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Abstract 

A new isotropic damage cohesive model for the simulation of mixed-mode delamination is 
presented. The model is based on consideration of the interface internal friction, naturally 
leading to coupled opening and shear damage mechanisms. Mixed-mode fracture energy turns 
out to be a direct outcome of the model and does not require the definition of an empirical law, 
additional to pure Mode I and II fracture energies. The model has been developed to account for 
delamination processes promoted by blade cutting of carton packages. 
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1. Introduction 

The finite element simulation of cutting and delamination in carton packages is a complex 
problem, involving several nonlinearities, each one requiring the development of ad hoc 
numerical tools. The adopted computational strategy for the simulation of cutting, based on the 
use of “directional cohesive elements”, has been described in (Pagani et al, 2015). This work 
will rather focus on the modelling of the delamination problem. Carton packages present a 
layered structure, consisting of paperboard, low-density polyethylene coatings, decor layers and 
possible layers of other materials, such as aluminum layers for food protection, so that 
delamination is a common failure mechanism, in particular in those regions where the cutting 
process is in progress. Although a large number of works devoted to the formulation of 
cohesive laws has been proposed in the literature, many of them are based on strong 
assumptions on the loading path and on the mixed-mode failure properties, or lack of 
thermodynamic consistency. Real-life delamination processes are indeed often characterized by 
mixed-mode loading conditions with varying mode ratio. Moreover, as demonstrated by several 
experimental works (see e.g. Benzeggagh and Kenane, 1996), the fracture energy significantly 
grows in passing from pure Mode I crack loading to pure Mode II. 

A new isotropic damage cohesive model, specifically conceived for mixed-mode 
delamination, based on consideration of an internal friction mechanism, is formulated in this 
paper. Section 2 presents the proposed cohesive law, while some consistency tests are discussed 
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in Section 3 to verify the consistency of the model under different loading paths. Finally, a 
numerical example is presented in Section 4. 

2. Mixed-mode delamination model

The model, based on an isotropic damage formulation, is developed in a thermodynamic
framework, which guarantees its consistency for any loading path. Let us introduce the free 

energy per unit surface defined as: 

         
2 2 21 1 1

1 1
2 2 2

n n sK d K d K           (1) 

being d the isotropic damage variable, K the elastic stiffness of the interface (assumed equal in 

pure Mode I and in pure Mode II crack loading conditions), 
n  and 

s the normal the shear 
opening displacements in the local reference frame. The Macauley brackets 〈 〉, denoting the 
negative and the positive part of the normal relative displacement, are introduced to account for 
the unilateral effect. The static variables of the model are defined by the following set of state 
equations: 

   1              1n n n s st K d K t d Kn s  
 
 

        
  (36) 
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n sY K K

d
 

   
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where ݐ௡ and ݐ௦ represent the cohesive tractions in the normal and shear directions respectively, 
and Y  is the strain energy released per unit growth of damage. 

The interaction between normal and shear modes is governed by the definition of three 
damage modes, namely one opening- and two shear-dominated modes, in the plane of 
dimensionless cohesive tractions, as the ones shown in Fig. 1. Each damage mode is 
characterized by the normal unit vector ni.  The inclination angle ߙ of the two shear-dominated 
modes plays the role of a parameter of internal friction. 

Fig. 1. Definition of damage mechanisms in tractions plane. 

(2) 
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In order to account for the contribution of every damage mode to the overall decohesion 
process, let us introduce the effective cohesive stresses ܛ ൌ ሾsଵ	sଶ	sଷሿ୘, defined as the 
projection of the cohesive tractions onto the three normal vectors: 

s Nt (4) 

where N  is  a matrix gathering the components of the three normal unit vectors, while ܜ ̅is the 
vector collecting the dimensionless cohesive tractions in the local reference frame: 

1
1 0
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being  ݐ଴
௡	and ݐ଴

௦	the normal and the shear strengths in pure Mode I and II crack loading 
conditions. Writing eqn. (4) component-wise, one has:   
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  (6) 

Similarly, the effective opening displacements, collected in the vector ܟ ൌ ሾݓଵ ଶݓ   ,ଷሿ୘ݓ
can be defined as the projection of the dimensionless relative displacement ࢾഥ onto a structural 
unit vector ܕ௜. In matrix form: 

w Mδ (7) 

where ۻ is  a matrix gathering the structural unit vectors ܕ୧, while ഥ઼ is the vector collecting the 
dimensionless opening displacements in the local reference frame: 
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being ߜ଴
௡ and ߜ଴

௦ the opening displacements at the onset of delamination in pure Mode I and II 
crack loading conditions, respectively, corresponding to ݐ଴

௡	and ݐ଴
௦, and ߴ the angle defining the 

orientation of ܕଶ and ܕଷ (ܕଵ is directed as ܖଵ for symmetry reasons). The constants ܽ and ܾ 
can be computed by imposing that the elastic strain energy is left unchanged, passing from the 
direct to the effective quantities, i.e. 

 1 1 1 1 2 2 3 3
2 2

T s w s w s w  t δ (9) 

From eqn. (9), one obtains: 

 0 0 0tan tan              0 0 0 0 2cos cos

s stn s sa t t b


   
 
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Thus, Eq. (7) can be re-written as: 
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Exploiting the definition of effective stresses and displacements, the overall elastic strain 
energy can be additively decomposed into the three contributions associated to the damage 
modes: 

1 1 1 11 1 2 2 3 3
2 2 2 2

1 2 3
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  

Tt δ
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(12) 

Defining the strain energy released per unit growth of damage ܻ௜ associated to each mode is 
thus straightforward. Note that ݐ௡തതത ൌ ௦ഥݐ ௡തതതത andߜ ൌ   :௦തതതߜ
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Using eqns. (13), it easy to verify that ܻ ൌ ܻଵ ൅ ܻଶ ൅ ܻଷ, where ܻ is defined in eqn. (3). The 
angle ߴ is a parameter affecting the way the strain energy release rate ܻ	is decomposed into its 
component.  Henceforth, it will be assumed: 

0 0tan tan ,
0 0

n nt
s st


 


 (16) 

such that ܻଵ is always positive for any positive value of the normal opening displacement, 
under the condition α ൏ 45°. Note that, according to this decomposition, either ܻଶ or ܻଷ can 
attain negative values, though their sum is obviously always positive. 

The damage activation function is written as a classical energy criterion: 
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  (17) 

where ߯଴
௜ 	represents the initial value of the threshold for the i-th damage mode, while χ୧	is an 

internal variable describing its evolution, such that ߯௜ሺ0ሻ ൌ 0. The Heaviside functions 
ሺܻ௜ሻܪ) ൌ 0 for ܻ௜ ൑ ሺܻ௜ሻܪ ,0 ൌ 1 for ܻ௜ ൐ 0) are introduced in eqn. (15) to avoid negative 
contributions to damage activation by possibly negative values of ܻଶ or ܻଷ.  The damage 
growth is ruled by the following evolution law: 
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 Finally, the following classical loading/unloading conditions hold: 

0          0          0d d       (19) 

The shape of the cohesive law in the traction-opening displacement plane is governed by the 
internal variables ߯௜. The case of a bilinear cohesive law is considered here. The use of any 
other functional form of the ݐ௜ െ  ௜ curve is also possible. For the bilinear law, it is possible toߜ
define the expression of ߯௜ as a function of the damage variable ݀, such that a linear softening 
branch is obtained for pure Modes I and II crack loading (see Fig. 2).  

Fig. 2. Pure Mode I and II cohesive laws. 

For the sake of simplicity, let us start from a 1D case, considering the bilinear law depicted in 
Fig. 3.  The damage variable ݀ can be related to the current opening displacement ߜ	by means 
of purely geometrical considerations, yielding: 

 
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(20)
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Fig. 3. Bilinear cohesive law. 

In the 1D case, the damage activation function reduces to: 
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ଶ
. At the onset of delamination (ߜ ൌ ଴ߜ → ̅ߜ ൌ 1ሻ, it holds that

݀ ൌ 0, ߮ ൌ 0	and ߯ሺ0ሻ ൌ 0, therefore the initial threshold is simply obtained as: 
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while, in the softening phase: 
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By substituting eqn. (18) into eqn. (21), we get the expression of ߯ as a function of the damage 
variable ݀. 
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Applying the same steps to each of the two pure Modes, the expressions for the three initial 
thresholds ߯଴

௜ 	and for the static-like variables ߯ can be obtained. Note that, because of the 
symmetry of the activation domain, one has ߯଴

ଶ ൌ ߯଴
ଷ and ߯ଶ ൌ ߯ଷ. In pure Mode II, ܻଵ ൌ 0, 

thus the Mode I dominated damage mode disappears from the damage activation function and 
߯଴
ଶ ൌ ߯଴

ଷ	and ߯ଶ ൌ ߯ଷ	are independent of ߜ௦. In contrast, in pure Mode I ܻଶand ܻଷare not zero, 
because of the coupling between normal and shear openings: as a consequence, ߯଴

ଵ and ߯ଵ 
depend both on ߜ௡ and ߜ௦. The resulting expressions for the initial thresholds are: 
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while for the internal variables: 
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Using a classical argument, based on the Clausius-Duhem inequality for isothermal processes, it 
is possible to prove that the mechanical dissipation is always non-negative, being: 

 1 2 3 1 2 3 0D Y d Y d Y d Y Y Y d Yd            (29) 

For the definition of its parameters (ߜ଴
௡, ଴ߜ

௦, ௖௥௡ߜ , ௖௥௦ߜ , ,ߙ ݇), the proposed cohesive model requires 
the fracture energies ܩூ௖ and ܩூூ௖ and the peak tractions ݐ଴

௡ and ݐ଴
௦  in pure Modes I and II crack 

loading conditions, in addition to the curve describing the evolution of fracture energy with the 
mode mixity ratio. All this information can be obtained by means of standard experimental 
tests, i.e. one Double Cantilever Beam (DCB) test for pure Mode I, one End Notch Flexure 
(ENF) test for pure Mode II and a set of Mixed Mode Bending (MMB) tests (Reeder and Crews 
1992) for varying mode-mixity ratio. 

Figure 4a shows the initial activation surface ߮ ൌ 0, computed from eq. (15) for ݀ ൌ 0, i.e. at 
the onset of decohesion, for increasing values of the internal friction angle ߙ and for ݇ ൌ 2. 
Conversely, Figure 4b assesses the effect of increasing the exponent k while keeping a constant 
value of the angle ߙ ൌ 30°. 
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Fig. 4. a) Initial activation surface for ݇ ൌ 2 and for increasing values of the angle ߙ (namely 
0°, 10°, 20° and 30°).  b) Initial activation surface for ߙ ൌ 30°	and for increasing values of the 

exponent ݇ (namely 2,4,6,8).  

3. Consistency tests

Three different tests proposed in the literature are here considered to prove the consistency of 
the cohesive model, also in case of non-trivial loading paths. 

3.1. Radial path 

Radial loading conditions with varying separation angles can be achieved by imposing ߜ௡ ൌ
ሺ1 െ ௦ߜ and ߜሻߚ ൌ ௠௔௫ߜ an opening displacement linearly increasing from 0 to ߜ being ,ߜߚ ൌ
0.05	݉݉ and ߚ	a coefficient describing the mode-mixity. Pure Mode I is recovered for ߚ ൌ 0, 
while pure Mode II corresponds to ߚ ൌ 1. The considered cohesive law properties for pure 
Mode I and II are reported in Table1. 

଴ݐ
௡ ݐ଴

௦ ܩூ௖ ܩூூ௖ K 
6 MPa 6 MPa 0.1 N/mm 0.1 N/mm 1000 ܰ/݉݉ଷ 

Table 1. Cohesive law properties in pure Mode I and II. 

The traction-separation curves for increasing values of the mode-mixity ratio ߚ are plotted in 
Figure 5. As expected, under mixed-mode conditions, the curves in the plane ݐ௡ െ  ௡ߜ
monotonically decrease starting from the pure Mode I one, while the curves in the plane ݐ௦ െ
 .increase up to the pure Mode II bilinear law	௦ߜ
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Fig. 5. Traction-separation curves for α ൌ 30° and ݇ ൌ 2. 

3.2. Sinusoidal path 

This consistency test has been proposed by Spring et al. (2016) to assess the consistency of the 
Park-Paulino-Roesler (PPR) cohesive model (Park et al, 2009) with respect to a mixed-mode 
loading/unloading condition. A sinusoidal history of opening displacements, displayed in 
Figure 6, is considered here by assuming that ߜ௡ ൌ 2 ∙ 10ଷ	mm	 sinሺ0.15ିݏଵ	߬ሻ and   
௡ߜ	 ൌ 10ଷ	mm3.5 sinሺ0.12ିݏଵ	τሻ, being ߬	a time-like parameter. The cohesive properties 
defined by Spring et al. (2016) under pure Mode I and pure Mode II crack loading conditions 
are listed in Table 2. 

଴ݐ
௡ ݐ଴

௦ ܩூ௖ ܩூூ௖ K 
40 MPa 15 MPa 0.1 N/mm 0.1 N/mm 10000 N/mmଷ 

Table 2. Cohesive properties in pure Mode I and II. 

Fig. 6. History of applied normal and shear opening displacements. 

Figure 7 shows the response of the cohesive model in terms of traction-separation curves, 
computed with ߙ ൌ 30° and ݇ ൌ 4 As expected, during the loading/unloading phases, the 
damage does not increase and, thus, the slope remains constant. Note that in the case of a non-
proportional loading path, although the pure Modes traction-separation curves are bi-linear, the 
resulting softening branch is not linear because of the coupling between normal and shear 
openings. 



F. Confalonieri and U. Perego: Simulation of fracture and delamination in layered shells due to blade cutting148 

148 

Fig. 7. Traction-separation curves for ߙ ൌ 30° and ݇ ൌ 2, for sinusoidal path. 

3.3. Non-proportional loading path 

A non-proportional loading path, proposed by van den Bosch et al. (2006) and Park et al (2009) 
and depicted in Figure 8a, is considered here. The interface is loaded first in the normal 
direction up to ߜ௡ ൌ ∆୫ୟ୶௡  and, then, in the shear direction up to failure, keeping the normal 
opening displacement constant. As in (van den Bosch et al. 2006) and (Park et al. 2009), 
consistency is tested in terms of the total work of separation, defined as: 

max max
0 0

n sn n s sW t d t d

n sW W

 
  
 

  (30) 

Table 3 summarizes the considered cohesive properties: the pure Modes are characterized by 
different values of strengths and fracture energy. 

଴ݐ
௡ ݐ଴

௦ ܩூ௖ ܩூூ௖ K 
6 MPa 12 MPa 0.1 N/mm 0.2 N/mm 10000 N/mmଷ 

Table 3. Cohesive properties in pure Mode I and II. 

Figure 8b shows the works of separation computed for increasing values of max
n

, ranging from 
0 to the value of complete decohesion. The proposed model is able to reproduce a smooth 
transition between the two values. 
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  a)     b) 

 Fig. 8. a) Non-proportional loading path.  b) Work of separation computed for ߙ ൌ 30° and ൌ
4 . 

4. Numerical example

This numerical example assesses the capability of the proposed model to properly reproduce the 
mixed-mode behavior of a brittle epoxy resin (AS4/3501-6), experimentally tested through a set 
of MMB tests (Reeder and Crews, 1992) performed by Reeder (Reeder, 1993). The fracture 
energy ܩ௖ ൌ ூܩ ൅  ூூ beneath the normal andܩ ூ andܩ ூூ is computed as the sum of the areasܩ
shear traction-separation curves, obtained with a series of radial paths with increasing mode-
ratio. The adopted cohesive properties are: ܩூ௖ ൌ 0.09	N/mm, ܩூூ௖ ൌ 0.6	N/mm, ݐ଴

௡ ൌ
45	MPa, ݐ଴

௡ ൌ 48	MPa, ߙ ൌ 25° and ݇ ൌ 12. In figure 9, the numerical prediction of the 
fracture energy for varying mode-mixity ratio is compared with the experimental data and with 
a Power Law, whose exponents have been calibrated in (Reeder, 1993). A very good agreement 
is obtained with the best fitting proposed by Reeder. It is worth underlining that the fracture 
energy is here an outcome of the model, without the need of introducing any empirical law for 
its variation with the mode-mixity ratio. 
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Fig. 9. Experimental and simulated mixed-mode fracture energies (ߙ ൌ 25°, k=12) for  MMB 
test. 

5. Conclusions

A new isotropic damage cohesive model has been proposed for the simulation of delamination 
under arbitrary, non-proportional mixed-mode loading conditions. The model is based on 
consideration of an internal friction dissipation mechanism, naturally resulting in a coupling 
between normal and shear damage modes. Tuning the internal friction parameter, it is possible 
to reproduce accurately the fracture energy under mixed-mode loading conditions, without 
introducing any empirical law to describe the variation of the fracture energy with the mode-
mixity ratio. The model is thermodynamically consistent, as it implies rigorously positive 
dissipation, and exhibits a consistent mechanical response if used to simulate three widely 
employed consistency tests. 
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