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Abstract 

In this paper, the Dufour and Soret effects on an unsteady MHD free convection flow of an 

incompressible, electrically conducting viscous Newtonian fluid past an infinite vertical porous 

plate have been studied, taking into account Viscous and Darcy resistance terms and constant 

permeability of the medium in the presence of radiation. The fluid is considered as a gray, 

absorbing-emitting but non-scattering medium. The Rosseland approximation in the energy 

equation is used to describe the radiative heat flux for optically thick fluid. The dimensionless 

governing equations for this investigation are solved numerically using Galerkin finite element 

method. The influence of the physical parameters involved in the problem under investigation on 

the velocity, temperature and concentration profiles within the boundary layer are presented 

through the graphs and tabulated results for the skin-friction coefficient, Nusselt and Sherwood 

numbers. 
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1. Introduction 

The problem of free convection heat and mass transfer flows through a porous medium under the 

influence of magnetic field have been attracting the attention of a number of researchers because 

of their possible applications in many branches of science and technology, such as in 

transportation of cooling of re-entry vehicles and rocket boosters, cross-hatching on ablative 

surfaces and film vaporization in combustion chambers. On the other hand, if the entire system 

involving the polymer extraction process is placed in a thermally controlled environment, then 

the thermal radiation effect is significant. Radiative free convective non-Newtonian fluid flows 

past a wedge embedded in a porous media were reported by Chamkha et al. (2004). 

Muthucumaraswamy and Janakiraman (2006) dealt with the MHD and radiation effects on 

moving isothermal vertical plate with variable mass diffusion. Shanker and Gnaneshwar (2007) 

analysed the radiation effects on MHD flow past an impulsively started infinite vertical plate 
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through a porous medium with variable temperature and mass diffusion. Ahmed and Sarmah 

(2009) presented thermal radiation effects on a transient MHD flow with mass transfer past an 

impulsively fixed infinite vertical plate. Thermal radiation effects on unsteady MHD free 

convection flow past a vertical plate with temperature dependent viscosity was investigated by 

Mahmoud (2009). Mukhopadhyay (2009) investigated the effects of thermal radiation on 

unsteady mixed convection flow and heat transfer over a porous stretching surface in porous 

medium. Rao and Reddy (2010) studied heat and mass transfer of an unsteady MHD natural 

convection flow of a rotating fluid past a vertical porous plate in the presence of radiative heat 

transfer. Shanker et al. (2010) analysed the effects of radiation and mass transfer on an unsteady 

MHD free convective fluid flow embedded in a porous medium with heat generation/absorption. 

Muthucumaraswamy and Sivakaumar (2016) studied the MHD flow past a parabolic flow past 

an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction.  

Due to the importance of the Dufour (diffusion-thermo) and Soret (thermal-diffusion) effects on 

the fluids with very light molecular weight, as well as medium molecular weight, many 

investigators studied and reported results on these flows of whom are Eckert and Drake (1972), 

Dursunkaya and Worek (1992), Anghel et al. (2000) and Postelnicu (2004) are worth mentioning. 

Alam and Rahman (2005) presented the Dufour and Soret effects on MHD free convective heat 

and mass transfer flow past a vertical flat plate embedded in a porous medium. Alam et al. (2006) 

investigated the Dufour and Soret effects on unsteady MHD free convection and mass transfer 

flow past a vertical porous plate in a porous medium. Dufour and Soret effects on steady MHD 

combined free-forced convective and mass transfer flow past a semi-infinite vertical plate were 

analyzed by Alam et al. (2006). Mansour et al. (2006) investigated the effects of chemical reaction 

and thermal stratification on MHD free convective heat and mass transfer over a vertical 

stretching surface embedded in a porous media by considering Soret and Dufour effects. Vempati 

and Laxmi Narayana (2010) analysed the Soret and Dufour effects on unsteady MHD flow past 

an infinite vertical porous plate with thermal radiation and oscillatory suction velocity. Bhagwat 

et al. (2010) presented the effects of thermal diffusion on MHD free convective flow past a 

vertical porous plate by taking into account viscous and Darcy resistance terms. MHD natural 

convection flow past an impulsively moving vertical plate with ramped wall temperature in the 

presence of thermal diffusion and heat absorption were reported by Seth et al. (2010). The effects 

of thermal diffusion and viscous dissipation on unsteady MHD free convection flow past a 

vertical porous plate under oscillatory suction velocity was investigated by Reddy (2014). 

Venkateswarlu et al. (2014) analysed the thermal diffusion and radiation effects on unsteady 

MHD free convection heat and mass transfer flow past a linearly accelerated vertical porous plate 

with variable temperature and mass diffusion.  

The purpose of this paper is to analyse the unsteady hydro-magnetic free convection flow past a 

vertical porous plate taking into account Viscous and Darcy resistance terms and constant 

permeability of the medium. The aim of the present study is to extend the results of Bhagwat et 

al. (2010) by incorporating the effects of Dufour and radiation, due to numerous industrial and 

engineering applications. The Galerkin FEM has been adopted to solve the dimensionless 

governing of the flow, which is more economical from computational point of view. The effects 

of the physical parameters on the velocity, temperature and concentration profiles as well as the 

skin-friction coefficient, Nusselt and Sherwood numbers are presented through the graphs and 

tables and then discussed. 

2. Mathematical Model 

An unsteady two-dimensional flow of an incompressible, electrically conducting, viscous 

Newtonian fluid past an infinite vertical porous plate, taking into account Viscous and Darcy’s 
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resistance terms and constant permeability of the medium in the presence of radiation, is 

considered. The fluid is considered as a gray absorbing-emitting but non-scattering medium. In 

the coordinate system, the 'x  axis is taken along the plate in the upward direction and 'y  axis 

is taken normal to the plate. A magnetic field of strength 0B  is applied transversely to the 

direction of the flow. The magnetic Reynolds number is assumed to be very small so that induced 

magnetic field is neglected. The suction velocity normal to the plate is assumed to be a function 

of time i.e., 0' ,v U  where the minus sign indicates the suction directed towards the plate. 

Initially ( ' 0),t  the plate and fluid are at the same temperature 'T
 and concentration 'C

 at all 

points. Subsequently, ' 0,t   the plate temperature rises to '

wT  and the concentration level at the 

plate rises to '

wC . The flow configuration and the coordinate system are shown in Fig. 1. 

 

Fig. 1. Flow configuration and coordinate system 

The fluid is assumed to have constant properties except that the influence of the density varies 

with temperature and concentration, which are considered only in the body force term. Under the 

above assumptions, the physical variables are the functions on 'y  and 't only. Assuming 

Boussinesq approximation and boundary layer approximation hold, the basic equations which 

govern the problem are given by:  
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with the initial and boundary conditions for the velocity, temperature and concentration fields: 
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where 'u  and 'v  are the velocity components in the 'x  and 'y  directions respectively, g  is 

the acceleration due to gravity,   is the volumetric coefficient of thermal expansion, *  is the 

volumetric coefficient of concentration expansion, 't  is the time, 'T   is the temperature of the 

fluid, 'T
 is the temperature of the fluid far away from the plate, '

wT   is the temperature at the 

plate, 'C  is the species concentration in the fluid, 'C
 is the concentration in the fluid far away 

from the plate, '

wC  is the species concentration at the plate, k  is the thermal conductivity, 
 
 is 

the kinematic viscosity,   is the fluid density, 
 
 is the electrical conductivity, 

pc  is the 

specific heat at constant pressure, 
rq  is the radiative heat flux, MD  is the mass diffusivity, mT  is 

the mean fluid temperature, sC  is the concentration susceptibility, Tk  is the thermal diffusion 

ratio. The radiative heat flux 
rq  under the Rosseland approximation has the form: 

 
44 '

'3

T
q
r yk

   
 

  (6) 

where    is the Stefan-Boltzmann constant and k  is the mean absorption coefficient. It is 

assumed that the temperature differences within the flow are sufficiently small such that the term 
4'T  is expressed as the linear function of temperature. Thus expanding 

4'T about 'T
using the 

Taylor series and neglecting higher order terms, one obtains: 

 4 4 3 ' 3 4' ' 4 ' ( ' ) 4 ' ' 3 'T T T T T T T T  
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Eq. (6) gives  
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  (7) 

From Eqs. (7) and (2) we arrive at the modified energy equation: 
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  (8) 

Let us introduce the following non-dimensional quantities:  
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where , , , , , , ,r c u rP S M K N D R S and rG are the Prandtl number, Schmidt number, magnetic 

parameter, permeability parameter, buoyancy ratio, Dufour number, radiation parameter, Soret 

number and Grashof number
 
and the other symbols have their usual meaning. The last term on 

the right hand side of the concentration Eq. (4) and energy Eq. (8)
 
signifies the Soret or thermal-

diffusion effect and Dufour or diffusion-thermo effect, respectively. 

Using Eq. (9)
 
into Eqs. (2), (4), (5) and (8) we obtain the following governing equations in 

dimensionless form: 
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  (12) 

with dimensionless initial and boundary conditions: 
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3. Method of solution 

The Galerkin expression for Eq. (10)
 
over the two-nodded linear element ( ),( )j ke y y y 

 
is 

given by: 
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where 
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be the linear approximation solution over 
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From Eq. (14)

 
the element equation is given by: 
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where the prime and dot denote the differentiation with respect to y  and ,t
 
respectively. 

Simplified Eq. (15) yields:  
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Inserting row corresponding to the node i  to zero in Eq.(16), the following difference schemes 

with ( )el h  are obtained: 
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Applying the trapezoidal rule to Eq. (17)
 
we obtain the following system of equations in the 

Crank-Nicholson method: 
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Applying the similar procedure to Eqs. (11)
 
and (12) we obtain: 
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and ,h k are mesh sizes along y  direction and time t  direction, respectively. 

Index i  refers to the space and j  refers to the time. In Eqs. (18), (19) and (20)
 
taking 1(1)i n  

and using boundary conditions (13), the following tri-diagonal systems of equations are obtained: 

 'Au A   (21) 
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 'C C    (23) 
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Here, , ,u   and ', ', 'A B C  are column matrices having n -components, namely 

1 1 1
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i i i

 
  

and , ,
j j j

u
i i i
   respectively. The Gauss-Seidel iteration scheme is 

employed to solve the above matrix system of equations (21) - (23). Numerical solutions for the 

velocity, temperature and concentration profiles are obtained by using C  program. The 

boundary condition y   is approximated by 5
max

y  , which is sufficiently large for the 

velocity to approach convergence criterion. The computations are carried out until the steady state 

is reached. The steady state solution is assumed to have been reached when 
1 510 ,

j j
u u
i i
    

1 510
j j

i i
 

   and 
1 510

j j
i i
 

    at all nodal points. To judge the convergence of the 

Galerkin finite element method, computations are carried out by making small changes in the 

values of h  and k  by running the same program, no significant change was observed in the 

values of ,u   and .  Hence, we conclude that the Galerkin FEM is convergent and stable. 

The skin-friction coefficient ( )  at the plate is 

0

u

y y


 

  
  

 

The heat transfer coefficient ( )Nu  at the plate is 

0

Nu
y y

 
  

    

The mass transfer coefficient ( )Sh  at the plate is 

0

Sh
y y

 
  

  

 

4. Results and discussion  

To gain a perspective of the physics of the flow regime, we have computed numerical results to 

study the effects of the physical parameters such as Grashof number ,rG  buoyancy ratio ,N  

magnetic parameter ,M  permeability parameter ,K  Prandtl number ,rP  radiation parameter ,R  

Dufour number ,uD Schmidt number ,cS  Soret number ,rS and time parameter t on the velocity

,u  temperature  and concentration  as well as the skin-friction, rate of heat and mass transfer. 

The obtained numerical results have been presented graphically in figures and tables. During the 

numerical computations, the values of the Prandtl number are chosen 0.71,1.00rP   and 7.00,  

which corresponds to air, electrolytic solution and water at 020 C  and one atmosphere pressure 

and values of the Schmidt number are taken 0.22,0.60cS   and 0.78  which corresponds to 

hydrogen, water-vapour and ammonia, respectively. The other physical parameters are 

considered as: 1.0, 0.5, 0.03, 0.5u rK R D S    at time 0.5.t  These values are kept as 

common in the entire investigation except variations in respective figures and tables. Further, our 

results are compared with the results of Bhagwath et al. (2010) and found to be in good agreement 

in the absence of radiation and Dufour effects. 
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4.1 Temperature profiles  

The effects of the Prandtl number rP on the temperature profiles are illustrated in Fig.2. It is seen 

that an increase in the Prandtl number leads to decreases in the temperature profiles. Physically, 

the increase of rP  decreases the thermal conductivity of the fluid and increases the fluid viscosity, 

which results in a decrease in the thermal boundary layer thickness. The effects of radiation 

parameter R on the temperature profiles are presented in Fig.3. It can be seen that the temperature 

  increases as the radiation parameter R increases. This is due to the fact that the large R values 

correspond to an increased dominance of conduction over radiation thereby increasing the 

thickness of the thermal boundary layer.
 

The influence of the Dufour number uD on the 

temperature profiles are shown in Fig.4. It can be noticed that the temperature  increases in the 

boundary layer with increasing values of Dufour number. From Fig.5 we can observe= the 

variation of the temperature profiles for different values of dimensionless time .t The fluid 

temperature   is enhanced in the boundary layer with an increase in the boundary layer thickness 

as the time t  increases. 

 

Fig. 2. Temperature profiles for different values of the Prandtl number rP  

 

Fig. 3. Temperature profiles for different values of the radiation parameter R  
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Fig. 4. Temperature profiles for different values of the Dufour number uD
 

 

Fig. 5. Temperature profiles for different values of the time parameter t  

4.2 Concentration profiles 

The effect of the Schmidt number cS on the concentration profiles are presented in Fig. 6. It can 

be seen that with increasing value of the Schmidt number concentration decreases. Physically, 

increase in the Schmidt number leads to a decrease of molecular diffusivity which results in a 

decrease of concentration boundary layer. Hence, the concentrations of the species are higher for 

small values of cS and lower for large values of .cS  The variation of the concentration profiles 

with Soret number rS  is presented in Fig. 7. It is noticed that there is a marked effect of increasing 

values of Soret number rS on the concentration distribution in the boundary layer. It is seen that 

the concentration profiles increase with increasing values of rS . These results are in a very good 

agreement with the results of Vempati and Narayana (2010) in the absence of oscillatory suction 

velocity. The effects of the time parameter t  on the concentration   are presented in Fig.8. It is 

seen that the concentration profiles increase with increasing time parameter .t  Further, this figure 

verifies the boundary conditions of concentration given in Eq. (13)
 
Initially, concentration takes 

the value 1  and later for large value of ( 0)y y   it tends to zero with increase of time .t  
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Fig. 6. Concentration profiles for different values of the Schmidt number cS
 

 

Fig. 7. Concentration profiles for different values of the Soret number rS  

 

Fig. 8. Concentration profiles for different values of the time parameter t  
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4.3 Velocity profiles 

The effect of the magnetic parameter M on the velocity profiles can be seen from Fig. 9. The 

velocity curves show that the rate of transport is remarkably reduced with increasing values of 

the magnetic parameter indicating that the magnetic field tends to retard the motion of the fluid. 

Magnetic field may control the flow characteristics. The variation of the velocity profiles with 

dimensionless permeability parameter K is presented in Fig. 10. It can be noticed that the fluid 

velocity increases with increasing values of permeability parameter. Physically, this result can be 

achieved when the holes of the porous medium are very large so that the resistance of the medium 

may be neglected. It is seen from Fig. 11 that the fluid velocity increases with increasing values 

of the buoyancy ratio N  in the boundary layer. The effects of the Dufour number uD on the 

velocity profiles are illustrated in Fig. 12. It can be seen that an increase in the Dufour number 

from 0.03  to 0.5  and then 0.9,  increases the fluid velocity in the boundary layer. 

 

Fig. 9. Velocity profiles for different values of the magnetic parameter M  

 

Fig. 10. Velocity profiles for different values of the permeability parameter K  
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Fig. 11. Velocity profiles for different values of the buoyancy ratio parameter N
 

 

Fig. 12. Velocity profiles for different values of the Dufour number uD  

The effects of Soret number rS on the velocity profiles are shown in Fig.13. It can be seen that the 

fluid velocity increases with increasing values of Soret number. It can be seen from Fig. 14 that 

the fluid velocity increases with increasing radiation parameter .R  This is due to the fact that the 

large values of R correspond to an increased dominance of conduction over radiation thereby 

increasing buoyancy force and thickness of the momentum boundary layer. The effects of Prandtl 

number rP on the velocity profiles can be seen in Fig.15. It is noticed that an increase in the 

Prandtl number decreases the fluid velocity. This result occurs due to the fact that the fluid with 

large rP
 
has high viscosity and small thermal conductivity, which makes the fluid thick and 

causes a decrease in the fluid velocity. The influence of the Schmidt number cS on the velocity 

profiles are shown in Fig. 16. It can be seen that the velocity of the fluid decreases with increasing 

values of .cS  This is due to the fact that increase of cS leads to decrease of molecular diffusivity, 

which results in a decrease in the concentration and velocity boundary layer thickness. 
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Fig. 13. Velocity profiles for different values of the Soret number rS
 

 

Fig. 14. Velocity profiles for different values of the radiation parameter R  

 

Fig. 15. Velocity profiles for different values of the Prandtl number rP
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Fig. 16. Velocity profiles for different values of the Schmidt number cS
 

The variation of the velocity profiles with Grashof number rG is presented in Fig. 17. It is seen 

that the fluid velocity increases with increasing Grashof number. This is due to the fact that 

buoyancy force enhances the fluid velocity and increases the boundary layer thickness with 

increase in the value of Grashof number. The variation of the velocity profiles for different values 

of dimensionless time t  is shown in Fig. 18. It is noticed that the fluid velocity increases with the 

progression of time .t  Moreover, the velocity in this figure takes the values of time t  at the plate

( 0)y  and tends to zero for large values of ,y which is a clear verification of the boundary 

conditions on the velocity u is given in Eq. (13) 

 

Fig. 17. Velocity profiles for different values of the Grashof number rG
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Fig. 18. Velocity profiles for different values of the time parameter t  

4.4 Skin-friction, Nusselt and Sherwood numbers 

Numerical data for the skin-friction coefficient ( ),  Nusselt number ( )Nu  and Sherwood number 

( )Sh  for variation in the material parameters are presented in the Tables 1-3. Table 1 shows that 

the skin-friction increases with increasing values of the radiation parameter, Dufour number, 

buoyancy ratio, permeability parameter, Soret number, Grashof number and time parameter 
whereas it decreases with increasing values of the Prandtl number, Schmidt number and magnetic 

parameter. It is noticed from Table 2 that the values of the Nusselt number increases with 

increasing Prandtl number and decreases with increasing radiation parameter, Dufour number 

and time parameter. It is seen from Table 3 that an increase in Schmidt number
 
leads to increase 

in the Sherwood number and decreases with increase in Soret number and time parameter. 

                                                                                          

             0.71     0.22      0.5     0.03      0.5     1.0      1.0      1.0       2.0      0.5         0.771748 

            7.00      0.22      0.5     0.03      0.5     1.0      1.0      1.0       2.0      0.5         0.513562 

            0.71      0.60      0.5     0.03      0.5     1.0      1.0      1.0       2.0      0.5         0.610300 

            0.71      0.22      1.0     0.03      0.5     1.0      1.0      1.0       2.0      0.5         0.803226 

            0.71      0.22      0.5     0.50      0.5     1.0      1.0      1.0       2.0      0.5         0.784416 

            0.71      0.22      0.5     0.03      1.0     1.0      1.0      1.0       2.0      0.5         0.788234 

            0.71      0.22      0.5     0.03      0.5     1.5      1.0      1.0       2.0      0.5         0.990294 

0.71       0.22      0.5     0.03      0.5     1.0      2.0      1.0       2.0      0.5         0.675460 

            0.71      0.22      0.5     0.03      0.5     1.0      1.0      2.0       2.0      0.5         0.831082 

0.71       0.22      0.5     0.03      0.5     1.0      1.0      1.0       3.0      0.5         1.157622 

            0.71      0.22      0.5     0.03      0.5     1.0      1.0      1.0       2.0      1.0         0.946308 

Table 1. Numerical data for the skin-friction coefficient ( )  

 

rP cS R uD rS N M K rG t 
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            0.71            0.5             0.03             0.5              0.337380 

            7.00            0.5             0.03             0.5              1.510984 

            0.71            1.0             0.03             0.5              0.275234 

            0.71            0.5             0.50             0.5              0.316636 

            0.71            0.5             0.03             1.0              0.285110 

Table 2. Numerical data for the Nusselt number ( )Nu  

                                                                     

             0.22                    0.5                      0.5                 0.179692 

             0.60                    0.5                      0.5                 0.334116 

             0.22                    1.0                      0.5                 0.153074 

             0.22                    0.5                      0.5                 0.148350 

Table 3. Numerical data for the Sherwood number ( )Sh
 

5. Conclusions 

In this paper, the Dufour and Soret effects on unsteady MHD free convection heat and mass 

transfer flow past an infinite vertical porous plate in the presence of radiation are provided. The 

dimensionless governing equations of the flow have been solved numerically by applying 

Galerkin FEM. It is shown that the flow characteristics are influenced by the material parameters 

involved in the problem. It has been found that the fluid velocity and temperature decrease when 

the Prandtl number increases whereas an increase in the radiation parameter enhances the fluid 

velocity and temperature in the boundary layer. The fluid velocity increases with increasing 

Dufour and Soret numbers. An increase in the Schmidt number leads to a decrease in the fluid 

velocity and concentration. Influence of the magnetic parameter decelerates the fluid velocity. 

Further, the velocity, temperature and concentration increase with increasing time parameter. The 

present study of the physics of the fluid flow could be useful in the scientific and engineering 

applications. 
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