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Abstract 

This article makes an attempt to study and analyze the effect of slip velocity on the performance 
of a magnetic fluid based squeeze film in conical plates considering the longitudinal roughness 
pattern. The slip model of Beavers and Joseph has been deployed to calculate the effect of slip 
velocity. The stochastic averaging model of Christensen and Tonder has been used to evaluate 
the longitudinal roughness effect. The concerned stochastically averaged Reynolds type equation 
is solved to get the pressure distribution which results in the calculation of load carrying 
capacity. The findings indicate that the combined adverse effect of slip velocity and roughness 
can be overcome to a large extent by the positive effect of magnetization and the standard 
deviation in the case of negatively skewed roughness. This effect further enhances when 
variance(-ve) is in place. A significant aspect of our study is that in spite of the adverse effect of 
slip velocity the rough bearing system sustains certain amount of load, even in the absence of the 
flow which is rarely seen in the case of traditional lubricant based conical bearing system. 
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1. Introduction

Magnetic fluid is referred to as a stable colloid dispersion of magnetic nanoparticles in a carrier 
liquid which mainly consists of three parts: ferromagnetic nanoparticles, coating of these 
magnetic nanoparticles and a carrier fluid. A simple flow model to explain the steady flow of 
magnetic fluids in the presence of slowly changing external magnetic fields was proposed by 
(Neuringer and Rosensweig 1964). A good number of research papers are available in the 
literature for the study of different types of bearing using Neuringer and Rosensweig flow model. 
For example, (Tipei 1982) in short bearing, (Agrawal 1986), (Shah and Bhat 2003) and (Deheri 
and Patel 2011) in slider bearing, journal bearing by (Nada and Osman 2007) and (Patel el al. 
2012), (Andharia and Deheri 2010) in conical plates and circular plates by (Shah and Bhat 2000) 
and (Deheri and Abhangi 2011). 
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Most of the bearing surfaces tend to be rough after some run in and wear. During the last 
few years, it was established that the roughness of the surfaces significantly affects the bearing 
performance. Various Methods have been proposed to study the effect of surface roughness; 
(Christensen and Tonder 1969a, 1969b, 1970) employed a stochastic concept and found an 
averaging film model of lubricated surfaces with transverse roughness and longitudinal 
roughness. Using the Christensen and Tonder’s stochastic model of roughness, (Ting 1972), 
(Praksh and Tiwari 1983), (Guha 1993), (Gupta and Deheri 1996), (Turaga et al. 1997), 
(Gururajan and Prakash 2000), (Gadelmawla et al. 2002), (Sinha and Adamu 2009), (Adamu and 
Sinha 2012), (Patel and Deheri 2013) dealt with the effect of surface roughness on the 
performance of various bearing systems with several geometries. It was found that the load 
carrying capacity of the bearing system increased with increasing magnetization of the magnetic 
fluid. (Patel and Deheri 2014) analyzed the effect of different porous structures on the 
performance of a Shliomis model based magnetic squeeze film in rotating rough porous curved 
circular plates. It was established that the adverse effect of transverse roughness could be 
compensated by the positive effect of magnetization in the case of negatively skewed roughness, 
suitably choosing the rotation ratio and the curvature parameters. (Patel and Deheri 2015) dealt 
with the combined effect of slip velocity and surface roughness on the performance of Jenkins 
model based magnetic squeeze film in curved rough annular plates. It was noticed that the effect 
of transverse surface roughness was adverse in general, Jenkins model based ferrofluid 
lubrication provided some measures in mitigating the adverse effect and this became more 
manifest when the slip parameter was reduced and negatively skewed roughness occurred. 

In Tribology, the reduction of friction is quite crucial for the effective performance of the 
bearing system. It is found that slip velocity supports to reduce the friction. (Beavers and Joseph 
1967) investigated the interface between a porous medium and fluid layer in an experimental 
study and proposed a slip boundary condition at the interface. Flow with slip velocity becomes 
very useful for problems in chemical engineering for example, flow through pipes in which 
chemical reactions occur at the walls. (Patel 1980) discussed the performance of hydro-magnetic 
squeeze film between porous circular disks with velocity slip. Many investigations have studied, 
both theoretically and experimentally, the effects of slip on various types of bearings (Thompson 
and Troian 1997, Zhu and Granick 2001, Salant and Fortier 2004, Wu et al. 2006, Ahmed and 
Singh 2007, Patel and Deheri 2011, Wang et al. 2012). In all the above studies, it was obtained 
that the slip effect significantly affected the bearing system. (Rao et al. 2013) dealt with the 
effects of velocity slip and viscosity variation on squeeze film lubrication of two circular plates. 
So far no study has discussed the effect of velocity slip on the combined influences of 
longitudinal roughness and magnetism. However, there is a study (Patel and Deheri 2014) on 
infinitely long bearings with transverse surface roughness under the presence of a magnetic fluid. 
It is known that the longitudinal roughness induces an enhanced performance in some suitable 
situation. 

Therefore, it was deemed proper to investigate the slip effect on the performance of a 
longitudinally rough ferrofluid squeeze film in conical plates. In fact, efforts have been made to 
analyze the extent to which the longitudinal roughness and magnetism combine compensated the 
adverse effect of velocity slip. 

2. Analysis

The physical configuration of the bearing system, which is infinite in the Y- direction is shown in 
Figure 1. Here, squeeze film velocity ℎ̇0 = 𝑑𝑑ℎ0 𝑑𝑑𝑑𝑑⁄  is in the z-direction. The magnetic field 𝑀𝑀 is 
oblique to the lower plate.  
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Fig. 1. Configuration of the bearing system 

The bearing surfaces are assumed to be transversely rough. According to discussions of 
(Christensen and Tonder 1969a, 1969b, 1970), the stochastic film thickness h of the lubricant 
film is considered as 

ℎ = ℎ� + ℎ𝑠𝑠 (1) 

where h� denotes the mean film thickness and hs is the deviation from the mean film thickness 
characterizing the random roughness of the bearing surfaces. hs is assumed to be stochastic in 
nature and governed by the probability density function: 

𝑓𝑓(ℎ𝑠𝑠) = �
35
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where 𝑐𝑐 denotes the maximum deviation from the mean film thickness. The mean α, the standard 
deviation σ and the parameter 𝜀𝜀, which is the measure of symmetry of the random variable ℎ𝑠𝑠, 
are found and explained in (Christensen and Tonder 1969a, 1969b, 1970). 

The flow is laminar and lubricant film is considered to be isoviscous and incompressible. 
Assuming the usual assumptions of the hydromagnetic lubrication, the concerned Reynold’s 
equation (Prakash and Vij 1973), (Deheri et al. 2005), (Deheri and Patel 2011) and (Patel and 
Deheri 2013) governing the film pressure in this case is derived as 
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where 

𝑀𝑀2 = 𝑎𝑎2 − 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜔𝜔 
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𝑎𝑎 is dimension of the bearing, h denotes film thickness, 𝜔𝜔 stands for semi-vertical angle of cone, 
𝜇𝜇 being fluid viscosity, 𝜇̅𝜇 represents the magnetic susceptibility and 𝜇𝜇0 denotes the permeability 
of the free space.  

Following the averaging process of (Christensen and Tonder 1969a, 1969b, 1970) discussed 
by (Andharia and Deheri 2010), equation (2) takes the form: 
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where p� is the expected value of the lubricant pressure p and 
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The concerned boundary conditions are: 
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Introducing the non dimensional quantities: 
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wherein 
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Using equation (5) in equation (3), the dimensionless pressure is obtained in the form of: 
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The non-dimensional load carrying capacity then, is derived as: 
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where 
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3. Results and Discussions

It is noticed that the non dimensional pressure is obtained from equation (6) while equation (7) 
presents the dimensionless load carrying capacity. It is observed that the dimensionless pressure 
increased by 

𝜇𝜇∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔
2𝜋𝜋

(1 − 𝑋𝑋2) 

while the non dimensional load carrying capacity enhances by 
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𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔
𝜋𝜋

as compared to the case of traditional lubricant based bearing system. Probably, this may be due 
to the fact that the viscosity of the lubricant gets increase because of magnetization. This leads to 
the increased pressure and hence enhanced load carrying capacity. Besides, it can be seen that the 
expression involved in the equation (7) is linear with respect to the magnetization parameter µ∗ 
and hence an increase in µ∗ would lead to increased load carrying capacity. In the absence of slip 
velocity this study reduces to the investigation of (Andharia and Deheri 2010). 

The fact that the magnetization causes increased load carrying capacity can be seen from 
Figures 2-3. Here the increase is nominal. It is interesting to note that the standard deviation 
associated with roughness increases the load carrying capacity which does not happen in the case 
of transverse pattern of the roughness. 

Fig. 2. Variation of load carrying capacity with respect to 𝜇𝜇∗ and 𝜎𝜎� 

Fig. 3. Variation of load carrying capacity with respect to 𝜇𝜇∗ and 𝑠̅𝑠 

The effect of semi-vertical angle of the cone is presented in Figures 4-7. It is seen that there 
is heavy load reduction in between 30-50 degree. However, the effect of slip velocity on the load 
carrying capacity with respect to the semi vertical angle is almost negligible (Figure 7). 
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Fig. 4. Variation of load carrying capacity with respect to 𝜔𝜔 and 𝜎𝜎� 

Fig. 5. Variation of load carrying capacity with respect to 𝜔𝜔 and 𝜀𝜀  ̅

Fig. 6. Variation of load carrying capacity with respect to 𝜔𝜔 and 𝛼𝛼� 
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Fig. 7. Variation of load carrying capacity with respect to 𝜔𝜔 and 𝑠̅𝑠 

From Figures 8-10, it can be noticed that although the standard deviation causes an increase 
in load carrying capacity, the effect of slip on the variation of load carrying capacity with respect 
to standard deviation is negligible (Figure 10). 

Fig. 8. Variation of load carrying capacity with respect to 𝜎𝜎� and 𝜀𝜀  ̅

Fig. 9. Variation of load carrying capacity with respect to 𝜎𝜎� and 𝛼𝛼� 

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

30 40 50 60 70

W

ω

s̄ = 0.1

s̄ = 0.2

s̄ = 0.3

s̄ = 0.4

s̄ = 0.5

0

0.005

0.01

0.015

0.02

0.025

0.1 0.2 0.3 0.4 0.5

W

σ̅

ε̅ = -0.01

ε̅ = -0.005

ε̅ = 0

ε̅ = 0.005

ε̅ = 0.01

0

0.01

0.02

0.03

0.04

0.1 0.2 0.3 0.4 0.5

W

σ̅

α̅= -0.05

α̅= -0.025

α̅= 0

α̅= 0.025

α̅= 0.05



Journal of the Serbian Society for Computational Mechanics / Vol. 10 / No. 2, 2016 25 

Fig. 10. Variation of load carrying capacity with respect to 𝜎𝜎� and 𝑠̅𝑠 

The positively skewed roughness decreases the load carrying capacity while the load 
carrying capacity gets increase owing to negatively skewed roughness. Besides, the effect of slip 
on the distribution of load carrying capacity with respect to skewness is negligible (Figure 12). 
Further, it is seen that the variance follows the path of skewness so far as the trends of load 
carrying capacity is concerned (Figures 11-13). 

Fig. 11. Variation of load carrying capacity with respect to 𝜀𝜀  ̅and 𝛼𝛼� 
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Fig. 12. Variation of load carrying capacity with respect to 𝜀𝜀 ̅and 𝑠̅𝑠 

Fig.13. Variation of load carrying capacity with respect to 𝛼𝛼� and 𝑠̅𝑠 

The figures establish that the combined positive effect of negatively skewed roughness and 
variance (-ve) may lead to an improved performance of the bearing system as the slip effect can 
be contained by the positive effect of magnetization and standard deviation.  

4. Conclusions

It is appealing to note that in the most of the situations the slip effect is at the most nominal 
which can be overcome by the positive effect of magnetization and negatively skewed roughness 
as the standard deviation also increases the load carrying capacity. However, the slip parameter 
may be taken at the reduced level to derive an improved performance in the general situation. 
Therefore, the roughness aspects must be addressed carefully while designing the bearing 
system.  
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Извод 

Ефекат брзине клизања на ферофлуидну превлаку код уздужних 
храпавих коничних плоча 
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Резиме 

У овом раду дат је покушај испитавања и анализе ефекта бризне клизања на перформансе 
превлаке са магнетном течношћу код коничних плоча уз узимање у обзир уздужног 
обрасца храпавости. Клизни модел Биверса и Џозефа (Beavers and Joseph) коришћен је 
како би се израчунао ефекат брзине клизања. Узет је стохастички усредњен модел 
Кристенсена и Тондера (Christensen and Tonder) како би се проценио ефекат уздужне 
храпавости. Стохастички усредњене једначине Рејнолдсовог типа решене су како би се 
добила расподела притиска која резултира израчунавањем капацитета ношења терета. 
Резултати показују да се комбиновани негативни ефекат брзине клизања и храпавости 
може превазићи у великој мери позитивним ефектом магнетизације и стандардном 
девијацијом у случају негативно искошене храпавости. Овај ефекат се даље појачава када 
је варијација (-ve) на месту. Значајан аспект нашег истраживања јесте да упркос 
негативном ефекту брзине клизања, храпави систем задржава одређену количину терета, 
чак и у одсутности тока који се ретко виђа у случају традиционалних коничних система са 
лубрикантом.  

Кључне речи: коничне плоче, магнетна течност, уздужна храпавост, брзина клизања 
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