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Abstract 

The aim of this study was to investigate the release performance of an electrospun composite 
drug loaded nanofiber mat. Electrospun nanofiber mats are promising as drug carriers which 
offer site-specific delivery of drugs to a target in the human body and may be used for cancer 
therapy. The authors have formulated a simple radial 1D finite element, which is used to model 
diffusion within fibers releasing a drug to the surrounding medium discretized by continuum 3D 
finite elements. The numerical model includes degradation effects and hydrophobicity at the 
fibers/surroundings interface. For the purpose of experimental investigation, a poly(D,L-lactic-
co-glycolic acid) (PLGA) implant has been created at the Faculty of Technology and 
Metallurgy, University of Belgrade. The radial 1D element provides accurate predictions of the 
diffusion process and serves as an efficient tool for describing transport inside the polymer fiber 
and surrounding porous medium; which is illustrated through numerical examples. 

Keywords: Radial 1D finite element, diffusion, drug transport, emulsion electrospinning, 
PLGA implants 

1. Introduction 

The encapsulation and controllable release of drugs, with achieving an enhanced therapeutic 
effect on drug delivery systems, were the subject of investigation of a number of authors in the 
past (e.g. Langer et al. 2003, Park et al. 1994, Borden et al. 2002). Among these drug-delivery 
systems, electrospun nanofiber mats are promising as drug carriers which offer site-specific 
delivery of drugs to a target in the human body, and may be used for wound healing and cancer 
therapy (Kenawy et al. 2002, Luo et al. 2012, Katti et al. 2004). Electrospinning is a technique 
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that utilizes the electric force to drive the spinning process and to produce polymer fibers 
(Ramakrishna et al. 2005, Fong 2007, Greiner and Wendorff 2007), and is capable of producing 
fibers with diameters in the nanometer range (10–1000 nm). Nanofibers obtained by 
electrospining are structurally homogeneous and are unlikely to encapsulate bioactive agents as 
nano-scaled particles. Recently, electrospinning of emulsions has produced composite 
nanofibers with nano-scaled drug particles surrounded/coated by emulsifiers/surfactants and 
impregnated in biocompatible and/or biodegradable polymers (Liao et al. 2008). Such a type of 
composite nanofiber mats possesses the characteristics of a controllable drug 
encapsulation/release vehicle. 

A composite nanofiber mat was prepared by electrospinning from an emulsion made of 
PLGA, Rhodamine B, sorbitan monooleate (Span-80), chloroform, N,N-dimethylformamide 
(DMF), and distilled water, as in (Liao et al. 2008). PLGA has been well recognized for its 
suitability in drug delivery due to its good biocompatibility and ability to achieve a complete 
drug release as a result of degradation and erosion of the polymer matrix. Furthermore, 
modeling the PLGA degradation and erosion is a prerequisite for drug release modeling, and 
mechanistic approaches are the most commonly employed (Sackett and Narasimhan 2011, 
Siepmann and Geopferich 2001). Accompanied and facilitated by PLGA degradation and 
erosion, drug release is significantly affected by the changing properties of the polymer matrix 
(porosity and PLGA MW) and such factors need to be captured in the diffusion drug transport. 

The hydrophobicity of electrospun nanofiber mats could play an important role in the 
determination of their overall performances as tissue engineering scaffolds. While 
macromolecular hydrophilic drugs are limited by diffusion through the pore space, relatively 
smaller hydrophobic drugs could diffuse through both the PLGA matrix and the pore space 
(Zhu et al. 2015). 

It is a challenge to adequately model by numerical methods the process of drug release 
from the fibers to the surrounding medium, with taking into account the transport conditions 
within the fibers (including degradation), in the medium, and at the interface between the fibers 
and the surroundings. The use of continuum elements for modeling fibers would require a huge 
effort for the finite element (FE) model generation and will lead to an enormous number of 
equations, therefore preventing the application to practical problems. In order to have a robust 
model, feasible for practical use, we here have introduced a radial 1D finite element which 
replaces a detailed modeling of fibers by continuum elements. 

We further provide fundamental equations of the radial 1D element and the equation of 
degradation implemented into our model, and we also include the hydrophobic effects. At the 
end, using simple examples, we demonstrate the applicability of the numerical model. 

2. Fundamental relations 

The diffusion domain in our model consists of fibers and surroundings filled with 
phenomenological fluid. The surroundings is modeled using 3D continuum elements, while the 
fibers are approximated by radial 1D elements. The radial elements can have 2 or more FE 
nodes. We further present equations for both of those cases. 

1.1 2-node radial 1D FE 

A fiber is represented by a line composed of segments aligned along the fiber axis, with the 
common points, as can be seen in Fig. 1a. At each common point we generate one radial 1D 
element (fictitious in the FE mesh representation) which serves to represent the diffusion within 
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the fiber volume belonging to the common point. This belonging volume is equal to 2R Lπ , 
where R  is the mean radius of the length L  belonging to the common point (it is (L1 +L2)/2 in 
Fig.1). Further on, we neglect the diffusion along the fiber axial direction, therefore the 
diffusion occurs radially from the fibers to the surroundings. 

With the above representation of the fibers and diffusion within the fibers, we are able to 
formulate a radial 1D finite element for the radial diffusion. At each common point of the fiber 
segments we introduce a radial 1D element which consists of two nodes, one in the middle of 
the fiber, and another at the fiber surface. Hence, node 1 is at the symmetry axis of the fiber, 
while node 2 is at the fiber surface. It is considered that node A of the 3D continuum (Fig. 1), 
closest to node 2 of the fiber, has the same concentration as node 2. 

       
a)              b) 

Fig. 1. Definition of 1D radial finite element 

Now we can use the mass balance equations of the 2-node 1D FE element (Kojic et al. 2008) as: 

 ( )1 1J J J J t
IJ IJ IJ IJM K C K C M C C

t t
+ ∆ = − − −

∆ ∆
 
 
 

 (1) 

where matrices IJM  and IJK are: 

 
0

2
R

IJ I JM L N N xdxπ= ∫  

 , ,
0

2
R

IJ I x J xK L N N xdxπ= ∫  (2) 

and L  is the belonging length of the fiber segments (which is (L1+L2)/2 for the segment in 
Fig.1).  

Therefore, our radial 1D finite element has the volume which belongs to the considered 
common point of the fiber segments and represents a radial diffusion through that volume. We 
are using linear interpolation functions: 

 1 21 ,     x xN N
R R

= − =  (3) 

with derivatives:  
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 1, 2,
1

x xN N
R

= − = −  (4) 

Now, we have: 

 11 22 12 21 2
0

2 R

fiber fiber
LK K K K D xdx LD

R
π π= = − = − = =∫  (5) 

where Dfiber is diffusion coefficient through the fiber volume. The “mass” matrix M is: 

 2IJ I J
L

M L xN N dxπ= ∫  (6) 

and 

 11 1 1
0

22
2
12

R

M L xN N dx
L Rπ

π
= =∫   

 2
12 21 1 2

22
12R

LM M L xN N dx Rππ= = =∫  (7) 

 2
22 2 2

22
4R

LM L xN N dx Rππ= =∫   

2.1 N-node radial 1D FE 

We note that 2-node implies that the radial profile of concentration is linear, which is the first 
approximation of the true distribution. In order to have a nonlinear radial profile of 
concentration, and the corresponding (more accurate) flux from the fibers to the surroundings, 
we introduced radial elements with more than one node – i.e. with sub-elements, as shown in 
Fig. 2. 

 
Fig. 2. Radial 1D element with sub-elements 

The length of each sub-element is L=R/n, where n is the number of sub-elements. We are 
using interpolation functions of the same form as for the 2-node radial element (3): 
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 1 21 ,     x xN N
L L

= − =  (8) 

with 

 1, 2,
1

x xN N
L

= − = −  (9) 

Here we start with a local coordinate x=0 at the node on the left, with radius Ri. Matrices of 
the element for this case are: 

 ( )11 22 12 21 2
0

2 2
2

L

fiber i fiber i
L L LK K K K D R x dx D R

LL
π π  = = − = − = + = + 

 ∫  (10) 

 ( )2IJ i I J
L

M L R x N N dxπ= +∫  (11) 

From (8) and (9) follows (after a corresponding derivation): 

 ( )11 1 1
0

1 12 2
3 12

L

i iM L R x N N dx LL R Lπ π  = + = + 
 ∫  (12) 

 ( )12 1 2
0

1 12 2
6 12

L

i iM L R x N N dx LL R Lπ π  = + = + 
 ∫  (13) 

 ( )22 2 2
0

1 12 2
3 4

L

i iM L R x N N dx LL R Lπ π  = + = + 
 ∫  (14) 

The calculation of initial concentration of drug in the fiber in case when using sub-elements 
is presented in the following subsection. 

2.3 Determination of initial drug concentration at fiber nodes in case when number of sub-
elements is greater than 2 

The number of sub-elements affects the value of initial concentration that has to be prescribed 
at the fiber nodes at the start of an FE simulation. We further provide the derivation of the 
initial concentration based on the number of sub-elements. The mass of drug within a fiber 
segment is: 

 2
0 02

R

m Lc x dx R Lcπ π= ⋅ =∫  (15) 

where 0c  is the initial concentration of the impregnated drug. In case with n sub-elements, the 
concentration within the first n-1 elements can be considered constant, while in the last sub-
element it is in the range from 0

nc to 0, where 0
nc is the initial concentration which has to be 

determined. In such case,the mass within a fiber segment, consisting of n sub-elements, is: 

 1

1
1 2 0 0

2 2n

n

R Rn
n n n xR

m m m Lc xdx L c xdxπ π−

−

= + = +∫ ∫  (16) 

where 1nm  is th emass within the first n-1 segments, 2nm  is the mass in the last nth segment, and 
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n
nR R

n−

−
=  (17) 

is the radius at the first node of the nth sub-element. The concentration along nth sub-element is 
linearly changing according to the following equation: 

 1
0

1

(1 ) nn
x

n

x R
c c

R R
−

−

−
= −

−
 (18) 

Using (17) it follows from (18): 

 0 ( )n
x

nc c R x
R

= −  (19) 

where x  is changing from 1nR − to R , with 1 /nR R R n−− = . Now we have the following 
equations: 

 
2

2
1 0

1 n
n

nm R Lc
n

π− =  
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n
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R n
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from which follows: 

 
2

2
1 2 02

3 3 1
3

n
n n n

n nm m m R Lc
n

π
 − +

= + =  
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Using (15) and (21) we have finally: 

 
2

0 02

3
3 3 1

n nc c
n n

=
− +

 (22) 

This is the value that has to be prescribed at each node of the sub-elements as the initial 
concentration, except at the node on the fiber surface - which is equal to zero.  

2.4 Degradation and erosion effect on diffusion within PLGA nanofibers 

In case when degradation and erosion is present in the model we assume that diffusion 
coefficient of the drug inside the fiber can be calculated according to (Zhu and Braatz 2015). 
The complete set of equations for describing the drug release through the PLGA polymer is 
summarized in Table 1 for clarity. 

 

Drug Transport ( , )e w
c cD M
t x x

φ∂ ∂ ∂ =  ∂ ∂ ∂ 
 

Effective diffusivity 
(1 )

1
s l

e
D D

D
φ κφ

φ κφ
− +

=
− +

 

Diffusivity in polymer solid 0
,0

w
s s

w

M
D D

M

α−
 

=   
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PLGA average MW molecular weight) ,0
wk t

w wM M e −=  

Porosity change 2(1 )(1 2 )kt kte e− −
0 0φ = φ + − φ + −  

Table 1. Coefficient determined experimentally and computed by approximate expressions 

Input parameters for the model with degradation and erosion effect are: 

- De - effective drug diffusivity that is dependent on the evolving MW and porosity (ϕ) 

- Ds - diffusivity in the polymer phase (Ds),  

- Dl - diffusivity in the liquid-filled pores (Dl) 

- Mw - PLGA average MW 

- Mw,0 - the initial weight-average MW,  

- 1.714α =  - according experiment  
- k and kw are degradation rate constants: k = kw = 2.5 x 10–7 s-1 

- φ  - porosity  

- 0φ = 0 - initial porosity of zero is used in the simulation 

- P - drug partitioning between the liquid-filled pores and solid PLGA phase 

- t - time 

The practical procedure for including degradation and erosion effect in our model is as 
follows: Based on the current time t of simulation, according to the equation from Table 1, 
effective diffusion coefficient De is calculated and used as Dfiber 

for radial 1D elements. 

3. Model of PLGA implant 

A complete PLGA implant has dimensions of 3 x 4 cm, with thickness of 160 µm. The 
morphology of the nanofiber mats was examined by scanning electron microscopy (SEM), wich 
was performed at the Faculty of Technology and Metallurgy, Fig.3 (left). The network of fibers 
is reconstructed from the SEM image of 90x90 µm using indoor software, Fig.3 middle panel. 
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Fig. 3. Procedure for model generation. a) SEM images showing morphologies of the nanofiber 

mats, b) RReconstructed mesh of 1D fibers; c) FE model consisting of 1D fibers and 
surrounding 3D FE mesh 

By randomly duplicating and displacing the generated layer of 1D fibers into a longitudinal 
direction of the modeling domain, we can generate a realistic mat of fibers within any implant. 
Assuming symmetric conditions, we can model just one half of the implant. Also, assuming 
similar configuration of the fibers, and with the assumption that diffusion occurs in the radial 
direction, we can model just one part of the implant. So, the dimensions of our FE models are: 
80x90x90 µm. 3D FE mesh is with 64512 nodes and 36864 elements, and the number of radial 
1D elements within the system is related to porosity of the model and was in the range of 1895 - 
7580. 

 
Fig. 4. Configuration of the FE model, with symmetry conditions applied 

We assume that the diffusion coefficient of Rhodamine B in pore space (a space between 
fibers) is as the one in water, and the diffusion coefficient of Rhodamine B within fibers (a fiber 
with impregnated drug inside) is Dfiber = 4x10-10 cm2/s, which is taken from (Ruiz-Esparza G. et 
al. 2014), which was approximately 104 times lower than the one in water. The time period of 
simulation was 75 days. We used 15 times steps with 5 days each (15 x 5day = 75 days). The 
boundary conditions of the model are: prescribed concentration C0 in fibers, and c = 0 at the 
outer boundary of the implant (the boundary where mass release is measured). 

4. Results 

The concentration change for a few different time moments is presented in Fig.5. 
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Fig. 5. Concentration change in PLGA fibers and 3D surroundings for diffusion process of 

Span-80/RhB complex within PLGA implant 

The porosity of implant is tuned by changing the number of reconstructed fiber layers 
within the diffusion domain, and by changing the thickness of one layer. The model with three 
different porosities is shown in Fig.6.  

 
Fig. 6. Implant models with porosity of a) 64%; b) 42%; c) 14 % 

The partitioning coefficient (P) reflects the hydrophobicity of the drug. The smaller the 
partition coefficient, the less water-soluble the drug is and the higher tendency of the drug to 
stay within the polymer solid. The effect of the partitioning coefficient is illustrated in Fig. 7 by 
fixing the other parameters (e.g. drug diffusivities in the polymer solids and aqueous phase). 

The influence of partitioning coefficient (hydrophobicity) is shown in Fig 7a, while the 
influence of porosity of the model on mass release for the model without partitioning is 
presented in Fig 7b. It can be seen that porosity (the number of fibers in the system) affects the 
amount of mass passing through the diffusion domain within a given time interval. For lower 
porosities, a large number of fibers prevents molecules to travel through a nanofiber mat. In our 
model we incorporated scaling functions for Rhodamine B molecule, obtained by MD 



Journal of the Serbian Society for Computational Mechanics / Vol. 11 / No. 1, 2017 
 

 

91 

91 

simulations (Ziemys et al. 2011). Scaling functions takes into account the distance of a diffusion 
molecule from the nanofiber and the diameter of the molecule. It is obvious that for denser 
nanofiber mats molecules are constrained to movement, which is shown in Figure 7a. 

     
a     b 

Fig. 7. Drug release vs. Time diagrams. a) Effects of model porosity; b) Drug partitioning on 
drug release 

We have also used a smeared model (based on the formulation given in (Kojic et al. 2017; 
details are not presented here). In the smeared model we used the same parameters as for the 
above described detailed model: Diffusion coefficient of the diffusing drug within the PLGA 
matrix is D = 0.04 µm2/s, and the other parameters are: Partitioning coefficient: P = 106, 
Degradation rate constants: K = Kw = 2.5x10-7, Alfa = 1.714, Initial porosity = 0, Dplga = 10-8 
µm2/s, and Dliquid = 0.04 µm2/s.  

   
Fig. 8. Drug release profiles for constant diffusivity and for case with degradation 

As can be seen from Fig.8, using a constant diffusivity in the polymer coating results in a 
very limited release. However, when using an equation which includes a degradation effect, a 
contribution from diffusion through the pores is significant. As this result suggests, the 
simultaneous diffusion through the polymer solid with the pore space changing is the most 
appropriate mechanism for describing release in a PLGA implant, which is captured in our 
model. The model is built in our FE program PAK (Kojic et al. 1998, 2017). 
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4. Conclusions 

A radial 1D finite element is developed in order to model drug transport from drug loaded 
nanofibers. The 1D element incorporates partitioning and degradation effects which are 
important for modeling drug transport for drugs, used in practice, from commonly fabricated 
nanofibers. This concept offers computational modeling of drug transport within multilayered 
nano-implants used in tissue engineering, cancer healing and postoperative therapy. 
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