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Abstract 

Materials with low thermal conductivity, high electrical conductivity, and high Seebeck 
coefficient are required for high efficiency solid-state energy conversion. Although 
semiconductors are the best thermoelectric materials, they rarely have the desired properties. 
Nanostructures such as superlattices, quantum wires, and quantum dots provide novel methods 
to improve the solid-state energy conversion efficiency through electron and phonon transport 
engineering. In this paper a semiconducting superlattice consisting of periodic nano layers of 
silicon and germanium has been studied. Due to nano scale effects, conductive heat transfer 
does not satisfy the Fourier's law of thermal conduction, and the equation of phonon radiative 
transfer has been solved instead. A computational method similar to Discrete Ordinate Method 
in thermal radiation was implemented, and the equations were solved numerically. The results 
show that the thermal conductivity of the nano structure is much lower than the macro 
structures with the same aspect ratio. It was also noticed that with a constant ratio of layers’ 
thicknesses, more reduction in layers’ thicknesses causes more temperature jump at the 
interfaces and consequently more reduction in the effective thermal conductivity, that finally 
improves the thermoelectric properties. It was also shown that the effective thermal 
conductivity depends on the density of interfaces per unit length of the superlattice, when the 
heat flow direction is perpendicular to the layers. 

Keywords: Solid-State Energy Conversion, superlattices, equation of phonon radiative transfer, 
nanoscale heat transfer 

1. Introduction

Nowadays, direct energy conversion is very important for electrical power generation. 
Implementation of heat sources instead of electrical power for refrigeration is also a serious 
challenge. Solid state energy conversion by means of thermoelectricity is a direct energy 
conversion method that can be used for both power generation and refrigeration. Thermoelectric 
generators operate based on the Seebeck effect, while thermoelectric refrigerators work based 
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on the Peltier effect. For example, radioisotope thermoelectric generators (RTGs) are used in 
space crafts for deep space exploration. These generators directly convert the heat of radio 
isotope fuel to electricity. The RTGs used in Galileo, Ulysses and Cassini space crafts are so 
designed that the required heat is provided through plutonium dioxide fuel (238) that totally 
generates 4400W power for RTG. RTG consists of 572 Si-Ge thermoelectric modules 
generating 300W electrical power. The hot and cold junctions' temperatures are 1000°C and 
300°C, respectively. Consequently, it is obvious that the efficiency of these generators is very 
low (less than 10%). A method to increase the efficiency is to improve the properties of 
thermoelectric materials that are effective in energy transport. 

Figure of merit is representing the efficiency and energy density of thermoelectric materials 
and can be defined in a nondimensional form as: 

2ZT S T kσ= (1) 

where S is the Seebeck coefficient, k is the thermal conductivity and σ is the electrical 
conductivity. Electrons and phonons are the energy carriers, causing conductive heat transfer in 
solids. Phonon is the quantum of vibrational energy of lattices in solids. Insulating materials 
have low electrical conductivity, and metals have relatively low Seebeck coefficients. 
Furthermore, thermal conductivity of metals, mostly controlled by electrons, is proportional to 
their electrical conductivity. So, metals do not have high figures of merit; however, we can find 
the highest figures of merit in the semiconductors (Chen et al. 2002). In semiconductors, the 
phonon thermal conductivity, pk , is much higher than the electron thermal conductivity, ek , 
and the phonon thermal conductivity can be reduced significantly, while the electron thermal 
conductivity reduces slightly. A proven approach to reduce the phonon thermal conductivity is 
through alloying (Ioffe 1957). The mass difference scattering in an alloy reduces the lattice 
thermal conductivity significantly without much degradation of the electrical conductivity. The 
traditional cooling materials are alloys of 2 3Bi Te  with 2 3Sb Te (such as 0.5 1.5 3Bi Sb Te , p-type) 
and 2 3Bi Te  with 2 3Bi Se (such as 2 2.7 0.3Bi Te Se , n-type), with a ZT approximately equal to one 
at room temperature (Rowe 1995). Materials with ZT ~ 1 cannot compete with the conventional 
fluid-based cooling and power generation technologies. For this purpose, we must produce 
materials with ZT of 3 or more (Casian et al. 2004 and Alam et al. 2012). Fortunately, based on 
electron and phonon transport engineering, great improvements for increasing ZT have been 
achieved. For example, the implementation of semiconductor nano composites with fixed 
electron transport properties, may result in higher values of ZT by lowering the phonon thermal 
conductivity (Yang et al. 2005). 

So far, the study of heat transfer in microscales, and thermal properties of microstructures 
has been of interest to researchers and scientists. Casimir verified scale effects on phonon 
transport at low temperatures (Casimir 1938). Holland investigated the scattering of phonons in 
semiconductors through thermal conductivity study (Holland 1964). Pohl and Stritzker studied 
the scattering of phonons on crystal surfaces (Pohl et al. 1982). They investigated the scattering 
of phonons on crystal surfaces through measuring the thermal conductivity of crystalline 
insulations at very low temperatures. Tom, et al. studied the surface scattering and radiative 
heat transfer of phonons (Tom et al. 1988). They used crystals with high quality specular 
surfaces so that the chance of diffusive scattering was very low. Joshi and Majumdar, 1993 
studied the transient ballistic and diffusive phonon heat transfer in thin layers (Joshi et al. 
1993). Chen studied the effects of size and interface on thermal conductivity of superlattices 
and structures with thin alternate layers in parallel direction with layers (Chen 1997). Raisi and 
Rostami investigated the transient heat transfer in a superlattice composed of alternate layers of 
GaAs/AlAs in transverse direction (Raisi et al. 2002). Yang and Chen modeled the effective 
thermal conductivity of a two-dimensional alternate nanocomposite consisting of squared 
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nanowires of silicon in a germanium substrate. They solved the equations of Boltzmann transfer 
and phonon radiative transfer and attained the thermal conductivity of the nanocomposite in the 
direction of heat transfer, which is perpendicular to the axes of nanowires. Lukes and Tien used 
molecular dynamics simulation to achieve thermal conductivity (Lukes et al. 2004). They 
studied a thin nano porous layer and searched for the effects of nano pores location on 
thermophysical properties, especially the thermal conductivity. Yang, et al. obtained the 
longitudinal thermal conductivity of a nanocomposite consisting of circular nanowires of silicon 
in germanium substrate (Yang et al. 2005). Nabovati et al. employed the Lattice Boltzmann 
Method (LBM) to study the phonons transport in crystalline structures (Nabovati et al. 2011). 
Garg and Chen computed the thermal conductivity of Si-Ge superlattice from density functional 
perturbation theory, using relaxation times that include both anharmonic and interface 
roughness effects (Garg et al. 2013). Tian et al. (2014) applied the atomistic Green's function 
method to calculate the phonon transmission across Si-Ge superlattices. They have shown that 
there is an optimum length, resulting from the competition between the coherence of low-
frequency phonons and incoherence of high-frequency phonons caused by interface scattering 
when anharmonicity is negligible (Tian et al. 2014). Sellitto used a phonon-hydrodynamic 
approach to obtain a simple mesoscopic model allowing estimating the effective thermal 
conductivity of a quantum dot superlattice, sketched as a solid matrix of silicon with inclusions 
of small ellipsoidal obstacles of germanium (Sellitto 2015). Hua and Cao studied the ballistic 
and diffusive heat conduction in nanostructures. They derived a thermal conductivity model for 
multiply-constrained nanostructures, from the phonon Boltzmann transport equation and they 
found that their model agrees well with Monte Carlo simulation and experimental data for 
silicon nano films and nano wires (Hua et al. 2016). 

In this research, the phonon radiative transfer equation will be solved numerically to obtain 
the temperature distribution and the effective thermal conductivity of Si-Ge superlattices. To 
the best of authors’ knowledge, the effect of the density of interfaces per unit length of 
superlattices has not been reported in the literature, thus, the main purpose of this research is to 
investigate the influence of this useful parameter on the effective thermal conductivity of the 
semiconductor superlattices. 

2. Research Perspective

In this research, a semiconductor superlattice consisting of periodic thin layers of silicon and 
germanium as shown in Fig.1 is studied. The primary goal is to study the steady state heat 
transfer flow perpendicular to the layers of superlattice, with fixed temperature at both ends. 
Temperature changes and thermal conductivity diagrams for different values of layers’ 
thicknesses have been drawn covering a wide range of Knudsen numbers. Comparing the 
thermal conductivity in superlattices with similar structures having macro dimensions and the 
dependence of thermal conductivity on the interfacial density per unit length are other important 
goals of this paper. 

2.1 Governing Equations 

The conventional continuum-based physical relations describing heat and fluid flow in bulk 
systems, such as the Navier–Stokes and Fourier equations, do not apply at microscopic scales 
(Chen 2005). With the macroscopic dimensions and scales, the thermal conductivity may be 
computed based on the kinetic theory of gases using the following relation: 

1
3

k Cv = Λ 
 

(2)
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Fig. 1. A semiconductor superlattice consisting of silicon-germanium layers 

Where C is the volumetric specific heat, v the phonon group velocity, and Λ  the phonon 
mean free path. If the characteristic length is nearly equal or smaller than Λ , due to the ballistic 
nature of phonons, this relation is not valid and Fourier's law is not applicable. Fourier's law 
fails to predict the thermal conductivity of nano structures. More precisely, for a local 
temperature difference when Fourier's law is not applicable, the thermal conductivity concept is 
meaningless (Casimir, 1938), but that is still a suitable parameter and can be used to measure 
the size effects in nano structures. In other words, the thermal conductivity is not an inherent 
property, but a structural property. Because the characteristic length is sufficiently larger than 
the coherence length in this research, the wavy nature of phonons can be neglected and they are 
treated as particles. Therefore, the Boltzmann Transport Equation (BTE) is used as the basic 
governing equation. Because the characteristic length in this problem is nearly equal or smaller 
than the phonons mean free path, the ballistic behavior of phonons is dominant. Thus, with 
implication of phonon radiative intensity idea, we can solve the Equation of Phonon Radiative 
Transfer (EPRT), which is a differential-integral equation. The BTE with single relaxation time 
assumption (BGK assumption (Bhatnagar et al., 1954)) and without any external force is 
expressed as: 

0

.
r

f f fv f
t τ

∂ −
+ ∇ =

∂
(3) 

Where f is the phonons' distribution function, v the phonons' group velocity, rτ  the 
relaxation time, and the superscript 0 shows the equilibrium state. The total phonon intensity 
defined as follows can be substituted for phonons' distribution function: 

max

0

1 ( )d
4i mi mi

m
I v f D

ω
ω ω ω

π
= ∑∫    (4) 

In this relation the subscript i indicates the material (i=1 refers to germanium and i=2 refers 
to silicon), ( )D ω is the density of states per unit volume, f the phonons' distribution function,   
the Plank's constant, miv  the phonons' group velocity magnitude, ω  the phonons' frequency, 

maxω  the phonons' maximum frequency for each polarization, and the subscript m shows three 
polarizations of phonons. In steady conditions, using the total phonon intensity, Eq. (3) can be 
written as follows: 



Journal of the Serbian Society for Computational Mechanics / Vol. 11 / No. 1, 2017 33 

0

cos sin cos sin sin

x y z
r

x y z

I II I Iv v v
x y z

v v v v v v
τ

θ θ φ θ φ

−∂ ∂ ∂
+ + =

∂ ∂ ∂
= = =

(5) 

After substitution and simple manipulations, the equation of phonon radiative transfer can 
be written as: 

0cos sin cos sin sin i ii i i
i i i i i

i

I II I I
x y z

θ θ φ θ φ
−∂ ∂ ∂

+ + =
∂ ∂ ∂ Λ

(6) 

Where iΛ is the average phonons' mean free path of each material, the product of relaxation 
time and group velocity magnitudes, and 0iI is the equilibrium phonon intensity defined as: 

( ) ( ) ( )
2

0
4 0 0

1 1, , , , , , , sin
4 4i i iI x y z I r d I x y z d d

π π

π

θ φ θ θ φ
π π

= Ω Ω =∫ ∫ ∫   (7) 

As shown in Fig. 2, θ  and φ are the polar and azimuthal angles, respectively. 

Fig. 2. The coordinate system, the polar, and azimuth angles 

2.2 Domain of solution 

According to Fig. 3, the domain of solution consists of a Si layer between two Ge half layers 
constructing a periodic unit cell of superlattice. Then 1K temperature difference is applied to 
both sides of the unit cell, while steady conditions prevail. After solving the temperature field 
and modeling the thermal resistance, we can see how the effective thermal conductivity is 
reduced. Three types of nodes exist in the solution domain. The first type is the typical nodes 
present in Si or Ge media, the second type is the nodes on the boundaries, and the third type is 
the interfacial nodes. For each type of nodes, we should implement the appropriate equation to 
get ( ),I x θ , ( )0I x , and finally solve the temperature field in the entire domain. 
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Fig. 3. Solution domain consisting of a Si layer and two Ge half layers 

2.3 Typical nodes 

For these nodes, Eqs. (6) and (7) are simplified; in one dimensional case the following 
equations are obtained: 

( ) ( ) ( )
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(8) 

The numerical method used to solve this equation is similar to discrete ordinate method in 
radiation heat transfer. Due to the positive or negative directions of phonon transfer as shown in 
Fig. 4, the differential term in Eq. (8) should be forward or backward differenced, respectively: 

1 1cos cos cos cosi i i i i i
i i i i

I I I I I I
x x x x

θ θ θ θ
+ + + − − −

− +∂ − ∂ −
= =

∂ ∆ ∂ ∆
  (9) 

Fig. 4. Forward and backward differencing based on phonon directions 

2.4 Boundary nodes 

From a mathematical point of view, the structure of the Boltzmann transport equation is such 
that we need to know the boundary conditions only on the boundaries that phonon intensities 
enter the domain. Therefore, in Fig. 3 intensities in positive x direction should be known for the 
left boundary, and for the right boundary we should know the intensities in negative x direction. 
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Therefore, at boundaries 0x = and Ge Six L L= + we use periodic boundary condition based on 
energy conservation in x direction. In equilibrium state, phonon intensities are isotropic and 
independent of direction. However, if there is a heat flow that is an indication of thermal non-
equilibrium condition, phonon intensities will be distorted.  

From a physical point of view, the periodic boundary condition (Yang et al. 2004) in the x 
direction means that the distortion of phonon intensity in any direction in the boundary 0x = is 
the same as that in the boundary Ge Six L L= + . Therefore, this condition will be defined as 
follows: 

( ) ( ) ( ) ( )0 00, 0 ,Ge Si Ge SiI I I L L I L Lθ θ− = + − +   (10) 

This condition conserves the total heat flux in x direction. 

2.5 Interface nodes 

We assume that the phonon scattering at the interfaces is diffusive, thus the transmission and 
reflection coefficients will be defined using the diffuse mismatch model, DMM. 

2 2
12 12 21 12 12

1 1 2 2
1 C vR T T R T

C v C v
+ = = =

+
(11) 

The DMM is based on the fact that the phonon scattering is totally diffusive at interfaces. 
This model assumes that phonons arrive at interfaces from different directions. Therefore, 
virtually we can assume that a phonon stays at interface and the direction of its motion towards 
region 1 or 2 is not predictable. Distribution of phonon intensity is shown in Fig. 5 qualitatively. 

Fig. 5. Diffuse phonon intensity on the interface points 

The total diffusive phonon intensity for the first interface of the solution domain is as 
follows: 
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2.6 Temperature field and thermal conductivity modeling 

After achieving the total phonon intensity in the whole domain, we should undergo a process to 
find the temperature field and to model the effective thermal conductivity in the heat transfer 
direction.  

In nanoscale studies temperature is not a criterion for local thermal equilibrium. However, 
having ( )0I x at each plane of superlattice, temperature could be defined as the local energy 
density at that plane (Yang et al., 2005) according to the following equation: 

( ) ( )04 I x
T x

C v
π

= (13) 

Then, by integrating the phonon intensity on the entire solid angle we can find the rate of 
heat transfer in transverse direction as follows: 

( ) ( )
2

0 0

, cos sinxQ I x d d
π π

θ θ θ θ φ= ∫ ∫   (14) 

Finally, the following equation for modelling the effective thermal conductivity is 
obtained: 

( ) ( ) ( )( )0x Ge Si Ge Sik Q L L T T L L= + − + (15) 

2.7 Thermal conductivity in macrostructures 

To compute the thermal conductivity in macrostructures of Si-Ge, we can use the Fourier's law 
of conduction and its results for thermal resistances. For this purpose, by using the conventional 
heat transfer equations and combined layers resistance, in the absence of contact resistance 
between the layers, we finally obtain the equivalent thermal conductivity as follows: 
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1 2
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(16) 

The numerical solution of the governing equations requires to define a two-dimensional 
matrix for ( ),I x θ  and a one-dimensional matrix for ( )0I x .Then we should discretize the 
governing equations. For example, using forward and backward differencing, Eq. (8) is 
converted to: 
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 (17) 

The numerical modeling of the equations has been performed using FORTRAN language 
and iterative method. The associated properties are listed in Table (1). Using the properties 
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listed in Table 1, the phonon mean free path for Si and Ge is obtained 268nm and 198nm, 
respectively. 

Table 1. Ge and Si properties at room temperature 

3. Results and Discussion

In this research we investigate the influence of the thickness of Si and Ge thicknesses and their 
ratio on the temperature distribution across the layers, and on the thermal conductivity. The 
ratio of the Ge layer thickness to the Si layer thickness is specified in Table 2. 

4.524 1.697 1.131 0.754 0.283 Ge SiL L

80% 60% 50% 40% 20% Ge atomic percentage 

Table 2. The ratio of Ge to Si thickness versus Ge atomic percentage 

3.1 The effect of layers’ thicknesses on temperature across the layers 

In Figs. 6-10, the temperature profiles across a periodic unit are shown for a total temperature 
drop of 1K. In each figure, three different values are chosen for Si layer thickness
( 5,150,16000 )SiL nm= . 

The thickness of Ge layer in each case is related to its atomic percentage. When the Si 
thickness is 16000 nm ( 16000SiL nm= ), the thickness of layers is much larger than the mean 
free paths of layers, and therefore the totally diffusive effect is dominant in the conductive heat 
transfer and the Fourier's law is valid. Thus, in Figs. 11-15 there is not any temperature jump at 
the interfaces. 

When the Si thickness is 150 nm ( 150SiL nm= ), then the minimum and maximum Ge 
thicknesses are ,min 42.45GeL nm= and ,max 678.6GeL nm= , respectively. In this case, both the 
ballistic and diffusive mechanisms are effective. 

Therefore, we can see the temperature gradient across the layers, and the temperature jump 
at the interfaces, simultaneously. According to Figs. (6) to (10), as the Ge thickness increases 
from 42.45 to 678.6 nm, the role of ballistic mechanism reduces and the temperature jumps are 
smaller. 

Finally, in the case of 5SiL nm= , the thickness of both layers is much smaller than the 
mean free paths, and the mechanism of conductive heat transfer is only ballistic. In fact, in this 
case the phonons do not have any collision across the layer and they hit the boundaries instead, 
that causes temperature jumps at the interfaces. 

( /kgρ( )a nm( / )M kg kmol( / )k W mK  ( / sec)v m  3( / )C J m k  

2330 0.5431 28.085 150 1804 930000 Si 

5323 0.5658 72.610 60 1042 870000 Ge 
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Fig. 6. Temperature profile across the superlattice (20% Ge) 

Fig. 7. Temperature profile across the superlattice (40% Ge) 



Journal of the Serbian Society for Computational Mechanics / Vol. 11 / No. 1, 2017 39 

Fig. 8. Temperature profile across the superlattice (50% Ge) 

Fig. 9. Temperature profile across the superlattice (60% Ge) 
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Fig. 10. Temperature profile across the superlattice (80% Ge) 

Fig. 11. The effect of Si thickness on thermal conductivity of superlattice (20% Ge) 
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Fig. 12. The effect of Si thickness on thermal conductivity of superlattice (40% Ge) 

Fig. 13. The effect of Si thickness on thermal conductivity of superlattice (50% Ge) 
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Fig. 14. The effect of Si thickness on thermal conductivity of superlattice (60% Ge) 

Fig. 15. The effect of Si thickness on thermal conductivity of superlattice (80% Ge) 

3.2 The effect of layers thickness on heat flux and thermal conductivity 

Figures 11-15 show the variation of the effective thermal conductivity versus Ge atomic 
percentage. Each figure represents a specific ratio of the layers’ thicknesses. The figures 
indicate that thermal conductivity increases with increasing the layers’ thicknesses. According 
to these figures, it is obvious that the thermal conductivity depends on layers’ thicknesses and 
as layers thickness reduces, the thermal conductivity also reduces. In fact, when the layers 
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thickness is reduced, the effect of thermal boundary resistance and consequently the total 
thermal resistance is increased, and therefore the heat flux reduces. Finally, according to Eq. 
(15), the reduction in heat flux causes the reduction in the effective thermal conductivity. 

However, with increasing the layers’ thicknesses in each figure, the thermal conductivity 
approaches the macrostructure thermal conductivity value that is computed from Eq. (16) which 
is an important check point for the code validation. For example, in Fig. 13 that is for 50% of 
Ge atomic percentage, the thermal conductivity begins from 0.77 W/mK for 2.5nm Si layer 
thickness and finally approaches to 83.5 W/mK that is the thermal conductivity of 
macrostructure. 

It is obvious from the figures that by fixing the thickness of Si layer, and simultaneously 
increasing the thickness of Ge layer, the thermal conductivity will increase. It is also seen that 
by fixing the thickness of Ge layer and increasing the thickness of Si layer, the thermal 
conductivity will increase. As mentioned before, when the Si thickness is fixed, the effective 
thermal conductivity will increase as Ge thickness is increased. For example, in Fig. 16, the Si 
thickness is 100 nm and it can be seen that thermal conductivity increases as the Ge thickness 
grows. For considerable increase in Ge thickness, the thermal conductivity approaches the bulk 
value of Ge thermal conductivity, namely 60 W/mK. 

Fig. 16. The variation of thermal conductivity versus Ge length at constant Si thickness 

3.3 The importance of interface density per unit length 

In Fig. 17, the change of thermal conductivity versus a useful parameter named interface 
density per unit length is demonstrated. It is seen that as the interface density increases, the 
thermal conductivity reduces. 

As shown in Fig. 17, points with different atomic percentages are scattered irregularly 
between each other. It means that the density of interface per unit length is an important 
parameter in the study of thermal conductivity in superlattices, when heat flow direction is 
perpendicular to the layers. We can, therefore, find the thermal conductivity of a Si-Ge 
superlattice from Fig. 17, when computing the density of the interfaces per unit length. 
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4. Conclusions

By reducing the thickness of both layers in nanometer scale, it is noticed that the temperature 
jumps at interfaces grows, while the heat flux and the effective thermal conductivity are 
reduced. Although, if one of the layers has a nanoscale thickness but the other one has a 
macroscale thickness, there is no nanoscale effect and the effective thermal conductivity 
approaches the bulk value of the thicker layer. 

The main effective parameter is the interface density per unit length that is more practical 
than the atomic percentage of the constituents. Without any attention to the ratio of layers, by 
increasing the interface density, the effective thermal conductivity reduces. 

Finally, the reduction in the effective thermal conductivity will increase the figure of merit, 
and eventually improves the efficiency of thermoelectric materials.  

Fig. 17. The variation of thermal conductivity versus interface density per unit length 
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