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Abstract 

In this paper, we study the motion of a spherical particle in a rotating parabola using the 

Lagrangian method. As the first step, we construct the Lagrangian of the system, and then we 

obtain the Euler-Lagrange equations (i.e. equation of motion of the system). The obtained 

equation of motion is a homogenous second order equation. Finally, we solve this equation 

numerically using the ode45 code which is based on Runge-Kutta method. 
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1. Introduction 

In classical mechanics, the kinematics and dynamics of some simple systems including objects 

in free fall, simple harmonic motion, planetary motion, and the motion of charged particles in 

electromagnetic fields are investigated using either Newton's laws, or Lagrangian and 

Hamiltonian mechanics. Newtonian mechanics is based on vector quantities, i.e., mainly forces 

acting on the system, while Lagrangian and Hamiltonian Mechanics are based on a scalar quantity 

(i.e, kinetic and potential energies). The Lagrangian and Hamiltonian formalism play a central 

role in many areas such as: classical mechanics (Goldstein et al. 1980, Marion et al. 1988, Fowels 

et al. 2005), nonlinear systems and control theory (Murray 1997, Musielak et al. 2007). They are 

powerful tools that can be used to analyze the behavior of a vast class of systems, ranging from 

the motion of a single particle in a static potential field to complex many body systems (Goldstein 

et al. 1980, Marion et al. 1988, Fowels et al. 2005). 

As a result of applying Lagrangian (or Hamiltonian) mechanics to physical systems, a set of 

differential equations called Euler-Lagrange equation (equations of motions) are obtained. In 

principle, these equations have to be solved analytically to describe the motion of the system. 

Unfortunately, in many cases the obtained differential equations cannot be solved analytically. 

As a result, we have to seek for numerical methods.   

In literature, one can find many numerical methods and techniques that have been considered 

(Rheinboldt 1995, Porta et al. 2007, Atkinson et al. 2008). Techniques and methods used for 

mailto:h.khalilia@ptuk.edu.ps
mailto:drjasad@yahoo.com
mailto:j.asad@ptuk.edu.ps
https://www.sciencedirect.com/science/article/pii/S0960077907004699#!


Journal of the Serbian Society for Computational Mechanics / Vol. 12 / No. 1, 2018 

 
45 

numerical calculations (in numerical approach) are powerful because they help scientists in 

solving many kinds of differential equations without seeking for their analytical solutions. 

The outline of this paper is as follows. In Section 2, the physical description of the system is 

presented and the Lagrangian of the spherical particle in a rotating parabola is obtained. Section 

3 provides numerical solutions of the derived equations of motion for different initial conditions. 

Finally, we close the paper by conclusion in Section 4. 

2. Physical description of the model 

Let us consider a small spherical particle of mass ( m ) sliding along a surface that has a parabola 

shape defined by 2z Cs  (Marion et al. 1988, Hatami et al. 2014), where C  is constant and s   

is the usual cylindrical coordinate. The following assumptions are considered for the motion of 

the particle: the particle is in equilibrium, rotating in a circle of radius  , and finally, the surface 

is rotating about its vertical symmetry axis with angular velocity   , as indicated in Figure 1 

below (Marion et al. 1988, Hatami et al. 2014). 

 
Fig. 1. A spherical particle on a rotating parabolic surface 

 Below, we are going to apply the cylindrical coordinates system  , ,s z  to describe the motion 

of the particle. Thus, the kinetic and potential energy of the particle respectively read: 

  1 2 2 2 2 .
2

T m s s z     (1) 

 V mgz   (2) 

Our system considered here obeys the following constraints: 

 2z Cs   (3) 

 t    (4) 

and the derivatives of the these constraints are: 

 2z Css   (5) 
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     (6) 

As a result, the Lagrangian of the system can be expressed as: 

  1 2 2 2 2 2 2 24
2

L T V m s C s s s mgCs        (7) 

Notice here that the Lagrangian has one degree of freedom, i.e., s . This results from the constraint 

equations.  

Our final step in this section is obtaining the equation of motion. So, applying our Lagrangian (7) 

to the following equation 0
L d L

q dt q

 
 

 
, with q s  we get the following equation of motion 

(i.e. Euler-Lagrange equation) 

 2 2 2 2 24 4 0s C ss C ss s      (8) 

Where we have used 2 22gC     (Nayfeh et al. 1979). 

Now, our main aim in the next sections is to obtain a numerical solution for Eq. (8) defined above.  

3. Numerical solution method  

One of the most celebrated methods for the numerical solution of differential equations is the one 

originated by Runge 1895, and elaborated by Cun 1900, Rutia 1901, Nystrom 1925 and others. 

There are many variants of the Runge-Kutta method, but the most widely used one is the one 

described below. 

Given that 

  ' , .y f x y   (9) 

  y x y
n n

   (10) 

Then, one can compute in turn 

  , .
1

k hf x y
n n

   (11) 

 1, .
2 2 2

kh
k hf x y

n n

 
   
 
 

  (12) 

 2, .
3 2 2

kh
k hf x y

n n

 
   
 
 

  (13) 

  , .
2 3

k hf x h y k
n n

     (14) 

  1
2 2 .

1 1 2 3 46
y y k k k k
n n

    


  (15) 
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The ode45 code is based on an explicit Runge-Kutta (4, 5) (Dormand et al. 1980). That means 

the numerical solver ode45 combines fourth order method and fifth order method, both of which 

are similar to the classical fourth order Runge-Kutta method as discussed above (Houcque et al. 

2007). The modifled Runge-Kutta varies the step size, choosing the step size at each step in an 

attempt to achieve the desired accuracy. Therefore, the solver ode45 is suitable for a wide variety 

of initial value problems in practical applications. In general, ode45 is the best function to apply 

as a "first try" for most problems (Shampine 1994, Forsythe et al. 1977). Finally, for more details 

about Runge-Kutta method one can refer to Press et al. 1992. This text is written to help and teach 

scientists the method of numerical computing which is practical, efficient, and elegant. 

Below, we propose the numerical solution for the problem (8). We consider the initial conditions 

as follows 

  0 1
0

s s    (16) 

  0s s   (17) 

In Appendix A, we show the code we built to obtain the numerical results for Eq. (8). 

4. Simulation results and discussion 

 Figures 2- 5 show the radial position  s t  of the particle against the time. In Figs. 2- 4, we plot 

 s t for three different values of   (i.e., 1,1.5,2  ) and for each value of   we consider three 

values for the constant C  (i.e., 1,1.5, 2C  ). The position ( )s t of the particle looks like a 

damped harmonic oscillator, and this behavior is expected since the gravity pulls the particle 

downward and prevents it from oscillating in the same horizontal circular path. Actually, the 

particle moves in a spiral path with the radius  s t  decreasing with time. From Figs. 2- 4 it is 

clear that the position  s t  of the particle decreases faster as the constant C  for fixed  .  

 

Fig. 2. The radial position  s t  vs time for different values of the constant C , and for 1   
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Fig. 3. The radial position  s t  vs time for different values of the constant C , and for 2   

 

Fig. 4. The radial position  s t  vs time for different values of the constant C , and for 3   
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Fig. 5. The radial position  s t  vs time for different values of  , and for fixed value for C  

In Fig. 5, we fixed C and the position  s t is plotted against time for three different values of 

. It is clear from Fig. 5 that as   decreases the particle needs more time to complete one rotation. 

Hatami et al. 2014 used a different approach to obtain numerical results for the same system 

considered here. The advantage of our scheme used compared to that used by Hatami et al. (2014) 

is that we obtained numerical results for a long time interval [0, 30] while in Hatami et al. (2014) 

the time interval is short [0, 10]. There are nearly good agreements between the two methods. 

Finally, one should keep in mind that one has to be always wary of the obtained answers, because 

numerical solutions are only approximations, and under certain conditions, one may get chaotic 

results. 

5. Conclusion 

In this paper, ode45 code has been successfully applied in order to reach an accurate solution for 

the motion of a spherical particle on a rotating parabola. Radial position of the particle is depicted 

for the time period [0, 30]. As the main result from the present study, it is observed that the results 

of ode45 code are in excellent agreement with numerical ones obtained in Hatami et al. (2014), 

where they obtained results only for the time interval [0, 10]. So, this is the advantage point for 

the method used here.  

Furthermore, we assume that this method is efficient for finding analytical solutions in various 

science and engineering problems.  
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Appendix A 

clear al 

clc 

close all 

C=[1 1.5 2]; 

myOutput=[]; 

  

for i=1:length(C) 

     

syms s(t) 

c=C(i); 

ep=1; 

[V] = odeToVectorField( diff(s,t,2)+4*c^2*s^2*diff(s,t,2)+4*c^2*s^2*diff(s,t)+ep^2*s) 

M = matlabFunction(V,'vars', {'t','Y'}) 

  

figure(i) 

sol = ode45(M,[0 30],[1 -1]); 

fplot(@(t)deval(sol,t,1), [0 30]); 

  

xlabel('Time (Unit)') 

ylabel('s(t) (Unit)') 

title([ 's(t) vs. time at the constant C=' num2str(c)]) 

  

h = findobj(gca,'Type','line'); 

x=get(h,'Xdata'); 

y=get(h,'Ydata'); 

  

myOutput=[myOutput [{x'},{y'}]]; 

  

end 

  

x1 = myOutput{1}; 

x2 = myOutput{3}; 

x3 = myOutput{5}; 

y1 = myOutput{2}; 

y2 = myOutput{4}; 

y3 = myOutput{6}; 

figure 

plot(x1,y1,'-ok',x2,y2,'-DR',x3,y3,'-*G') 

xlabel('Time (Unit)') 

ylabel('s(t) (Unit)') 

title('s(t) vs. time at the constant C= 1, 1.5 , 2') 

legend('C=1','C=1.5','C=2') 

  

display('============ time vs. s(t) at C=1================') 

Result1=[x1,y1] 

display('============ time vs. s(t) at C=1.5================') 

Result2=[x2,y2] 

display('============ time vs. s(t) at C=2================') 

Result3=[x3,y3] 


