilayered plate theories for 

various thermal stress problems is presented by (Carrera et al. 2004). This work is the further 

development of two-dimensional modelling in thermal stress analysis of multilayered composite 

plates. Various equivalent single layer and layerwise theories for laminated plates subjected to 

mechanical load are critically discussed by Ghugal et al. (2002). An assessment of mixed and 

classical theories for the thermal stress analysis of orthotropic multilayered plates has been 

presented by Carrera, (2000a). 

However, it has been observed from the literature review that the trigonometric shear 

deformation theory is not fully explored for the one-dimensional analysis of laminated composite 

beams subjected to combined thermal and mechanical loadings. Hence, a sinusoidal shear 

deformation theory (SSDT) is applied for the flexural analysis of laminated composite beams 

subjected to combined uniformly distributed thermo-mechanical loadings and the results are 

presented for the first time in the literature.  

The aim of this paper is to develop a mathematical model of sinusoidal shear deformation 

theory including shear deformation effect, to obtain accurate flexural response of laminated 
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composite beams subjected to combined thermal and mechanical loadings. This is an equivalent 

single layer theory for the evaluation of displacements and inter-laminar stresses in composite 

laminated beams. The necessity to consider the transverse shear stress especially for thick beam 

in thermal conditions has been studied in this work.  

The results of displacement and stresses obtained by sinusoidal shear deformation theory 

(SSDT) are compared with those of classical beam theory (CBT), Timoshenko beam theory 

(TBT), and other refined theories. The results of pure thermal load are compared with exact 

elasticity solutions.  

2. Mathematical formulation 

The mathematical formulation of present sinusoidal shear deformation theory for laminate 

composite beam is based on certain kinematical and physical assumptions. The governing 

equations and boundary conditions are obtained by using principal of virtual work. The Navier 

solution has been employed to develop the analytical solution for the simply supported boundary 

conditions.  

2.1 A laminated beam under consideration:  The geometry of beam is as shown below. 

 

Fig. 1. Geometry of a laminated beam. 

Let us consider a beam occupying the domain in Cartesian coordinate  , ,O x y z . 

 0 , 0 ,
2 2

h h
x a y b z         (1) 

The beam has a rectangular uniform cross section of height h  and width b  and is assumed to be 

straight. The beam is made up of N  number of layers and each layer may be assumed to be made 

up of orthotropic material. The width b  along y  axis is very small as compared to length a  

along x  axis. The z  direction is assumed to be positive in the downward direction. The upper 
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surface of laminated beam  2z h   is subjected to thermal load  ,T x z  and transverse 

mechanical load  q . 

2.2 Assumptions made in mathematical formulation 

The present sinusoidal shear deformation theory is based on following assumptions:  

1. It is assumed that, the width of the beam b  along y  axis is very small as compared to length 

a  along x  axis while it is simply supported at its edges 0x   and x a . 

2. The displacement component u  is the inplane displacement along x  axis and w  is the 

transverse displacement in z  direction. 

3. Since the theory has been applied to laminated beam, the displacement along y direction ( v

) is assumed to be zero. 

4. Since, a b  we can state, 0
y

 
 

 
 and

d

x x

 
 

  
.  

5. The axial displacement u  in x  direction has three components namely extension, bending 

and shear. 

 
0

u u u u
b s

     (2) 

a) 0u  is the middle surface displacement in x direction known as extension component. 

b)  The bending component bu  is assumed to be analogous to the displacement given by 

classical laminate theory. 

 
 w x

u z
b x


 


  (3) 

c) The shear component is assumed to be sinusoidal in nature with respect to thickness 

coordinate, so that maximum shear stress occurs at neutral plane and zero at top and bottom 

surfaces of the beam. 

  sin
h z

u x
s h





   (4) 

6. The transverse displacement w in z direction is assumed to be a function of x coordinate 

only. 

  w w x   (5) 

7. The laminated beams are subjected to pure thermal load as well as a combination of 

uniformly distributed thermal and mechanical load. 

8. The body forces are ignored in the thermo-mechanical analysis of laminated beam. 

The assumptions made in this theory for 1D thermal flexural analysis of cross ply laminated 

beams are deduced from the 2D trigonometric shear deformation theory developed by Ghugal 

and Kulkarni (2013a, b) for thermoelastic analysis of laminated plates.  The sinusoidal function 

introduced into the kinematics of theory is strongly based on theory of elasticity.  
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3. Kinematics of sinusoidal shear deformation theory 

Based on the before mentioned assumptions the kinematics of sinusoidal shear deformation 

theory (SSDT) for beam is expressed as follows:  

      , sin
0

w h z
u x z u x z x

x h







  


  (6) 

    ,w x z w x   (7) 

Here,  ,u x z  is the axial displacement in x  direction and  w x  is the transverse displacement 

in the z  direction.  0u x  is the centre line displacement and is the function of x  only. The shear 

slope   is also a function of x  only. The trigonometric function in thickness coordinate 

considers the shear deformation effects and the displacement field of the theory represents a better 

kinematics. The kinematics of the theory enforces to satisfy shear stress free boundary conditions 

on top and bottom surfaces of the beam with realistic variation across the thickness.     

3.1 Strain-displacement relationship  

Within the framework of linear theory of elasticity, the normal and shear strains are obtained as 

follows.  

 
u

x x






  (8) 

 
u w

zx z x


 
 
 

  (9) 

3.2 Constitutive relations  

The thermo-elastic stress-strain relationships for laminated beam can be written as; 

 
0

11

0
55

TQ
x x x

Q
zx zxk kk

  

 

           
        

  (10) 

where, 
( )k

Q
ij

 are the reduced stiffness coefficients as given below. 

 
   

( )
( ) ( ) ( )1 ,
11 55 13

1
12 21

k
E

k k k
Q Q G

k k
 

 
 
 

 

  (11) 

where, E  is Young’s modulus, G  is shear modulus, 
ij

 are Poisson’s ratios  and 
x

  is the 

coefficient of thermal expansion in x  direction. 

3.3 Temperature distribution 

The temperature distribution across the thickness of laminated beam is assumed to be in the form 

as given below. 



Journal of the Serbian Society for Computational Mechanics / Vol. 12 / No. 1, 2018 

 
57 

    
2

,
0

T x z zT x
h

   (12) 

In the above equation, T  is the temperature change from a reference state which is a function of 

x  and z . The thermal load 0T  is linearly varying across the thickness of laminated beam and is 

a function of x . The temperature distribution through the thickness of laminated beam is as 

shown in figure 2.  

 

Fig. 2. Temperature distribution through the thickness of laminated beam. 

4. Governing equations and boundary conditions 

The governing equations and boundary conditions are derived by using principle of virtual work. 

The principal of virtual work states that of all possible displacements that satisfy the given 

conditions of constraints, that system which is associated with equilibrium makes the value of 

sum of potential energy of the prescribed external forces and the potential strain energy of the 

internal stresses maximum and in the case of stable equilibrium a minimum. The principle of 

virtual work when applied to the laminated beam leads to: 

  
2

0

0 0

2

h

a a
dx dz q wdx

x x zx zx
h

        



  (13) 

The governing equations of equilibrium can be derived from the above equation (13) by 

integrating the displacements gradients in i  by parts and setting the coefficients of  0 ,u w   

and   to zero separately. The symbol   denotes variational operator and collecting the 

coefficients of  0 ,u w   and   one can obtain the governing equations as follows.  
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u Tw
u A B SB TB
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


  
    
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  (14) 

 

3 24 3
0 0:

11 11 11 114 3 3 2

u Tw
w D B S TD q

x x x x




  
   
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  (15) 

 

23 2
0 0: 0

11 11 55 11 113 2 2

u Tw
S SS C SB TS

xx x x


 

  
    

  
  (16) 

The associated boundary conditions are as follows:  

Along edges 0 and x x a    

 

2 3 2
0 0 or  is prescribed.

11 11 112 3 2

u w
B D S w

x x x

  
  

  
  (17) 

 
2

0 0  or   is prescribed. 
11 11 11 11 02

u w dw
B D S TD T

x x dxx

  
    

 
  (18) 

 
2

0 0 or   is prescribed.
11 11 11 11 02

u w
SB S SS TS T

x xx




  
   

 
  (19) 

 
2

0 0  or  is prescribed.
11 11 11 11 0 02

u w
A B SB TB T u

x xx

  
   

 
  (20) 

where the stiffness coefficients , ,.... A B
ij ij

etc are defined as follows:    

      
1 2, , 1, ,

11 11 11 11
1

z
N k k

A B D Q z z dz

k z
k


  



  (21) 

    1
, , sin 1, , sin

11 11 11 11
1

z
N k k h z h z

SB S SS Q z dz
h hk z

k

 

 

  
    

 

  (22) 

      1 2, , , , sin
11 11 11 11

1

z
N k k h z

TB TD TS Q z z dz
x hk z

k






  
    

 

  (23) 

 
 1 2cos

55 55
1

z
N k k z

C Q dz
hk z

k


  



  (24) 

For orthotropic and three-layer symmetric laminated beam , , 0 and 0
11 11 11 0

B TB SB u  .   
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5. Application of theory 

To assess the performance of the sinusoidal shear deformation theory when applied to laminated 

beams subjected to thermal load and combined thermo-mechanical load, a simply supported 

orthotropic (00), antisymmetric (00/900) and symmetric (00/900/00) cross ply laminated beams are 

considered.  The material properties of high modulus Graphite-Epoxy orthotropic layer are taken 

from Philippe et al. (2009) and Bhaskar et al. (1996). The material properties are as follows:   

 
172.4GPa, 6.895 GPa, 3.448 GPa,

1.379 GPa, 0.25, 1125
12

E E G
L T LT

G
TT T L

  

  

  
  (25) 

where L  refers to the fiber direction, and T  refers to the transverse direction. and L T   are the 

thermal expansion coefficients in the fiber and normal direction. 

To assess the effectiveness of the present theory, numerical investigations have been carried 

out for following examples with different configurations and the material properties as mentioned 

above.  

Example 1: A single layer orthotropic beam (00) subjected to sinusoidal and uniformly 

distributed pure thermal load is considered for thermal bending analysis (Table 1). 

Example 2: A two-layer antisymmetric laminated beam (00/900) subjected to sinusoidal and 

uniformly distributed pure thermal load is taken in to consideration for thermal analysis (Table 

2). 

Example 3: A three-layer symmetric laminated beam (00/900/00) subjected to sinusoidal and 

uniformly distributed pure thermal load is considered for thermal flexural analysis (Table 3). 

Example 4: An orthotropic beam (00) subjected to uniformly distributed thermal load in 

combination with uniformly distributed transverse mechanical load is taken in to consideration 

for thermo-mechanical bending analysis (Table 4). 

Example 5: A two-layer antisymmetric laminated beam (00/900) subjected to uniformly 

distributed thermal load in combination with uniformly distributed transverse mechanical load is 

taken into consideration for thermo-mechanical flexural analysis (Table 5). 

Example 6: A three-layer symmetric laminated beam (00/900/00) subjected to uniformly 

distributed thermal load in combination with uniformly distributed transverse mechanical load is 

taken into consideration for thermo-mechanical flexural analysis (Table 6).    

6. Navier solution  

Following are the boundary conditions used for simply supported laminated composite beam 

along the edges 0and x x a  .  

0, 0, 0, 0sw M N M
x x x

     

Navier’s solution procedure is adopted to compute displacement variables. The following is the 

solution forms for      0 , and u x w x x  that satisfies the boundary conditions exactly. 

   cos
0

1.3.5

m x
u x u

m am

  
   

 

  (26) 
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   sin

1.3.5

m x
w x w

m am

  
   

 

  (27) 

   cos

1,3,5

m x
x

m am


 

  
   

 

  (28) 

where, , and  u w
m m m

  are the unknown coefficients to be determined. The thermal and 

transverse mechanical loads are expanded in single Fourier sine series as given below. 

 

 

 

sin
0 0

1

sin

1

m x
T x T

m am

m x
q x q

m am





  
   

 

  
   

 

  (29) 

where m is the positive integer and  0mT  and mq  are the coefficients of Fourier series expansions, 

respectively for thermal and transverse mechanical loads as follows:  

 

for sinusoidal thermal load, 1
0

40 0 for uniform thermal load, 1,3,5....

4
0    for uniformly distributed load, 1,3,5...

T m

T Tm
m

m

q
q m
m m








 
 



 


  (30) 

 In which 0T  and 0q  are the intensities of thermal and mechanical load respectively. Substitution 

of equations (26), (27), (28) and (29) in to governing equations (14), (15) and (16) leads to the 

set of algebraic equations which can be written in matrix form as follows. 

 

2 2 3 3 2 2
2

11 11 112 3 2 0 11

03 3 4 4 3 3 2 22

11 11 11 0 113 4 3 2

2 2 3 3 2 2 2

0 1111 11 11 552 3 2

m m m mA B SB T TB
ma a a ha

u
m

m m m m
B D S w T TD q

m m m
a a a ha

mmm m m T TSSB S SS C m ha
a a a

   

   


  

 
     

    
        

       
    
      

       
 




  (31) 

Solving the above set of algebraic equations, the values of 
,  and 

0
u w

m m m


 can be obtained. 

Having obtained the values of 
, and 

0
u w

m m m


 one can then calculate all the thermal 

displacements and stresses within the beam by using equations (6), (7), (8), (9) and (10). 

Transverse shear stresses are obtained by integrating equilibrium equations 
 EE

zx


 of theory of 

elasticity with respect to the thickness coordinate, satisfying shear stress free conditions at the top 

and bottom surface of the laminated beam and which ascertains the continuity of transverse shear 

stress at the layer interface. This relation can be expressed as given below. 
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1

2

z
kEE x dz C

zx xh





 




 

The constant of integration can be obtained from appropriate boundary conditions. It is expected 

that this relation will produce accurate transverse shear stresses.  

6.1 Numerical results 

In this paper, displacements and stresses are obtained for single layer orthotropic beam (00), two-

layer antisymmetric beam (00/900) and three-layer symmetric laminated beam (00/900/00) with 

simply supported boundary conditions and subjected to pure thermal load as well as combined 

thermo-mechanical loads for various aspect ratios  S . The numerical results for single layer 

orthotropic beam (00) subjected to pure thermal load are presented in following normalized forms 

for the purpose of discussion (Table 1).  

 0, , ,0 , , , 0,0
22 2 2 2

0 0 00

h u a hw a h x zxu w
x zxT a E T E TT aL L T T LL

 
 

  

     
         

     
 

Sinusoidal Thermal load (00) 

Source Model S  u  w  
x  EE

zx  

Present SSDT 4 0.3183 0.2026 0.0000 4.2951 

Present TBT 4 0.3183 0.2026 0.0000 4.2951 

Present CBT 4 0.3183 0.2026 0.0000 4.2951 

Present SSDT 10 0.3183 0.2026 0.0000 1.8653 

Present TBT 10 0.3183 0.2026 0.0000 1.8653 

Present CBT 10 0.3183 0.2026 0.0000 1.8653 

Present SSDT 100 0.3183 0.2026 0.0000 0.1954 

Present TBT 100 0.3183 0.2026 0.0002 0.1954 

Present CBT 100 0.3183 0.2026 0.0000 0.1954 

Uniformly Distributed Thermal load (00) 

Present SSDT 4 0.4899 0.2500 0.0000 54.6875 

Present TBT 4 0.4899 0.2500 0.0000 54.6875 

Present CBT 4 0.4899 0.2500 0.0000 54.6875 

 

Present SSDT 10 0.4899 0.2500 0.0000 23.7500 

Present TBT 10 0.4899 0.2500 0.0000 23.7500 

Present CBT 10 0.4899 0.2500 0.0000 23.7500 

       

Present SSDT 100 0.4899 0.2500 0.0000 2.4875 

Present TBT 100 0.4899 0.2500 0.0002 2.4875 

Present CBT 100 0.4899 0.2500 0.0000 2.4875 

Table 1. Normalized displacements and stresses in single layer orthotropic beam (00) subjected 

sinusoidal and uniformly distributed thermal load (Example 1) 
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The numerical results for two-layer antisymmetric laminated beam (00/900) subjected to pure 

thermal load are presented in following normalized forms for the purpose of comparison and 

discussion (Table 2).  

 0, , ,0 , , , 0,0
22 2 2 2

0 0 00

h u a hw a h x zxu w
x zxT a E T E TT aL L T T LL

 
 

  

     
         

     
 

Sinusoidal Thermal load (0/90) 

Source Model S  u  w  
x  EE

zx  

Present SSDT 4 101.3046 38.1550 2123.2790 134.8439 

Present TBT 4 101.4938 41.2759 2188.1140 135.6736 

Present CBT 4 101.4844 41.2721 2188.1140 135.6737 

Philippe et al. 

(2009) 

SinRef-

7p 

4 155.1000 42.6520 2044.1000 - 

Philippe et al. 

(2009) 

SinRef-

6p 

4 156.6000 41.3020 2075.4000 - 

Philippe et al. 

(2009) 

SinRef-c 4 153.3900 45.8820 1774.5000 - 

Philippe et al. 

(2009) 

exact 4 155.3600 42.8890 1994.7000 - 

       

Present SSDT 10 101.4551 40.7663 2177.5280 54.2153 

Present TBT 10 101.4939 41.2759 2188.1160 54.2695 

Present CBT 10 101.4845 41.2721 2188.1150 54.2695 

Philippe et al. 

(2009) 

SinRef-

7p 

10 114.2200 43.2850 2142.4000 - 

Philippe et al. 

(2009) 

SinRef-

6p 

10 114.3500 43.0230 2150.1000 - 

Philippe et al. 

(2009) 

SinRef-c 10 111.8800 42.1910 2115.3000 - 

Philippe et al. 

(2009) 

exact 10 114.1800 43.2930 2129.0000 - 

       

Present SSDT 100 101.4841 41.2708 2188.0100 5.4269 

Present TBT 100 101.4928 41.2754 2188.0830 5.4270 

Present CBT 100 101.4845 41.2721 2188.1150 5.4270 

(Philippe et al. 

2009) 

SinRef-

7p 

100 104.1800 43.1520 2181.1000 - 

(Philippe et al. 

2009) 

SinRef-

6p 

100 104.1800 43.1490 2181.2000 - 

(Philippe et al. 

2009) 

SinRef-c 100 101.6000 41.2860 2199.8000 - 

(Philippe et al. 

2009) 

exact 100 104.1900 43.1550 2171.7000 - 

Uniformly Distributed Thermal load (0/90) 

Present SSDT 4 155.2392 47.7309 2196.4270 1464.1830 

Present TBT 4 156.1982 50.9189 2118.6360 1727.4510 

Present CBT 4 156.1837 50.9142 2118.6370 1727.4510 

       

Present SSDT 10 155.9150 50.4136 2171.3000 640.9235 
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Present TBT 10 156.1983 50.9189 2118.6390 690.9801 

Present CBT 10 156.1838 50.9142 2118.6370 690.9805 

       

Present SSDT 100 156.1800 50.9140 2119.9720 69.0068 

Present TBT 100 156.1968 50.9183 2118.6020 69.0981 

Present CBT 100 156.1838 50.9142 2118.6390 69.0981 

Table 2. Normalized displacements and stresses in antisymmetric laminated cross ply beam 

subjected sinusoidal and uniformly distributed thermal load (Example 2) 

The numerical results for three-layer symmetric laminated beam (00/900/00) subjected to pure 

thermal load are presented in following normalized forms for the purpose of discussion (Table 

3). 

0, , ,0 , , , 0,
22 2 2 2 6

0 0 00

h u a hw a h hx zxu w
x zxT a E T E TT aL L T T LL

 
 

  

       
            

       
 

Sinusoidal Thermal load (0/90/0) 

Source Model S  u  w  
x  EE

zx  

Present SSDT 4 0.7606 0.1499 34.7579 7.8886 

Present TBT 4 0.8679 0.5525 43.1644 7.6074 

Present CBT 4 0.8679 0.5525 43.1644 7.6074 

(Philippe et al. 2009) SinRef-c 4 0.2608 0.2332 4.46270 - 

(Philippe et al. 2009) exact 4 7.4696 3.6156 281.110 - 

Present SSDT 10 0.8499 0.4850 41.7541 3.0618 

Present TBT 10 0.8679 0.5525 43.1644 3.0430 

Present CBT 10 0.8679 0.5525 43.1644 3.0430 

(Philippe et al. 2009) SinRef-c 10 0.7346 0.3762 32.9600 - 

(Philippe et al. 2009) exact 10 5.0095 1.8934 87.4100 - 

       

Present SSDT 100 0.8677 0.5518 43.1501 0.3043 

Present TBT 100 0.8679 0.5525 43.1640 0.3043 

Present CBT 100 0.8679 0.5525 43.1644 0.3043 

(Philippe et al. 2009) SinRef-c 100 0.8665 0.5506 43.3780 - 

(Philippe et al. 2009) exact 100 4.4494 2.8197 43.3100 - 

Uniformly Distributed Thermal load (0/90/0) 

Present SSDT 4 0.9268 0.2572 45.9882 143.4607 

Present TBT 4 1.3357 0.6816 41.7938 96.8608 

Present CBT 4 1.3357 0.6816 41.7938 96.8608 

       

Present SSDT 10 1.2048 0.6139 45.6244 50.0257 

Present TBT 10 1.3357 0.6816 41.7938 38.7443 

Present CBT 10 1.3357 0.6816 41.7938 38.7443 

       

Present SSDT 100 1.3334 0.6809 41.9686 3.9060 

Present TBT 100 1.3357 0.6816 41.7933 3.8744 

Present CBT 100 1.3357 0.6816 41.7938 3.8744 

Table 3. Normalized displacements and stresses in symmetric laminated cross ply beam 

(0/90/0) subjected sinusoidal and uniformly distributed thermal load (Example 3) 
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The numerical results for single layer orthotropic beam (00) subjected to uniformly distributed 

combined thermo-mechanical load are presented in following normalized form for the purpose of 

discussion (Table 4).  

 
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 

 

Combined uniformly distributed thermo-mechanical load (00) 

Source Model S  u  w  
x  EE

zx  

Present SSDT 4 0.0382 2.1801 0.7071 11.5881 

Present TBT 4 0.0382 4.0378 0.7058 11.5884 

Present CBT 4 0.0382 2.1738 0.7058 11.5884 

       

Present SSDT 10 0.0148 0.8804 0.7438 2.8984 

Present TBT 10 0.0148 1.1739 0.7425 2.8988 

Present CBT 10 0.0148 0.8741 0.7425 2.8988 

       

Present SSDT 100 0.0101 0.6296 0.7503 0.8301 

Present TBT 100 0.0100 0.6305 0.7499 0.8302 

Present CBT 100 0.0100 0.6275 0.7499 0.8302 

Table 4. Normalized displacements and stresses in orthotropic beam (00) subjected to uniformly 

distributed thermal load in combination with uniformly distributed transverse mechanical load 

(Example 4) 

The numerical results for two-layer antisymmetric laminated beam (00/900) subjected to 

uniformly distributed combined thermo-mechanical load are presented in following normalized 

form for the purpose of discussion (Table 5).  
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Combined uniformly distributed thermo-mechanical load (00/900) 

Source Model S  u  w  
x  EE

zx  

Present SSDT 4 46.8069 301.9622 131.5816 292.6084 
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Present TBT 4 47.0903 322.2385 126.6506 345.2234 

Present CBT 4 47.0903 319.5756 126.6507 345.2236 

       

Present SSDT 10 10.1300 54.0477 23.6874 57.9713 

Present TBT 10 10.1471 54.6229 23.1068 62.5132 

Present CBT 10 10.1471 54.1946 23.1068 62.5133 

       

Present SSDT 100 0.1854 3.8426 2.3639 0.3532 

Present TBT 100 0.1854 3.8433 2.3631 0.3540 

Present CBT 100 0.1854 3.8391 2.3631 0.3540 

Table 5. Normalized displacements and stresses in antisymmetric laminated beam (00/900) 

subjected to uniformly distributed thermal load in combination with uniformly distributed 

transverse mechanical load (Example 5) 

The numerical results for three-layer symmetric laminated beam (00/900/00) subjected to 

uniformly distributed combined thermo-mechanical load are presented in following normalized 

form for the purpose of discussion (Table 6).  
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Combined uniformly distributed thermo-mechanical load (00/900/00) 

Source Model S  u  w  
x  EE

zx  

Present SSDT 4 0.0721 4.9820 3.8974 29.1846 

Present TBT 4 0.0883 7.2160 3.1903 19.9780 

Present CBT 4 0.0883 4.8776 3.1903 19.9780 

       

Present SSDT 10 0.0236 1.7184 1.2989 5.2092 

Present TBT 10 0.0235 1.7044 1.1837 4.2106 

Present CBT 10 0.0235 1.3283 1.1837 4.2106 

       

Present SSDT 100 0.0105 0.6579 0.7825 0.7881 

Present TBT 100 0.0105 0.6586 0.7817 0.7881 

Present CBT 100 0.0105 0.6549 0.7817 0.7881 

Table 6. Normalized displacements and stresses in symmetric laminated beam (00/900/00) 

subjected to uniformly distributed thermal load in combination with uniformly distributed 

transverse mechanical load (Example 6) 
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Fig. 3. Normalized axial displacement  u  through the thickness of orthotropic beam (00) 

subjected to uniformly distributed thermal load aspect ratio 4 

 

Fig. 4. Normalized transverse shear stress  zx  through the thickness of orthotropic beam (00) 

subjected to uniformly distributed thermal load and obtained by equilibrium equation for aspect 

ratio 4 
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Fig. 5. Normalized axial displacement  u  through the thickness of two layer laminated beam 

for aspect ratio 4 under sinusoidal thermal load. 

 

Fig. 6. Normalized normal stress  x  through the thickness of two-layer laminated beam for 

aspect ratio 4 under sinusoidal thermal load 
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Fig. 7. Normalized transverse shear stress  zx  through the thickness of two-layer laminated 

beam subjected to sinusoidal thermal load and obtained by equilibrium equation for aspect ratio 

4 under sinusoidal thermal load. 

 

Fig. 8. Normalized transverse shear stress  zx  through the thickness of two-layer laminated 

beam subjected to uniformly distributed thermal load and obtained by equilibrium equation for 

aspect ratio 10 

 

-200.00 -100.00 0.00 100.00 200.00

-0.50

-0.25

0.00

0.25

0.50

SSDT (Present)

TBT (Present)

CBT (Present)

zx

z/h

-1000.00 -500.00 0.00 500.00 1000.00

-0.50

-0.25

0.00

0.25

0.50

z/h

SSDT (Present)

TBT (Present)

CBT (Present)

zx



Journal of the Serbian Society for Computational Mechanics / Vol. 12 / No. 1, 2018 

 
69 

 

Fig. 9. Normalized axial displacement  u  through the thickness of three-layer laminated beam 

(0/90/0) subjected to uniformly distributed thermal load for aspect ratio 4 

 

Fig. 10. Normalized normal stress  x  through the thickness of three-layer laminated beam 

(0/90/0) subjected to uniformly distributed thermal load aspect ratio 4 

-2.00 -1.00 0.00 1.00 2.00

-0.50

-0.25

0.00

0.25

0.50

z/h

u

SSDT (Present)

TBT (Present)

CBT (Present)

-400.00 -200.00 0.00 200.00 400.00

-0.50

-0.25

0.00

0.25

0.50

z/h

x

SSDT (Present)

TBT (Present)

CBT (Present)



S. K. Kulkarni et al.: Flexural Analysis of Composite Laminated Beams Subjected to Thermo-Mechanical Loads 70 

 

Fig. 11. Normalized transverse shear stress  zx  through the thickness of three-layer laminated 

beam (0/90/0) subjected to uniformly distributed thermal load and obtained by equilibrium 

equation for aspect ratio 10 

 

Fig. 12. Normalized axial displacement  u  through the thickness of orthotropic beam (00) 

subjected to combined uniformly distributed thermo-mechanical load for aspect ratio 4 
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Fig. 13. Normalized normal stress  x  through the thickness of orthotropic beam (00) 

subjected to combined uniformly distributed thermo-mechanical load for aspect ratio 4 

 

Fig. 14. Normalized transverse shear stress  zx  through the thickness of orthotropic beam (00) 

subjected to combined uniformly distributed thermo-mechanical load for aspect ratio 4 
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Fig. 15. Normalized axial displacement  u  through the thickness of two-layer laminated beam 

(0/90) subjected to combined uniformly distributed thermo-mechanical load for aspect ratio 4 

  

Fig. 16. Normalized axial stress  x  through the thickness of two-layer laminated beam (0/90) 

subjected to combined uniformly distributed thermo-mechanical load for aspect ratio 4 
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Fig. 17. Normalized transverse shear stress  zx  through the thickness of two-layer laminated 

beam (0/90) subjected to uniformly distributed thermal load in combination with uniformly 

distributed transverse mechanical load for aspect ratio 4 

 

Fig. 18. Dimensionless axial displacement  u  through the thickness of three-layer laminated 

beam (0/90/0) subjected to uniformly distributed thermal load in combination with uniformly 

distributed transverse mechanical load for aspect ratio 4. 
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Fig. 19. Normalized normal stress  x  through the thickness of three-layer laminated beam 

(0/90/0) subjected to uniformly distributed thermal load in combination with uniformly 

distributed transverse mechanical load for aspect ratio 10 

 

Fig. 20. Normalized transverse shear stress  zx  through the thickness of three-layer laminated 

beam (0/90/0) subjected to uniformly distributed thermal load in combination with uniformly 

distributed transverse mechanical load and obtained by equilibrium equation for aspect ratio 10 
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7. Discussion of results  

Axial displacement  u :  

Single layer orthotropic beam, 00:  

It has been observed that, the axial displacements obtained by sinusoidal shear deformation 

theory, Timoshenko beam theory and classical beam theory are identical irrespective of the aspect 

ratios in case of pure thermal load. The through thickness variation of axial displacement for 

single layer orthotropic beam under pure thermal load is shown in Fig. 3 for aspect ratio 4. The 

combined thermo-mechanical loads found to yield different values of this displacement with 

different aspect ratios as shown in Table 4. The through thickness variation of axial displacements 

under combined thermo-mechanical loads is shown in Fig.  12 for aspect ratio 4.       

Two-layer 00/900 beam: 

The results of axial displacement along x  axis obtained by sinusoidal shear deformation theory 

(SSDT) are in good agreement with the results obtained by Timoshenko beam theory (TBT) and 

classical beam theory (CBT) for aspect ratios 4, 10 and 100 (Table 2). The percentage error when 

compared with exact elasticity solution reduces as aspect ratio changes from 4 to 10 and found to 

be 11.14 % for aspect ratio 10. Further, this percentage error reduces to 2.59 % for aspect ratio 

100. The through thickness variation of axial displacement under sinusoidal thermal load is as 

shown in Fig. 5 for aspect ratio 4. The results of axial displacement obtained by sinusoidal shear 

deformation theory (SSDT) for aspect ratio 4 under uniformly distributed thermal load increases 

slightly when aspect ratio changes from 4 to 10, whereas the results obtained by TBT and CBT 

are independent of aspect ratio. The shear deformation effect has been observed in the result 

shown by SSDT. The results of axial displacement obtained by SSDT, TBT and CBT for aspect 

ratio 100 are in good agreement with each other. The effect of shear deformation has been 

observed when acted upon by combined thermo-mechanical loads as shown in Table 5. The 

through thickness variation of axial displacement under combined thermo-mechanical loads is 

shown in Fig. 15 for aspect ratio 4 which shows slight deviation of SSDT as compared to TBT 

and CBT. 

Three-layer 00/900/00   beam:  

The results of axial displacement in three-layer laminated beam subjected to sinusoidal, uniformly 

distributed pure thermal load and combined thermo-mechanical loads are shown in Table 3 and 

Table 6, respectively. It has been observed that axial displacements obtained by Timoshenko 

beam theory and classical beam theory have identical values and are independent of aspect ratios, 

whereas the results of axial displacements obtained by sinusoidal shear deformation theory 

(SSDT) changes as aspect ratio changes from 4 to 100. The through thickness variation of axial 

displacements under pure thermal load and combined thermo-mechanical load is shown Figs. 9 

and 18 respectively. These figures show the realistic variation obtained by sinusoidal shear 

deformation theory (SSDT) indicating the shear deformation effect under pure thermal load and 

combined thermo-mechanical loads.     

Transverse displacement  w :  

Single layer orthotropic beam, 00: 

The results of transverse displacement for orthotropic beam under pure thermal load and 

combined thermo-mechanical loads are shown in Tables 1 and 4. In case of pure thermal load 

identical values are obtained by present theory, Timoshenko beam theory and classical beam 

theory for all aspect ratio. When orthotropic beam is acted upon by combined thermo-mechanical 
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load, the considerable difference has been observed in the results obtained by sinusoidal shear 

deformation theory and Timoshenko beam theory for aspect ratio 4 and 10.  

Two-layer 0/90 beam: 

The results of transverse displacement for two-layer antisymmetric laminated beam under pure 

thermal load are shown in Table 2. Transverse displacement along z direction obtained by 

sinusoidal shear deformation theory (SSDT) for aspect ratio 4 shows the effect of shear 

deformation, whereas the results of transverse displacement obtained by Timoshenko beam 

theory (TBT) and classical beam theory (CBT) do not show any change in the result even though 

aspect ratio changes from 4 to 10. The results of transverse displacement obtained by sinusoidal 

shear deformation theory (SSDT) are found to increase with increase in aspect ratio from 4 to 10 

and 10 to 100. The percentage error when the results obtained by SSDT are compared with exact 

solution of elasticity reduces from 11.03 % to 5.8 % when aspect ratio changes from 4 to 10. 

Further, for aspect ratio 100, transverse displacement obtained by SSDT, TBT and CBT are in 

good agreement with each other and percentage error reduces to 4.3 % when results obtained by 

SSDT are compared with exact solution of elasticity. The results of transverse displacement under 

combined thermo-mechanical loads are presented in the Table 5. The effect of transverse 

mechanical load on this displacement has been observed for aspect ratio 4 when obtained by 

sinusoidal shear deformation theory. 

Three-layer symmetric laminated beam 0/90/0: 

The results of transverse displacements for three-layer symmetric laminated beam under pure 

thermal load are shown in Table 3. It is observed that the results obtained by Timoshenko beam 

theory (TBT) and classical beam theory (CBT) have identical values for all aspect ratios whereas 

the transverse displacement obtained by present theory increases as aspect ratio increases from 4 

to 100, this shows the effect of shear deformation. The results of transverse displacement under 

combined thermo-mechanical loads are presented in Table 6. A considerable difference has been 

observed in the results of SSDT and TBT for aspect ratio 4 under combined thermo-mechanical 

load. This effect is due to additional mechanical load.  

Axial normal stress  x :  

Single layer orthotropic beam, 00: 

The results of axial normal stress for orthotropic beam when subjected to pure thermal load are 

presented in Table 1. It has been noted that the results obtained by present theory, Timoshenko 

beam theory and classical beam theory under pure thermal load are zero. That is no bending 

stresses are developed due to pure thermal load.  It means the effect of pure thermal load on 

bending of orthotropic beam is negligible. The effect of mechanical load has been observed when 

an orthotropic beam is acted upon by combined thermo-mechanical load as shown in Table 4. 

The through thickness variation of these stresses under combined thermo-mechanical load is 

shown in Fig. 13 for aspect ratio 4 indicating the effect of mechanical load alone.    

Two-layer 0/90 beam: 

The results of axial normal stress for two-layer laminated beam when subjected to pure thermal 

load are presented in Table 2. The results of axial normal stress for two-layer laminated beam 

obtained by sinusoidal shear deformation theory (SSDT) show 6.4 % error when compared with 

exact elasticity solution and the effect of shear deformation has been observed for aspect ratio 4. 

A notable change has been observed in the results obtained by SSDT when aspect ratio changes 

from 4 to 10 and 10 to 100, whereas the results obtained by TBT and CBT remains same even 

though aspect ratio changes from 4 to 10 and 10 to 100. It is noted that the results of axial normal 

stress evaluated by SSDT increase with increase in aspect ratio from 4 to 100 under sinusoidal 
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thermal load and decrease in this stress is observed in case of uniformly distributed thermal load 

with increase in aspect ratio from 4 to 100. The percentage error between sinusoidal shear 

deformation theory (SSDT) and exact elasticity solution for aspect ratio 10 is found to be 2.2 % 

which further decreases to 0.75 % for aspect ratio 100. The through thickness variation of normal 

stress across the thickness of laminated beam is as shown in Fig. 6 for aspect ratio 4 under 

sinusoidal thermal load with change in direction. These stresses under combined thermo-

mechanical load are presented in Table 5. The results of axial normal stress obtained by present 

theory show considerable difference when compared with the results of Timoshenko beam theory 

and classical beam theory for aspect ratio 4 under uniformly distributed combined thermo-

mechanical load. The through thickness variation of these stresses under combined thermo-

mechanical load is shown in Fig. 16 for aspect ratio 4. The variation of this stress shows the 

notable deviation from classical beam theory.   

Three-layer symmetric laminated 0/90/0 beam: 

The results of axial normal stress for three-layer symmetric laminated beams subjected to pure 

thermal load and combined thermo-mechanical load are presented in Tables 3 and 6 respectively. 

It is noted that the results obtained by Timoshenko beam theory and classical beam theory have 

identical values for all aspect ratios whereas axial normal stress obtained by sinusoidal shear 

deformation theory (SSDT) decreases as aspect ratio increases. The through thickness variation 

of theses stresses under pure thermal load and combined thermo-mechanical load are shown in 

Figs. 10 and 19 respectively. The effect of additional mechanical load has been observed in figure 

19.    

Transverse shear stress  EE

zx : 

Single layer orthotropic beam, 00: 

The results of transverse shear stress for orthotropic beam subjected to pure thermal load and 

combined thermo-mechanical loads are shown in Tables 1 and 4 respectively. Transverse shear 

stresses obtained by sinusoidal shear deformation theory, Timoshenko beam theory and classical 

beam theory have identical values for aspect ratios 4, 10 and 100. Through thickness variations 

of these stresses under pure thermal load and combined thermo-mechanical load are shown in 

Figs. 4 and 14, respectively.   

Two-layer 0/90 beam: 

The results of transverse shear stress for two-layer laminated beam subjected to pure thermal load 

are shown in Table 2 for various aspect ratios. Transverse shear stresses are obtained by 

integrating the equations of equilibrium from theory of elasticity. This satisfies the shear stress 

free boundary conditions on the top and bottom surfaces of laminated beam. The results of 

transverse shear stress obtained by sinusoidal shear deformation theory (SSDT) show shear 

deformation effect for aspect ratio 4 under sinusoidal and uniform thermal load. The through 

thickness variation of transverse shear stress is as shown in Figs. 7 and 8 under sinusoidal and 

uniform thermal loads, respectively. The continuity of stress has been observed at the interface 

with reversal of sign under sinusoidal and uniform thermal load. It is noted Timoshenko beam 

theory (TBT) and classical beam theory (CBT) underpredicts these stresses under uniform 

thermal load as shown in Fig. 8 for aspect ratio 10. The results of transverse shear stress for two-

layer laminated beam when subjected to combined thermo-mechanical loads are shown in Table 

5. It has been noted that transverse shear stresses obtained by TBT and CBT have identical values 

for aspect ratios 4 and 10, whereas the results of transverse shear stress obtained by SSDT show 

the effect of additional mechanical load. The through thickness variation of this stress is shown 

in Fig. 17 for aspect ratio 4 under combined thermo-mechanical loads.  
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Three-layer symmetric laminated 0/90/0 beam: 

The results of transverse shear stress for three-layer symmetric laminated beam subjected to pure 

thermal load are shown in Table 3. A considerable difference has been noted in the results 

obtained by SSDT, TBT and CBT for aspect ratios 4 and 10. The effect of shear deformation has 

been observed in the result obtained by SSDT for thick beam under pure thermal load. The shear 

stress free boundary conditions are observed. In case of combined thermo-mechanical loads, the 

effect of additional mechanical load has been observed and shown in Table 6 for various aspect 

ratios. The through thickness variation of theses stresses under pure thermal load and combined 

thermo-mechanical loads are shown in Figs. 11 and 20, respectively. In case of thermo-

mechanical load shear stress distribution deviates considerably with change in sign as compared 

to the distribution in case of pure thermal load.  

8. Conclusions  

In this article, a numerical model of sinusoidal shear deformation theory has been presented to 

investigate the thermal and thermo-mechanical response of single layer orthotropic, two-layer 

antisymmetric and three-layer symmetric cross ply laminated beams subjected to pure thermal 

load and combined thermo-mechanical loads for different aspect ratios. Special attention is 

pointed towards the transverse shear stresses, which plays an important role in thick beams. This 

study shows the necessity of taking in to account the transverse shear effect which cannot be 

neglected, particularly in thermal problems of laminated beams. It has been observed that the 

Timoshenko beam theory and classical beam theory underpredicts the transverse shear stress and 

overpredicts the transverse displacement for thick beam. The effect of shear deformation has been 

observed in the results of axial stress obtained by sinusoidal shear deformation theory for thick 

beam. Timoshenko beam theory and classical beam theory are observed to be suitable for thin 

laminated beams whereas sinusoidal shear deformation theory is suitable for thin as well as 

moderately thick laminated beam under pure thermal load and combined thermo-mechanical 

loads. Further, sinusoidal shear deformation theory obviates the need of shear correction factor 

and yields realistic displacements and stresses.  Hence, the equivalent single layer sinusoidal 

shear deformation theory is strongly suitable for thick laminated beams under thermal 

environment.   
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