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Abstract 

In the current study, the elastic field in an anisotropic elastic media is determined by 
implementing a general semi-analytical method. In this specific methodology, the displacement 
field is computed as a sum of finite functions with unknown coefficients. These aforementioned 
functions exactly satisfy both the homogeneous and inhomogeneous boundary conditions in the 
proposed media. It is worth mentioning that the unknown coefficients are determined by 
implementing the principle of minimum potential energy. The numerical integration is done by 
employing the Generalized Gaussian Quadrature rule. Furthermore, and with the aid of the 
calculated unknown coefficients, the displacement fields as well as the other parameters of the 
elastic field are obtainable. Finally, the comparison of the previous analytical method with the 
current semi-analytical approach proposes the efficacy of the present methodology. 
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1. Introduction 

Determining the elastic field in an anisotropic material using an analytical method is always 
regarded as a time-consuming process, especially if the geometry of the assumed media is 
complex. In general, a proper Airy stress function proposed for an elastic or rigid media 
subjected to a specific loading (Gdoutos 2003, Kabir et al. 2011, Seif et al. 2015, Mitchell et al. 
2016, Alshaya et al. 2017). In this specific method, the proposed function is generally dependent 
on the geometry of the assumed problem. In the literature, the minimum potential energy method 
could be implemented for composite materials using a semi-analytical method (Weertman et al. 
1996, Kabir et al. 2010, Seif et al. 2016, Seif et al. 2017, Kabir et al. 2017). Where in these cases, 
the elastic field for an assumed media is considered under the applied mechanical loading. In 
addition, the minimum potential energy method for a cracked anisotropic media is employed 
using a semi-analytical method (Kabir 2005, Hojatkashani et al. 2012, Zarrinzadeh et al. 2016, 
Alaedini et al. 2016, Zarrinzadeh et al. 2017). To go further beyond that, the minimum potential 
energy method has been taken into consideration to find the stress concentration in elastostatics 
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(Morley 1969, Lu et al. 2007). It is worth noting that the energy-based methods are presented to 
find the inter-laminar stresses in a layered anisotropic media (Kabir et al. 2007, Daouadji 2007, 
Eslami et al. 2015). And in a more recent times, many mesh-free methods are implemented to 
find the stress distribution along the assumed elastic or rigid media (Kabir 1997, Eynbeygi et al. 
2014, Sahmani et al. 2017).  

In the current study, the elastic field in an anisotropic media is investigated by implementing 
the principle of minimum potential energy. In this very approach, the displacement field could be 
computed as a sum of proposed finite functions with unknown coefficients by applying the 
Generalized Gaussian Quadrature rule as an integration method. By minimizing the system’s 
total potential energy with respect to these unknown coefficients, the correspondent elastic field 
could be evaluated. 

2. Fundamental Relations 

Generally, the anisotropic elastic media with arbitrary orientation and boundary conditions could 
be demonstrated as Fig. 1. 

 
Fig. 1. Anisotropic material with arbitrary loading and boundary condition 

In addition, the total potential energy of this specific domain would be given as  

 
1 0
2

d b.ud t udΓΓtε σ Ω − ρ ΩΩ Ω= : − ⋅∏ ∫∫ ∫∫ ∫∫   (1) 

where ρ  is the mass density, b  is the body force field, 0t is the prescribed traction on an 
specific part of the boundary Γt, and u   is the displacement field. 

The stress-strain relation in the form of matrix notation for an anisotropic media in two-
dimensional elasticity could be expressed as 

 
11 11 12 16
22 12 22 26
12 16 26 66

C C C
C C C
C C C

σ
σ
σ

  
   =   

      

  (2) 

In Fig.1, the strain-displacement relations could be expressed as follows: 
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Regarding Fig. 1, the Cartesian to polar transformations are expressed as: 

 
sin cos

cos , sin ,
1 2 1 2

r r

x x x r x r

θ θ θ θ
θ   θ   ,     

∂ ∂ ∂ ∂
= = = − = −

∂ ∂ ∂ ∂
  (7) 

In addition, by substituting Eq. (7) into Eqs. (3) to (6), the new strain-displacement relations 
could be derived and presented as follows: 

 
sin1 1 1cos11

1

u u u

x r r

θ
ε θ

θ

∂ ∂ ∂
= = −

∂ ∂ ∂
  (8) 
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 cos sin1 2 1 1 2 2sin cos12
2 1

u u u u u u
r rx x r r

θ θ2ε θ θ
θ θ

∂ ∂ ∂ ∂ ∂ ∂
= + = + + −

∂ ∂ ∂ ∂ ∂ ∂
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The displacement field in the proposed anisotropic media could be written as a sum of 
polynomial finite series: 

 
0

{ ( ) [ ( ) ( )]}, 1, 2
1 0

nnr m i iu r r A F B G imn n mn ni m n
θ θ   = + =∑ ∑

= =
  (11) 

where, 

 ( ) sin( 1) , ( ) cos
2

n
F n G            n nθ θ   θ θ π ≤ θ ≤ π= + = −   (12) 

In order to avoid the singularity in Eq. (11), the term “m” must be started from m=1, due to 

the fact that the stress singularity
1

r
corresponds to the very m=0 term, and in the current study, 

the assumed problem is continuous, therefore the ( )Fn θ and ( )Gn θ functions are defined on the 
interval of π ≤ θ ≤ π− , where the definitions of r and θ  terms are denotes in Fig.1 as well. To 
minimize the system total potential energy with respect to the unknown coefficients, a system of 
linear equations could be derived as follows: 



H. Kabir et al.: Implementing an Accurate Generalized Gaussian Quadrature Solution to Find the Elastic Field… 

 

14 

 HX Q=   (13) 

where the unknown coefficient, that is X, could be expressed as in Eq. (14) 

 { } 1, 2. . 0,1, 2, ...,T i iX B A i m n n nmn mn r      = 1, 2, ...,   θ= = =   (14) 

Henceforth, and with the aid of evaluated unknown coefficients, the displacement field and 
consequently the elastic field could be computed. 

3. Finding the Elastic Field in an Isotropic Rotating Shaft/Disc with an Arbitrary Oriented 
Central Elliptical Perforated Hole 

In this example, an elliptical rotating shaft/disc with an arbitrary central perforated elliptical hole 
is shown in Fig. 2. The a1 and b1 parameters are the ellipse major axes of the assumed disc in Fig. 
3, and the a2 and b2 parameters are the major axes of the perforated elliptical hole. The only force 
acting on this specific media is the rotational body force field, which is a centrifugal force. 

 
Fig. 2. Rotating cylindrical shaft 

 
Fig. 3. Rotating shaft cross-section 

The displacement fields proposed in Eq. (11) in perpendicular directions are assumed and 
selected as follows: 
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0

( ) [ cos ]1 1 0 2

nnr nm iu r r Bmnm n
θ= ∑ ∑

= =
  (15) 

 
0

( ) [ sin( 1) ]2 1 0

nnr m iu r r A nmnm n
θ= +∑ ∑

= =
  (16) 

Regarding Eqs. (8) to (10), the strain-displacement relations could be derived as follows: 

 
0 0.50.51 ( ) [ ( cos cos sin sin )]11 1 0 2 2 21
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  (18) 
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2ε θ θ θ θ

+−= + +∑ ∑
= =

   

 0.5 1( sin( 1) cos cos( 1) sin )]m niA n nmn a aθ θ θ θ+ +
+ − +   (19) 

And for the elastic isotropic material, the stress-strain relation is expressed in Eq. (20). 

 
011 11 12 11
0 , ,22 12 22 22 11 22 12 21

0 012 66 12

C C
C C    C C   C C

C

σ ε
σ ε
σ ε

    
    = = =    

    
    

  (20) 

Thus, the system’s total potential energy, in terms of strain energy and body force, in the 
absence of surface traction, is represented in Eq. (21). 

 
1

2
d b.udε σ Ω − ρ ΩΩ Ω= :∏ ∫∫ ∫∫   (21) 

Integration over the assumed elliptical zone would be possible by discretizing the assumed 
domain into triangular sections, shown in Fig. 4. As a representation of this discretization, the 
disc is divided into 24 triangles. In each triangle, the Gaussian points are assigned and summed 
over the admissible area. Thus, for each area, each Gauss point has its own weight point, as 
represented in Fig. 5. 
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Fig. 4. Dividing the disc domain into multiple triangular sections 

 
Fig. 5. Projection of the Gaussian weight point over the assumed disc media 

Following the computed displacement field, Eq. (21) must be minimized and derived with 
respect to the unknown coefficients, that is, the components of X matrix in Eq. (14) in order to 
find the elastic field in that assumed media. 

4. Results Verifications: Circular Rotating Disc with a Perforated Circular Hole 

For this very condition, and regarding Fig. 3, the following assumptions were made (Table 1) 
with corresponding figure (Fig. 6): 

 
𝜈𝜈 =0.4 (Poisson’s ratio)  1a = 1b =1.0 (Disc. major axes) 

𝜃𝜃=0o (Hole orientation) 
2a = 2b  (Hole major axes) 

𝜔𝜔=1.0 (Rotational velocity)  10n nr θ= =  (Finite polynomial Series) 

Table 1. Numerical assumptions for the results verification 
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Fig. 6. Circular rotating disc with a perforated circular hole 

The closed-form solution for the hoop stress of a rotating annular circular disc under the 
plain strain condition is computed as follows in Eq. (22), (Çetin et al. 2014) 

 
2 22

2 2 21 2[(3 ) (1 3 ) ]1 2 28

a a
a r

r

ω
σ ρ ν)(α νθθ

⋅
= ⋅ ⋅ + + + − + ⋅   (22) 

By comparing the results of the both former analytical solution and the present semi-
analytical method, which are shown in Table 2 and Fig. 7, the accuracy of the proposed method 
is verified as well. 

 
a2 = b2 (Hole Major 

Axes) 
𝝈𝝈𝜽𝜽𝜽𝜽  Analytical (Exact) 𝝈𝝈𝜽𝜽𝜽𝜽 Semi-Analytical (Current Study) 

0.15 0.2968 0.2887 
0.2 0.3175 0.3067 

0.25 0.3440 0.3371 
0.3 0.3765 0.3646 

0.35 0.4149 0.3921 
0.4 0.4592 0.4463 

0.45 0.5093 0.4945 
0.5 0.5654 0.5582 

0.55 0.6274 0.6122 
0.6 0.6953 0.7025 

0.65 0.7691 0.7686 

Table 2. Comparing the Hoop stress for both analytical and semi-analytical results 
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Fig. 7. Comparison of the Hoop stress for both analytical and semi-analytical results 

5. Conclusion 

Based on the comparison made between the former analytical method and the current semi-
analytical approach, the results prove the accuracy of the proposed method. Furthermore, this 
mesh-less approach could be applied to any anisotropic media regardless of the complexity of its 
physical shape. Moreover, the present methodology could be applied to a cracked anisotropic or 
composite media with arbitrary crack orientations, where finding the traditional method of 
finding the analytical solution may be regarded as an impossible task to follow. 

Acknowledgment 

H. K would like to acknowledge partial supports from Sharif University of Technology, and the 
priceless guidance of Prof. H. M. Shodja, and Dr. M. T. Kamali, faculties of Sharif University of 
Technology and Hormozgan University, respectively. 

References 

Alaedini S, Mohammad Z, and Hadi H (2016). Seismic ductility evaluation of shear-deficient RC 
frames strengthened by externally bonded CFRP sheets. KSCE Journal of Civil 
Engineering 20, 5, 1925-1935. 

Alshaya A, Shuai X, Rowlands R (2017). Stress Analysis of a Finite Orthotropic Plate 
Containing an Elliptical Hole from Recorded Temperature Data. In Residual Stress, 
Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 
9, Springer International Publishing, 47-56. 

Çetin E, Kurşun A, Aksoy Ş. Tunay Çetin M (2014). Elastic Stress Analysis of Annular Bi-
Material Discs with Variable Thickness under Mechanical and Thermomechanical 
Loads. World Academy of Science, Engineering and Technology, International Journal of 
Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 8, 2, 288-
292. 

Daouadji TH (2017). Analytical and numerical modeling of interfacial stresses in beams bonded 
with a thin plate. Advances in Computational Design 2, 1, 57-69. 

Eslami G and Kabir MZ (2015). Multi-objective optimization of orthogonally stiffened 
cylindrical shells using optimality criteria method. Scientia Iranica. Transaction A, Civil 
Engineering, 22(3), 717. 

0

0.2

0.4

0.6

0.8

1

0.15 0.25 0.35 0.45 0.55 0.65

C
irc

um
fe

re
nt

ia
l S

tre
ss

a2=b2

Hoop Stress at Specific Distance from the Center of 
Rotation, i. e.  r= 0.75, for Different Hole Sizes

Current…
Exact…



Journal of the Serbian Society for Computational Mechanics / Vol. 11 / No. 1, 2017 
 

 

19 

Eynbeygi M and Aghdam MM (2015). A micromechanical study on the electro-elastic behavior 
of piezoelectric fibrous composites using element free Galerkin method. Modares 
Mechanical Engineering 14 (6), 175-184. 

Gdoutos EE (2003). Airy Stress Function Method in Problems of Fracture Mechanics and 
Fatigue, Springer Netherlands, 3-9. 

Hojatkashani A and Kabir MZ (2012). Interfacial stress assessment at the cracked zones in CFRP 
retrofitted RC beams, Structural Engineering and Mechanics 44, 6, 705-733. 

Kabir MZ (1997). A Finite Element Presentation of Optimum Design for Filament-Winding 
Composite Cylindrical Pressure Vessels. Solid Mechanics and its Applications, 54, 95-104. 

Kabir MZ (2005). Structural performance of 3-D sandwich panels under shear and flexural 
loading, Journal of Scientifica Iranica 12, 4, 402-408. 

Kabir MZ and Hojatkashani A (2007). Analytical and Finite Element Study of Cracking and 
Interfacial Stress Distribution at the Cracked Zone in a Retrofitted Rc Beam. 

Kabir MZ and Seif AE (2010). Lateral-torsional buckling of retrofitted steel I-beams using FRP 
sheets, Scientia Iranica. Transaction A, Civil Engineering 17, 4, 262. 

Kabir MZ and Seif AE (2011). Lateral torsional buckling of steel i-beam retrofitted using FRP 
sheets: analytical solution and optimization, Advances in FRP Composites in Civil 
Engineering, Springer Berlin Heidelberg, 915-918. 

Kabir H and Sadeghi M (2017). Unconfined Strength of Nano Reactive Silica Sand Powder 
Concrete, World Academy of Science, Engineering and Technology, International Journal 
of Civil, Environmental, Structural, Construction and Architectural Engineering 11, 3, 356-
360. 

Lu J, Zhou X and Raghavan ML (2007). Inverse elastostatic stress analysis in pre-deformed 
biological structures: demonstration using abdominal aortic aneurysms, Journal of 
biomechanics 40, 3, 693-696. 

Mitchell T, Baker W, McRobie A and Mazurek A (2016). Mechanisms and states of self-stress of 
planar trusses using graphic statics, part I: The fundamental theorem of linear algebra and 
the Airy stress function, International Journal of Space Structures 31, 2-4, 85-101. 

Morley LSD (1969). A modification of the Rayleigh-Ritz method for stress concentration 
problems in elastostatics, Journal of the Mechanics and Physics of Solids, 17, 2, 73-82. 

Sahmani S and Aghdam MM (2017). Nonlocal strain gradient shell model for axial buckling and 
postbuckling analysis of magneto-electro-elastic composite nanoshells. Composites Part B: 
Engineering. 

Seif AE, and Kabir MZ (2015). An efficient analytical model to evaluate the first two local 
buckling modes of finite cracked plate under tension. Latin American Journal of Solids and 
Structures 12, 11, 2078-2093. 

Seif AE and Kabir MZ (2016). The general form of the elastic stress and displacement fields of 
the finite cracked plate, Journal of Theoretical and Applied Mechanics 54, 4, 1271-1283. 

Seif AE and Kabir MZ (2017). Experimental study on the fracture capacity and fatigue life 
reduction of the tensioned cracked plate due to the local buckling, Engineering Fracture 
Mechanics 175, 168-183. 

Weertman J, Caracostas CA and Shodja HM (1996). The double slip plane model for the study of 
short cracks, International Journal of Fatigue, 5(18), 345. 

Zarrinzadeh H, Kabir MZ, and Deylami A (2016). Extended finite element fracture analysis of a 
cracked isotropic shell repaired by composite patch, Fatigue & Fracture of Engineering 
Materials & Structures 39, 11, 1352-1365. 

Zarrinzadeh H, Kabir MZ and Deylami A (2017). Crack growth and debonding analysis of an 
aluminum pipe repaired by composite patch under fatigue loading, Thin-Walled 
Structures 112, 140-148. 

 


