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Abstract 

Selective catalytic reduction using ammonia is one of the most important industrial applications 
involved in NOx emissions reduction by means of filtering systems. The optimization of such 
systems is a complex problem mainly related to control of the fluid dynamics patterns right 
above to the filtering system present in the plant and driven by the correct definition of a set of 
angles of a set of turning vanes present upstream. Historically, this kind of optimization activity 
necessary to guarantee a limited pollution of the environment and preserve expensive filtering 
facilities ensuring longer life to vital parts of the energy production plant, was performed by 
means of experimental test bench coupled with some tailored computational model mainly used 
for a final verification of the selected optimal configuration. Today, thanks to the enormous 
improvement in computational modelling and computing facilities, this kind of activity can take 
advantage of using automatic, open-source tools and high-performance computing platforms to 
exploit a wider and autonomous analysis of the possible optimal configurations. Therefore, in 
this study, an automatic CFD optimization workflow has been developed for this kind of 
applications using open-source software on a selected practical case. The workflow is intended 
to autonomously evolve from a baseline plant CAD design to an improved one, modifying the 
angle of the turning vanes present in the model in order to decrease a quantitative synthetic 
index related to the level of uniformity of the velocity field distribution on the inlet section of 
the filtering system. The workflow designed is proven effective and able to autonomously 
decrease the selected index. Moreover, n the selected test case, the new design obtained shows 
an improved value of the target index of about 10%. 
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1. Introduction 

Nitric oxides emission can cause problems to airways and damage the environment, being the 
mainly responsible for photochemical pollution (see Institute of Clean Air Companies 1997 and 
200). It is thus very important to control them. Available technologies to reach this goal are 
divided into two categories: 
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1. primary control technologies, like low-NOx burners (high efficiency burners) or Over 
Fire Air, which limit temperature to reduce NOx production. This technology has an 
efficiency up to 50%; 

2. secondary control technologies, which reduce NOx presence in exhaust gas. They are 
divided in two more categories: 

a. Selective non-catalytic reduction, which works at high temperatures (1000°C) 
and has an efficiency up to 65%; 

b. Selective catalytic reduction. In this case, the presence of a catalyst allows to 
work at low temperatures (350°C) and have efficiency up to 95%. 

Efficiency can be calculated thanks to this formula (Xu et al. 2013): 

 𝜇𝜇 = 100 (𝐶𝐶𝑖𝑖𝑖𝑖−𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜)
𝐶𝐶𝑖𝑖𝑖𝑖

 (1) 

where Cin and Cout are concentrations of NOx at the inlet and at the outlet of the duct.  

Standard SCR-DeNOx plants are very complex, presenting in general many geometrical 
components including: 

• an ammonia injection grid (AIG) to inject ammonia in the flow; 

• a hybrid grid to generate turbulence for a better mixing; 

• a set of turning vanes to direct the flow through the corners and guarantee uniform 
flow at catalyst entrance; 

• a straightener before the catalyst layers; 

• a catalyst layers where exothermal chemical reactions take place. 

The main chemical reactions taking place in the catalyst are: 

 4NH3 + 4NO + O2 → 4N2 + 6H2O  (2) 

 4NH3 + 2NO2 + O2 → 3N2 + 6H2O (3) 

 NO + NO2 + 2NH3 → 2N2 + 3H2O (4) 

The first reaction (Equation 2) is the most important one. Actually, 95% of nitric oxides in 
the duct is made of NO. Due to the complexity of these plants, in order to perform an 
optimization, it is possible to focus on many different design perspectives. For example, it is 
important to design an AIG able to maximize mixing between ammonia and exhaust gas. 
Another important objective is to avoid particulates sediment along the duct adding entrapment 
boxes.  

In this study, the main goal is to focus on the fluid dynamics patterns present in the power 
plant and perform an optimization designed to obtain a uniform flow distribution at catalyst 
entrance (see Xu et al. 2013 and Xu et al. 2014). In fact, lack of uniformity of the velocity field 
at catalyst entrance is very important for many reasons: 

• power plant efficiency reduction; 

• unreacted ammonia released in atmosphere; 

• catalysis failure corresponding to velocity peaks. 

To drive the flow uniformity on the catalyst inlet surface, it is possible to arrange the 
relative orientation angle of the turning vanes positioned upstream the catalyst neglecting both 
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the thermodynamics effects and the chemical reactions present in the real physics of this kind of 
power plant (see Xu et al. 2013 and Xu et al. 2014).  

Historically, this kind of optimizations were performed by means of experimental test 
bench, usually built in a reduced scale keeping valid some fluid dynamics equivalence, coupled 
with some tailored computational model mainly used for a final verification of the selected 
optimal configuration. Today, thanks to the enormous improvement in computational modelling 
and computing facilities, this kind of activity can take advantage of using automatic and open-
source tools and high-performance computing platforms to exploit a wider and automatic 
analysis of the possible optimal configurations. Therefore, in this work, an automatic 
optimization workflow fully based on 3D computational fluid dynamics (CFD) has been 
designed and developed for this kind of applications using open-source software. The workflow 
is intended to autonomously evolve from a baseline plant CAD design to an improved one, 
modifying the angle of the turning vanes present in the model in order to decrease a quantitative 
synthetic index related to the level of uniformity of the velocity field distribution on the inlet 
section of the filtering system. To evaluate velocity field uniformity, it is possible to define a 
quantitative index named relative standard deviation (as shown in Xu et al. 2013 and Xu et al. 
2014) and defined as: 

 𝑅𝑅𝑅𝑅𝑅𝑅 =  
�∑ (𝑢𝑢𝑖𝑖 – 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎)2𝑖𝑖

𝑖𝑖=1

(𝑛𝑛 – 1)0.5 ∙ 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎
 (5) 

where ui is the velocity corresponding to i-th CFD mesh cell, Uavg is the average velocity at 
catalyst entrance and n is the number of mesh cells used to discretize the catalyst entrance 
surface. The workflow designed is proven to be effective and able to autonomously decrease the 
selected index. Moreover, for the selected test case, the new design obtained shows an 
improved value of the target index of more than 12%. 

The forthcoming of the paper is organized in the following way: 

• in Section 2, the computational approach defining the CAD design is selected, the set 
of Equations solved and the meshing strategy presented,  

• the workflow automation on HPC systems describing the open-source tools is used and 
the way they are connected into a single automatic procedure is discussed in Section 3,  

• the main results including the comparison between the starting and the optimized 
design are shown in Section 4, 

• discussion of main results and possible future work are addressed in Section 5.  

2. Computational approach 

In Figure 1a, the simplified geometry chosen in our study include these geometrical elements: 

• ammonia injection grid (AIG), in green; 

• turning vanes (in orange and violet); 

• catalyst layer (in yellow); 

• inlet and outlet are tagged in blue and red, respectively. 

The air schematic flow pattern is present in Fig. 1b using the blue arrows. AIG is 
positioned upstream the first corner and it consists of 11 evenly spaced cylinders, whose 
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diameter is 8 mm. Turning vanes are made of two lines of plates with negligible thickness and 
they are modeled as no-thickness baffles. The first row is made of four baffles whereas the 
second row is made of six baffles. The real physical problem is multi-physical and very 
complex. In the literature, the model chosen for the solution in simpler (see Xu et al. 2013 and 
Xu et al. 2014). More in detail, unsteadiness, heat transfer and chemical reaction are considered 
as negligible at first and only turbulence and pressure drop corresponding to the catalyst are 
considered. The fluid dynamics problem considered was therefore modeled as a steady state 3D 
turbulent one. Under this configuration, the fluid dynamics problem is defined by the set of 
Navier-Stokes equations where the catalyst, positioned downstream the last corner, is modeled 
as a porous media. The pressure drop corresponding to the catalyst layer is calculated through 
Darcy law and the coefficients are chosen to obtain a drop of 130 Pa (according to Xu et al. 
2013 and Xu et al. 2014). For the solution, the so-called Reynolds Averaged Navier Stokes 
(RANS) simulation approach (see Reynolds 1895) was chosen. RANS simulations are 
recognized to be the standard de-facto in industrial applications allowing to account for the 
complexity of turbulent fluid dynamics using mesh size that is manageable by modern hardware 
in a few hours. Nevertheless, RANS modelling requires the definition of an additional set of 
equations, the so-called closure equations, necessary to emulate the dissipation of the turbulent 
energy within the problem. In this case, we selected a two-equations turbulence model called 
kw-SST turbulence model since it is recognized to perform very well in adverse pressure 
gradients and separating flow conditions (see Menter 1993 and 1994). This kind of physics has 
been modeled using the open-source CFD toolbox OpenFOAM (see openFoam User Guide). 

The boundary conditions and the initial conditions were set according to the working 
conditions of the power plant. For the velocity field, a value of 4 m/s was chosen with a uniform 
profile at inlet and a no-slip condition at walls. At outlet, the velocity field is not constrained. 
For the pressure, a uniform zero pressure was chosen at outlet. At walls and inlet, the value is 
computed, not constrained, and set as reference at zero.  
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Fig. 1. (a) Iso-metric view of the power plant simplified geometry, components and flow 

pattern; (b) Side view of the power plant simplified geometry and flow pattern 

The meshing procedure was performed using standard OpenFoam meshing utilities, 
blockMesh and snappyHexmesh. These tools allow the user to create hexa-dominant high 
quality 3D CFD meshes enabling a fine control of mesh cell size spacing and of the boundary 
layer thickness. In Fig. 2, a snapshot of the mesh obtained for a generic configuration is given. 
Notably, in correspondence to the wall boundaries, a boundary layer buffer is defined to ensure 
proper solving of the equation. The average mesh size for this problem consists of about 4.5 
million cells. 

(a) 

(b) 
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Fig. 2. Mesh sample 

The CFD simulations are performed on the CINECA hardware, a IBM NeXtScale, made of 
516 computational nodes, each node equipped with 2 8-cores Intel Haswell 2.40 GHz core, for a 
total of 16 cores/node and a RAM of 128 GB/node. The internal Network is an Infiniband with 
4xQDR switches. Thanks to this kind of computational facility, the single CFD run takes about 
two hours to get a convergent solution using 32 computational cores. 

For the reference simulation, the geometry presented in Fig. 1 was used. The computation 
was performed selecting a uniform profile velocity field at inlet, choosing a value of 4 m/s as 
discussed above. At outlet, a condition of zero pressure was chosen. In Fig. 11, it is possible to 
see the pressure field along the duct. You can notice a localized pressure-drop corresponding to 
the catalyst activity as set according to Darcy’s law. The resulting flow patterns for both 
pressure drops and velocity distribution obtained are shown in Fig. 3 for the baseline CAD 
design. 

 
Fig. 3. Baseline CFD results: (a) Pressure distribution; (b) Velocity distribution 

3. Workflow automation 

The central point of this study is the automation procedure. The standard CFD workflow can be 
in fact automated and used to perform optimization thanks to standardization of CAD 
management, the meshing procedure and the post-processing of data and thanks to the usage of 
templates for the solving procedure. As shown in Fig. 4, the optimization is performed acting on 
the angles of attack of the turning vanes as input parameters for the single CFD run while the 
output is represented by the RSD value as defined by Eq. 5 in Section 1.  
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Fig. 4. Automatic workflow scheme. The optimization engine is Dakota (yellow box), the angle 

of attack of the turning vanes are the optimization variables, the parameter to be optimized is 
the RSD value computed at the filter entering surface. All the CFD runs, from mesh generation 

to data post-processing are automatic (orange box) 

Nevertheless, this process can be autonomously performed only if the single CFD block 
defined for each novel configuration of the turning vanes as defined by the optimization process 
is able to run without any external intervention. In Fig. 5, it is possible to see the diagram of the 
set of steps that have been standardized and automated relative to a single CFD block. The 
single CFD block consisting of six main steps: 

1. acquiring of the CAD base-line (reference geometry); 

2. definition of the turning vanes rotation values; 

3. update the CAD with novel turning vanes position; 

4. generation of a valid mesh; 

5. computation of the fluid dynamics solution; 

6. post-process data and RSD evaluation. 

The automation process of the standardized CFD block is performed using the Python 
programming language and a set of standard file format including the stereolithography (STL) 
for CAD description and the visualization toolkit (VTK, (see Schroeder et al.)) for data output. 
Both these kind of file formats are supported by OpenFOAM standard utilities and are therefore 
easily managed. 

 
Fig. 5. Single automatic CFD block 
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The open-source software Dakota (see Dakota User Manual) manages the optimization 
engine. This open-source software is able to use many different optimization algorithms. In this 
case, we are facing an unconstrained optimization and we therefore select a gradient-based 
method. The selected algorithm is very efficient and it is advantageous in terms of 
computational costs. The gradient-based method solves a number of sub-problems consisting of 
minimizing a quadratic function in a space defined by the gradient. Search directions are 
conjugated to the Hessian. In Dakota different methods to compute it are implemented, and we 
select the Fletcher-Reeves method (see Hestenes et al. 1952). For our test, in one optimization 
loop, it was possible to test about 60 different geometrical configurations at a time in 24 hours. 
Concurrency of multiple CFD runs is an entry parameter for the Dakota optimization driver that 
can be tuned to allow Dakota to submit a desired number of CFD runs at a time. Nevertheless, 
the key strategy to enable multiple CFD solutions at a time are the availability of an HPC 
platform and the choice of open-source building blocks. In fact, on one hand, without a large 
availability of computational resources each next CFD computation must wait until the end of 
the previous one is reached, but on the other hand, this would not be sufficient since a license-
based CFD solver would limit the actual number of concurrent CFD runs. This kind of 
approach, proven here to be robust and reliable, would be a novel valuable tool usable in the 
early design stage of this kind of expensive and complex energy plants.  

4. Results 

The main result of this study is the autonomous improvement of the RSD value for the selected 
test case that show a clear decreasing pattern from a starting value of about 54%, which 
indicates great non-uniformity in the velocity field, to a value of less than 45% as shown in Fig. 
6. These changes can be related to a great improvement in the overall efficiency of the power 
plant and to a specific improvement in the efficiency of the chemical reactions at the catalyst 
surface thus limiting the presence of unreacted ammonia in the outgoing fluid flow. 

 
Fig. 6. Optimization pattern for the RSD value 

The value of the RSD index is coherent to improved fluid dynamics of the catalyst inlet 
surface. Figure 7 shows the local distribution of the velocity values on the catalyst inlet surface 
for the two designs: on the left, the baseline design is shown whereas on the right, the improved 
optimal design is given. Notably, the velocity peak is strongly reduced ensuring a more uniform 
distribution and thus decreasing the risk of catalyst failures. 
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Fig. 7. Velocity field at catalyst entrance for the baseline design (left) and for the optimized 

design (right). 

Moreover, from the automation point of view, it is relevant to underline that the 
optimization process is able to evolve autonomously under a wide range of starting conditions 
and using different ranges to explore the turning vanes allowed angles. In all our tests, the 
workflow was able to reach the end of the search pattern without any failure.  

5. Conclusions and future work 

The results presented herein suggest that the automatic designed workflow works properly. By 
activating the rotation of turning vanes in the first corner upstream the catalyst, we obtained a 
reduction of the targeted RSD value of about 10%, reducing its value from 54% to 44%. 
Accordingly, the higher velocity-peak area is considerably reduced after the optimization 
process, decreasing the risk of catalyst failures. This main result of the study is per-se relevant 
but it became even more relevant if we consider that it has been obtained in an automatic way 
by the workflow starting from the reference configuration and moving separately each raw of 
the turning vanes wondering to reduce the value of the selected synthetic index. Nevertheless, 
RSD value remains rather high and a big recirculation area in the last corner can be noticed. 
These two problems are probably due to a separation in the first corner of the power plant 
selected design, persisting along the whole duct. Unfortunately, it is not possible to modify the 
walls geometry so some turning vanes should be added in the first corner to limit the problem. 
Looking at the RSD definition, some specifications must be done. RSD value is calculated 
using point values of the velocity field. The grid is much more refined near the wall than in the 
duct center. In this way, the near-wall region has a much higher weight in the RSD 
computation. It would be worth creating a window to rule out the near-wall region from RSD 
computation. Furthermore, another important feature in this problem is the orientation of the 
flow approaching the catalyst. To take account of this, it should be possible to define a RSD for 
the flow angles at catalyst entrance and operate a multi-objective optimization. In conclusion, 
the automated workflow proved to be effective on a real life test case, giving encouraging 
results. It would be interesting to define more powerful objective functions and operate multi-
objective optimizations to take into account different aspects of the problem. Furthermore, 
Dakota gives the possibility to use many different optimization algorithms and it would be 
worth comparing their performances with respect to our choice. It is worth to point out that 
gradient-based optimization methods are highly efficient, with the best convergence rates of all 
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of the optimization methods since they look for improvement based on derivative information 
and are a clear choice when the problem is smooth, unimodal, and well-behaved. However, 
when the problem exhibits a non-smooth, discontinuous, or multimodal behavior, these methods 
can also be the least robust since inaccurate gradients will lead to bad search directions. The 
procedure showed herein is only a proof of concept; a more generalized version of the study 
should be implemented in order to allow other researchers to use it. For this reason, the 
automation scripts and input files are not available for public download. 
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