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Abstract 

The article deals with the transverse bending problem of thin elastic orthotropic plates with 
combined boundary conditions. The form factor interpolation method is used for deformation 
calculations. Analytical expressions of maximum deflection surfaces are obtained. It is proposed 
to use these expressions as the reference solutions. The example of the solution to the problem of 
transverse bending plate in the form of a parallelogram is given.  
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1. Introduction

Thin orthotropic plates are widely used as elements of the roof structures or the floor of 
buildings, as well as thin-walled girders with ribs. Аs it is shown by Ambartsumyan (1991), the 
relation between flexural and shear rigidities often allows to perform deformation calculation for 
orthotropic plates in a classical form, i.e. using the Kirchhoff - Love plate theory. 

The assignment of plate strain function (or stress function), which satisfies all boundary 
conditions, is one of the main difficulties, when it is necessary to calculate deflections or internal 
forces. In practice, the exact solution can be obtained for a limited classes of problems, in 
particular, for rectangular plates, which are simply supported on two opposite sides and arbitrary 
fixed on both other sides as well as for elliptic plates, which are clamped all over the boundaries. 
Usually, it is necessary to use approximate analytical or numerical methods. Numerical methods 
are leaders today due to its versatility, sufficient accuracy and realization within software 
complexes for personal computers. However, the numerical methods have significant drawback, 
which appears, when it is neccessary to find optimal parameters of the cross section or midplane 
shape of the plate, because this procedure reduces to sequential calculation until the elected 
parameter takes the optimum value. In many cases, it takes a long time or gives a local extremum 
of parameter. That is why approximate analytical methods should continue to develop in parallel 
with numerical methods. 

In the paper (Mbakogu, Pavlovic 2000) authors use the Galerkin variation method to obtain 
approximations for infinite series representing the deflection function for the orthotropic 
rectangular plate, clamped on the contour. Rui Li, Yang Zhong, Bin Tian, Yuemei Liu (2009) 
solve the same problem. They use the method of final integrated conversions, which allows to 
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avoid a preliminary definition of deflection function. In the paper (Huu-Tai Thai, Seung-Eock 
Kim 2012), authors propose the analytical solution, based on the specified theory, for 
deformations and tension of the orthotropic plates. Authors consider the case, when a rectangular 
plate is simply supported on the two opposite sides and has arbitrary boundary conditions on the 
both other sides. Kurpa L., Rvachev V. and Ventsel E. (2003) offer to use the R-functions 
method to solve the free vibrations problem for thin orthotropic plates of arbitrary form. The 
results of the article can be extended to the transverse bending problem, because free vibrations 
and transverse bending are described by the similar differential equations. Bao G., Jiang W., 
Roberts J. (1997) compare various analytical and numerical solutions for thin orthotropic plates, 
which have various combination of simple supporting and clamping along the contour. In the 
present paper we show development of the form factor interpolation method (FFIM), proposed 
by Korobko A. (1999). This approximate method is the logical evolution of isometric method, 
which was stated in the papers of Polya G. and Szego G. (1951), Korobko V. (1997), Lowe P.G. 
(1984), Lowe P., Allen J., Collins I. (1994) and others. 

2. Two-dimensional region form factor

Two-dimensional region form factor is the loop integral 

,
h
dsK

L
fa ∫=

(1) 

where ds is an elementary part of a two-dimensional region contour; h represents perpendicular 
from an arbitrary point, called pole, on contour section ds. At any convex region unique point 
“a” should exist, for which form factor value is minimal (Korobko 1997) 

ffa KKmin = .

The monograph (Korobko 1999) contains form factor formulas for convex regions of 
different outlines as well as a detailed investigation of its isoperimetric properties. 

3. Form factor interpolation method

Polya G. and Szego G. (1951) show that geometrical torsional rigidity of beam cross section Ik 
can be written in isoperimetric form. Using results, that are presented in (Korobko 1997) for 
torsion of elastic prismatic beams, authors obtained the diagram of relationship between squared 
normalized geometrical torsion rigidity of section 2

ki  and the inverse form factor value 1/Кf , as 
can be seen from Fig.1. The normalized geometrical torsion rigidity of section is determined by 
the formula: 

2AIi kk = , 

where A is area of cross section. 

Similarly, using the data from (Korobko 1997) for transverse bending of elastic isotropic 
plates, we obtained the diagram of maximal deflection of fully clamped plates 1000W0 from the 
inverse form factor value 1/Кf  , as can be seen from Fig.2. The comparison of these diagrams 
shows their high similarity. At the same time, as can be seen from Fig.1 and Fig.2, all values of 

2
ki  and W0 are restricted on the both sides. The lower boundary is formed by the values 2

ki  and W0 
of elliptic plates (curves III), and top boundary is formed by the values 2

ki  and W0 of plates in the 
forms of regular polygons (curves I) and isosceles triangle (curves II). Curves IV in the figures 
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correspond to the rectangular cross-sections, as can be seen from Fig.1, and rectangular plates, as 
can be seen from Fig.2. The similar result corresponds to the case of simply supported plates 
(Korobko 1997). 

Fig. 1. Diagram ik
2 – 1/Kf  for torsion of elastic prismatic beams 

Fig. 2. Diagram 1000 W0 – 1/Kf   for transverse bending of clamped isotropic plates 

The equation of total potential energy of transverse bending Π for isotropic plates has the 
form: 

( ) ( ) ( ) ,,12
2

2

2

2

2

2
22 ∫∫∫∫ ⋅−
































∂∂

∂
+

∂
∂
⋅

∂
∂

ν−+∇=Π wdAyxqdA
yx

w
y
w

x
wwD (2) 

where w is deflection function, D is flexural rigidity, A is median surface area of plate, q(x, y) is 
loading. 

However, one of the terms from the formula (2) takes the value of zero for the case of 
homogenous boundary conditions: 
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We present the deflection function w in the form: 

( ) ( ),,, 0 yxfWyxww ⋅==

where f (x, y) is dimensionless function, which characterizes the curved midplane of the plate and 
takes values from 0 to 1. 

We transform formula (2), according to previous comments: 
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We carry out the minimization of the expression (3) of total potential energy to find the 
maximum deflection of the plate: 
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Hence, for the case of constant loading q(x, y) = q, we obtain: 
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The integrals from formula (4) can be written in the form: 

∫∫ ∫ ∫ ∫∫∫ ρρρ=ρϕ=ϕρ=
π π 1

0

2

0 0

2

0 0

2
2 ,)(2)(1)( dgA

r
dt

r
tgdrtdtd

r
gdAf

r r

 

( ) ,
2

21111 222

0 0
2

2

2

2

2

22
g

f
r

A
K

tdtd
r
r

r
r

tr
g

r
r

r
gdAf Φ=ϕ



















 ′′
−

′
+′+







 ′
+′′=∇ ∫ ∫∫∫

π

(5) 

where 

,21
22

0
2

2
2












ϕ







 ′′
−

′
+= ∫

π

d
r
r

r
rK f  

( ) ,2
1

0

122∫ ρρ′+′⋅′′+ρ′′=Φ − dggggg

( )ϕ=ρ rtк . (6) 

Then we obtain maximum deflection, using formulas (4) and (5): 
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In equations (6) and (7) ρ denotes dimensionless coordinate conforming to contour lines of 
the deflection surface; tк is polar coordinate of points on the plate’s contour; ( )ϕr  represents 
polar function of plate contour; φ is polar angle; ( )ρgg =  denotes dimensionless functions of 
deflections in one-parametric form; A is median surface area of plate; D is flexural rigidity; 
q represents intensity of uniformly distributed load. 
We introduce the following notation: 

( ) ( ) IKdg gf =Φ⋅∫ 2
1

0

ρρρ . 

The function I can be replaced by elementary approximate functions that are close to real 
functions for the given geometrical transformation. The easiest and most natural transformations 
are power and linear (regarding to 2

fK ) approximate functions that are suggested in the 
monograph (Korobko 1999): 

n
fKКW ⋅=  w0 , (8) 
2

0 fKСBW ⋅+=
. (9) 

Here Kw, n, B and C are unknown parameters, which can be determined from the solutions 
for basic plates, if the forms of these plates are related with the form of the given plate. The 
minimum number of basic solutions is two. 

Below, the procedure of applying the form factor interpolation method is described. So, it is 
necessary to determine the value of maximum deflection for the given plate. The form of this 
plate can be obtained as a result of any geometrical transformation from other plates (basic 
plates). If integral physical characteristics of basic plates (reference solutions) are known, then 
desired value W0 for given plate can be found interpolating between reference solutions, using 
the function (8) or (9). 

The main positive feature of this method is the possibility to reduce the complicated two-
dimensional problem, which is described using fourth-order differential equations of elliptic 
type, to simpler geometrical problem. At the same time, the results of calculations can be 
visualized in the form of diagram of physical-mechanical parameters and form factor. 

Despite the mentioned advantages, the form factor interpolation method has not wide 
application now. There are few papers of V. Korobko, A. Korobko and their followers (Korobko 
et al. 2015; Korobko et al. 2016), which represent an application of this method to the transverse 
bending and free vibration problems for elastic isotropic plates. 
The present paper is devoted to the development of the form factor interpolation method for 
solving the problems of elastic orthotropic plates transverse bending. 

4. Orthotropic plates transverse bending

The differential equation for transverse bending of orthotropic plate, subjected to the uniform 
distributed load, has the form: 
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where .νDνDD,DDH xyyxxy ==+= 11 2  In these expressions Dx, Dy, Dxy are flexural rigidities 
of the plate; νx, νy are Poisson’s ratios in relevant directions. By dividing left and right parts of 
the equation (10) by H, the following equation is obtained: 
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The approximate solution of this differential equation can be found as function of three 
parametrs: Kf, Dx/H, Dy/H. In this case, we obtain equation for the maximum deflection: 
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H

qAHD;HD;KfW yxf
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5. Constructing the boundary surfaces of deflection for orthotropic plates of the basic form

It is necessary to obtain the deflection functions for particular classes of region’s form (basic 
forms): isosceles and right-angled triangles, rhombs, rectangles and regular n-gons. Values of 
integral physical characteristics for basic plates give range boundaries of the maximum 
deflections for all orthotropic plates with convex contour. We used numerical solution of 
differential equations by the finite element method to obtain the approximate deflection functions 
for basic plates (Zienkiewicz, Taylor 2005). 

The solution for isosceles triangles has the following form: 

( ) ( ),;HD;HDgKgf yxf α⋅= 21 (13) 

where g1 is a function which depends on the boundary conditions and form of the plate; g2 is a 
function, which depends on the parameters Dx/H, Dy/H and takes value equal one for acute 
triangles. 

The function f for orthotropic plates in the form of right-angled triangles, rectangles, rhombs 
and regular polygons takes the following form: 
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where ( )fi Kaa = . 

The coefficients ai for rectangular plates are determined by the formula: 
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and the coefficients ai for plates in the form of right-angled triangles, rectangles, rhombs and 
regular polygons are determined by the formula: 
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In the expressions A … J are the coefficients, which are constant for corresponding subclasses of 
region’s form and boundary conditions; m = 1, 2, 4. 

6. FFIT application for elastic orthotropic plates’ calculation

The following test example demonstrates the application of the form factor interpolation method 
for deformation analysis of elastic orthotropic plate. The plywood plate has form of 
parallelogram, as can be seen from 0 in center. The plate is subjected to the uniform distributed 
load, having intensity q = 10 kN/m2. Source data are the following: a = 1.5 m; b = 1 m; t = 0.02 
m; α = 45о; Kf = 12.2565; A = 1.061 m2, Ex = 7000 MPa; Ey = 5500 MPa; Gxy = 800 MPa; νx = 
0.07. It is required to find the value of maximum deflection for the plate. 

Solution. In the first approximation, plywood can be considered an orthotropic material. The 
given plate can be obtained as a result of affine shift of a rectangular plate into rhombic. As can 
be seen from Fig.3 the maximum deflection value for the given plate locates between the 
maximum deflection curves for rectangular and rhombic plates. Parameters of rectangular plate 
are: a = 1.5 m; b = 0.707 m; Kf1 = 10.371; A1 = 1.061 m2; parameters of rhombic plate are: a = 
1.5 m; α = 28.1о;  Kf2 = 16.971; A2 = 1.061 m2. Here indexes “1” and “2” are related to the 
parameters of the first and second reference plates. Values of maximum deflection (W0)1 = 1.861 
mm; (W0)2 = 1.892 mm for reference plates can be obtained from expression (14). Substituting 
these reference solutions in the formula (9), we obtained the value W0 = 1.868 mm, which differs 
about 0.2% from results W0 = 1.865 mm, that was found with the finite element method at 
continuum-partition into 1000 shell finite elements. 
 

Fig. 3. Diagram of 1000W0 – Kf  for test example 

Conclusions 

Summarizing paper results, the following conclusions can be formulated: 

1. The form factor interpolation method has been extended to solve transverse bending
problems (determination of maximum deflection) of elastic orthotropic plates, subjected
to the uniform distributed load. The functions of maximum deflections for the basic
shapes of plates (triangles, rectangles, rhombuses, etc.) have been shown. An example
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of application of the form factor interpolation method has been presented. The results 
have been validated against values obtained by other methods. 

2. Due to mathematical similarity of differential equations, which describe transverse
bending problems, problems of free vibrations and stability, the proposed method can be
extended to solve these problems.

Извод 

Решавање проблема трансверзалног савијања еластичних 
ортотропних плоча техником интерполације фактора облика 

V. I. Korobko1, A. V. Korobko1, S. Y. Savin1*, A. A. Chernyaev1

1 Orel State University, Komsomolskaya 95, 302026, Орел, Русија 
имејл: suwin@yandex.ru 
*главни аутор

Резиме 

У овом раду се разматра проблем трансверзалног савијања ортотропних плоча са 
кoмбинованим граничним условима. Техника интерполације фактора облика је коришћена 
за срачунавање деформација. Добијени су аналитички изрази за површине максималног 
угиба. Ови изрази су коришћени при избору референтних решења. Дат је пример решења 
проблема трансверзалног савијања плоче облика паралелограма. 

Кључне речи: ортотропне плоче, трансверзално савијање, фактор облика, однос савојне 
крутости, комбиновани гранични услови, максимални угиб, метода интерполације фактора 
облика 
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