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Abstract 

This article provides an overview of the exact closed-form solutions for purely nonlinear 
oscillators. These solutions comprise the period of vibration and free and forced responses for 
one-degree-of-freedom systems. The use of special function for this purpose is demonstrated 
which includes: beta function, gamma function, hypergeometric function, Ateb function, Jacobi 
amplitude and Jacobi elliptic function. 
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1. Introduction 

The real world contains a diversity of nonlinear systems exhibiting oscillatory motion. These 
systems are usually modelled as oscillators with strong nonlinearity. This nonlinearity is very 
often much stronger than the linearity or even the oscillator is with the so-called 'pure/true 
nonlinearity'. This pure nonlinearity corresponds to the case when the elastic/restoring force is 
the function of nonlinear deflection described by a binomial of any real power higher than 
unity, which can be represented as follows: 

 .1,)( 1
≥−=

− ααxxxF  (1) 

Such nonlinearity is caused by the geometry of the system, mainly by material properties. It has 
been proven experimentally that the stress-strain relationship is purely nonlinear for many 
materials: some aircraft materials, such as aluminium, titanium, etc., (Prathap and Varadan 
1976), copper and copper alloys (Lo and Gupta 1978), aluminium alloys and annealed copper 
(Lewis and Monasa 1982), wood (Haslach 1985), hydrophilic polymers (Haslach 1992), 
composites (Chen and Gibson 1998), polyurethane foam (Patten et al. 1998), ceramic materials 
(Colm and Clark 1988), etc. The mathematical model for these oscillators is a second order 
strongly nonlinear ordinary differential equation. Its exact closed form analytical solution is not 
always attainable. In this paper, those purely nonlinear differential equations for which the 
exact solution or its properties are known are considered and overviewed. 
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2. Period of vibration 

One of the main properties of each oscillator is its frequency and period of vibration. In this 
section, it is shown that the exact analytical expression of the frequency of vibration exists for 
purely nonlinear oscillators. This expression is of special interest as it gives the possibility to 
analyse how the frequency property of the oscillator is influenced by the parameters of the 
system and also initial conditions (for free vibrations) and the excitation force (if it acts). Two 
types of oscillators are considered: a) free purely nonlinear oscillator and b) purely nonlinear 
oscillator with a constant excitation force. The mathematical model for purely nonlinear 
oscillators is 

 ,012 =+
−α

α xxcx  (2) 

with the initial conditions 

 .0)0(,)0( == xAx   (3) 

For the oscillators with a constant excitation force 0F  the equation of motion has the form 

 ,0

12 Fxxcx =+
−α

α
  (4) 

with the initial conditions  

 ,0)0(,0)0( == xx   (5) 

where 1≥α  is the power/order of nonlinearity (a real number of integer or non-integer type); 
2
αc  is the coefficient of the nonlinear term and A  is the initial amplitude of vibration. The exact 

analytical expression for the period of vibration is obtained using the corresponding first 
integrals of Eqs. (2) and (4). 

1.1 Free truly nonlinear oscillator 

Integrating Eq. (2) and using the initial conditions (3), the first integral of the energy type is 
obtained  

 .
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Acxcx  (6) 

Being both addends on the left nonnegative, the associated phase paths represent a 
generalized Lamé superellipse in the xx −  phase plane. There is a single equilibrium point 

0== xx   such that it is a centre. Therefore the solutions of Eq. (2) are periodic in time 
(Gottlieb 2003) with the period 
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Substituting the new variable )1/(1 +
=

αuAx  into Eq. (7), the transformed version of this 
period is 
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Introducing the Euler beta function ),(B nm  (see, Rosenberg, 1966) 

 ,)1(),( 11
1

0
duuunmB mn −−−∫=  (9) 

the relation (8) can be rewritten as follows 
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Due to the relationship  
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the exact period is 
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where Γ  is the Euler gamma function (Gradshtein and Rjizhik 1971). 

Using π=Γ )( 2
1  (Gradshtein and Rjizhik 1971), the period expression is finally 

(Cveticanin 2009) 

 .
)(

)(
)1(

221
)1(2

3

1
1

2/)1(
+

+

+
− Γ

Γ
+

=
α
α

α
α

α α
π

Ac
T  (13) 

The period of vibration for various powers of nonlinearity is shown in Table 1. 
 

α  T  T
πω 2=  

1 0
2283.6

Acα
 0Acα  

4/3 6/1
2483.6

Acα
 0.96915 6/1Acα  

3/2 4/1
4581.6

Acα
 0.95469 4/1Acα  

5/3 3/1
5678.6

Acα
 0.94081 3/1Acα  

2 2/1
3869.6

Acα
 0.91468 2/1Acα  

3 1
3416.7

Acα
 0.84721 1Acα  

5 2
6419.8

Acα
 0.74625 2Acα  

Table 1. Period of vibration and the related frequency as a function of the power of nonlinearity 



Journal of the Serbian Society for Computational Mechanics / Special Edition / Vol. 10 / No. 1, 2016 
 

 

119 

The result (13) was also reported by Rosenberg (1963). In general, the period of vibration 
for )()( Ttxtx +=  is asynchronous. 

Analysing the obtained values and Eq. (13), it can be concluded: 

a) The period of vibration is the linear function of the stiffness parameter )/1( αc . 

b) The period of vibration depends on the initial amplitude: for the same power of nonlinearity, 
the period is longer for a smaller initial amplitude A . 

c) The power of nonlinearity affects the period of vibration via the initial amplitude: the higher 
the power of nonlinearity, the smaller the order of initial amplitude that affects the period of 
vibration ( 2/)1( −− αA ). 

d) Purely nonlinear oscillators have the same period of vibration as the linear one if the initial 
amplitude has a special value 
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e) For 1=A , the period of vibration increases as the power of nonlinearity increases. 

1.2 Truly nonlinear oscillator with constant excitation 

The first integral of Eq. (4) for the initial conditions (5) has the following form: 
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Assuming that the direction of excitation is constant and does not depend on motion 
direction, the expression (14) is rewritten in the form: 
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(
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 (15) 

where the upper sign holds for 0≥x  and the other one for 0≤x . Due to equality of the curves, 
the analysis is done only for one of them. The xx −  curves which correspond to Eq. (15), when 

0≥x  and 0≤x , are closed ones. Thus, the solution of Eq. (4) is periodic. 

To calculate the period of vibration, Eq. (15) is rewritten as follows: 
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i.e.  
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For mathematical convenience, a new variable is introduced: 

 ,
10

2

+
=

α

α

α
x

F
cu  (18) 



L. Cveticanin and I. Kovacic: Exact Solutions for the Response of Purely Nonlinear Oscillators: Overview 

 

120 

with the time derivative: 
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Substituting Eqs. (18) and (19) into Eq. (16) and separating the variables, the following 
expression is obtained: 
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After suitable transformation and integration, the half-period of vibration is found to be: 
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According to the definition of the beta function: 
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the period of vibration is: 
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It is recommended to rewrite the expression (23) by using the gamma function, which is 
more convenient. Introducing the transformation (11), the period of vibration is (Cveticanin 
2011): 
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Based on the exact period of vibration (24), the exact angular frequency is: 
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Analysing the relation (24), it can be concluded: 

a) For higher values of the parameter 0F , the period of vibrations is shorter. If 0F  tends to 
infinity, the period tends to zero. If 0F  is zero, the period of vibration is infinitely large and no 
oscillatory motion exists. 

b) For the linear oscillator ( 1=α ), the period of vibration does not depend on the excitation 
magnitude 0F  and has the well-known value 

 ,2)
2
1,

2
1(B2

11 cc
T π

==  (26) 

as  )2/1( π=Γ  and 1)1( =Γ . The frequency of vibration is:  



Journal of the Serbian Society for Computational Mechanics / Special Edition / Vol. 10 / No. 1, 2016 
 

 

121 

 .2
1c

T
==

πω  (27) 

c) The coefficient of nonlinearity αc  also has a significant influence on the period of vibration. 
Its influence varies. Given α

αα /1
0 ))(,( −= cFfT , the following holds: for the linear oscillator (

1=α ), the angular frequency is proportional to 1c ; for higher powers of nonlinearity, the 
influence of αc  on the period of vibration is smaller and for α  approaching infinity, the 
influence of the parameter αc  disappears. 

3. Free response 

3.1 Exact solution for motion 

Let us rewrite Eq. (6) as follows:  
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which yields  
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Now, Eq. (2) can be solved analytically (Cveticanin and Pogany 2012). Let us choose the 
positive right-hand side expression in Eq. (2). It will be:  
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where C  denotes the integration constant. Expanding the integrand in L  into a binomial series 
and then integrating it twice, we conclude:  
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Employing the Pochhammer symbol N∈−++= nnaaaa n ),1()1()(   mutatis mutandis  
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Then,  
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Now, by using the formula that connects the Gaussian hypergeometric 12F  and the 
incomplete Beta function zB  (see Web1 and Web2):  
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we get:  
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Finally, the initial condition Ax =)0(  gives:  
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This relation is the main tool in determining the explicit solution of Cauchy problem (2) 
with (3). 

In his classical paper from 1963, Rosenberg introduced the so-called periodic Ateb-
functions concerning the problem of inversion of the half of the incomplete beta function  
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Obviously, we are interested in the case 2
1

1
1 , == + ba α , when the Ateb functions are in the 

focus of our interest as the solutions of the system of ordinary differential equations (see Senik, 
1969) 
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We write:  

 ( ) ( ) ).,1,(ca),,,1(sa zzuzzv αα ==  (35) 

It can easily be verified that the inverse of ),(B 1
1

2
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2
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Having in mind the following set of properties:  
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we see that ),1,sa( zα  is an odd function of R∈z ; it is the so-called αΠ2 -periodic sine 
Ateb, i.e.  sa -function. In addition, the following holds (Senik 1969): 

 ,1),1,(ca),,1(sa 12 =+ + zz αα α  (38) 

and cosine Ateb, that is the ),,1(ca zα  function, is even and αΠ2 -periodic, with the 
following properties (Senik 1969): 
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By these two sets of expressions, we see that the functions casa,  are defined on the whole 
range of R . 

Now, inverting the half of the incomplete beta function in Eq. (33):  
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we deduce that: 
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Having in mind the quarter-period expansion formula (39), we arrive at:  
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By using 1)0,1,(ca =α , we see that the initial condition Ax =)0(  is satisfied. 

3.2 Fourier series representation 

To provide an insight into the type of the response described by the Ateb function derived, a 
Fourier series representation is used. Since the ca-function is odd, its Fourier series comprises 
odd harmonics only, and it can be expressed as: 
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where the Fourier coefficients 12 −NC  depend on the parameter α , and are defined by 
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where T  is the period. 

To write this expression in a suitable form for further calculation, the procedure recently 
proposed in (Belendez et al. 2015) is utilised. As the first step, the displacement is rescaled by 
the initial amplitude AxX /= , yielding 
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Now, to find the expression for dt , the first integral is composed, and the following is 
derived: 
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This expression gives the possibility to determine how t  depends on X  (noting that this 
holds for )0≥X : 
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Performing some transformations, one can derive (see Belendez et al. 2015 for further 
details): 
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where I  stands for the regularized incomplete beta function. 

Finally, substituting Eq. (45) into Eq. (44) as well as Eq. (47) into the argument of the 
cosine function in Eq. (44), one derives: 
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By using the substitution 11 +−= αXz , the following expression for the Fourier coefficients 
is obtained: 
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These values can be calculated by carrying out numerical integration. First four Fourier 
coefficients are calculated in this way by using Eq. (49) and are plotted in Fig. 1 as a function of 
the power α . It is seen that: 1C  decreases from unity as α  increases; 3C  and 7C  are positive; 

5C  is negative for 1<α < 34.2 , and positive otherwise. 

3.3 Special cases 

3.3.1 Case 1=α   

Equation (2) reduces to  

 .02
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By virtue of the initial condition Ax =)0( , Eq. (33) becomes  
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so that the solution for the response takes the well-known form:  

 ( ).||cos||
2

sin)( 11 tcAtcAtx =





 +±=
π  (50) 

 
Fig. 1. Fourier coefficients given by Eq. (49) as a function of the power of nonlinearity α  for 

1=αc , A=1: a) 1C ; b) 3C ; c) 5C ; d) 7C  
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3.3.2. Case 2=α   

Equation (2) now transforms into 

 .02
2 =+ xxcx  (51) 

According to Eq. (41), the exact solution is 

 ,
2

||3
,1,2ca)( 2/12











= tA

c
Atx  (52) 

where the period of the ca-function (36) is 

 .
)(

)()(
2
1,

3
1B:

6
5

2
1

3
1

2 Γ
ΓΓ

=





=Π  

Using the frequency of the ca function (52) 

 ,
2

||3 2/12 Ac
=Ω  

the period of vibration is 

 .
||3

2
)(
)(2

2/1
26

5

3
1

2

Ac
T π

Γ
Γ

=
Ω
Π

=  (53) 

Comparing Eq. (53) with the period given by Eq. (13) for 2=α , it is seen that the results 
are equal (Cveticanin 2014). 

By using Eq. (2), the solution given by Eq. (52) corresponding to 12 =c  and 1=A  can be 
expressed as 

 ( ) ,
2
3,1,2ca 









= ttx  (54) 

 
( ) ( ) ( )

( ) ( ).40277.6cos00014.057341.4cos00064.0
74404.2cos02572.091468.0cos97480.0

tt
tttx

+
−+≈

 (55) 

This implies that the content is such that the first harmonic dominates with 97% in the 
response, the third one takes around 2.5% of it, and the rest of them are much smaller. The fifth 
harmonic has a negative coefficient. 

3.3.3 Case 3=α   

Let us recall (Web3, Web4) that  

 ,1||),1|(sn1)1|(arcsin1
|

, 1

4

4

4
4
5

2
1

4
1

12 <−=−=






 − zz
z

zF
z

zF  (56) 

where  

 ,)|(amsin)|(sn,
sin1

d)|(
2

)|(
0 mzmz

tm

tmzF mzz =
−

∫=
=am  
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and snam,,F  denote the incomplete elliptic integral of the first kind, the Jacobi amplitude, 
the Jacobi elliptic sn function and 1−sn  stands for the inverse Jacobi elliptic sn functions 
respectively. 

Thus, for 3=α  we have  

 .
2
||

1|
||sn)(|

,
||

2
314

4
5

2
1

4
1

12 t
Ac

C
A
xA

A
xFx +=






 −⋅=







 −  (57) 

Since the initial condition Ax =)0( , we conclude  

 ,)1()1|1(sn 1 −⋅=−= − KAAC  

where ( )mFmK |2)( π=  denotes the complete elliptic integral of the first kind. The Jacobi 
elliptic sn )|( mz  has the period )(4 mK , so  

 
( )

,244116.5
22

1,
4
1B)1(4 4

12

≈
Γ







==−

π
K  

is the period of the function sn )1|( −z . Employing the quarter-period transformation formula 
for the Jacobi amplitude (Web1):  

 1,
1|1am

2
)|)((am ≤








−
−−=− m

m
mzmmzmK π  

for 1−=m , one deduces by that  
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2
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
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

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t
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π
 

Thus  

 .
2
1||cn)( |3 









= tAcAtx  (58) 

Here )|(amcos)|(cn mzmz =  denotes the Jacobi elliptic cn function. It is worth saying 
that Lyapunov in his classical paper (Lyapunov 1893) introduced the Jacobi elliptic functions 
(cn and sn) which are the special case of Ateb Cosine and Ateb Sinus functions for  .3=α   The 
same functions are used for solving the third order nonlinear differential equation of Duffing 
type by Yuste and Bejarano (1990), but also Chen and Cheung (1996), and Kovacic et al. 
(2016). 

By using Eq. (2), the solution given by Eq. (58) and (41) corresponding to 13 =c  and  
1=A  can be expressed as 

 ( ) ( ),2,1,3ca ttx =  (59) 
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( ) ( ) ( )

( ) ( ).93049.5cos00008.023607.4cos00186.0
54164.2cos04305.084721.0cos95501.0

tt
tttx

+
++=≈

 (60) 

The content is such that the first harmonic dominates with 95% in the response, the third 
one takes around 4% of it and the rest of them are again very smaller. All the Fourier 
coefficients calculated are positive. 

4. Forced response 

4.1 Design of excitation and derivation of amplitude-frequency equation 

This section is concerned with purely nonlinear oscillators externally excited by the force F: 

 .12 Fxxcx =+
−α

α  (61) 

The question of interest here is the way how F  should change with time explicitly so that 
Eq. (61) has the exact closed-form solution for the corresponding forced response. To answer 
this, the excitation is assumed as 

 ,1

1
0 −

−=
α

α xx
AA
FF  (62) 

as a result of which the equation of motion (61) turns into 

 .01

1
02 =














−+

−

−

α

αα xx
AA
Fcx  (63) 

Comparing it with Eq. (2), which solution is given by Eq. (41), one concludes that Eq. (63) 
has the solution 

 ( ),,1,ca tAx rωα=  (64) 

where 

 ( )

( )
,

sgn2
1 022/1














−

+
=

−

αα

α αω
AA

FcAr  (65) 

under the condition that the radicand is positive. 

This implies that the required form of the force (62) is given by: 

 ( ) ( ) .,1,ca ,1,ca 1

0

−
=

αωαωα ttFF rr  (66) 

Based on the results presented in Section 3.2, one can interpret this excitation as a multi-
term harmonic excitation with odd harmonics which amplitudes and frequencies are mutually 
related. 

The sought autonomous equation of motion is, then: 

 ( ) ( ) .,1,ca ,1,ca 1

0

12 −−
=+

αα

α ωαωα ttFxxcx rr  (67) 

The expression (65) can further be transformed into the following amplitude-frequency 
equation: 
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 .
1

2
0

122 FAAcAr =+
+

−
−α

αω
α

 (68) 

For some given values of 0F  and 2
αc , Eq. (68) enables one to find the amplitude(s) 

corresponding to different values of the frequency rω  and to plot frequency-response 
(amplitude-frequency) curves. The branches of this curve will be located around the backbone 
curves. The relationship for it can be obtained from Eq. (68) with 00 =F : 

 ( ) ,
2

122/1 +
=

− αω α

α cAbc  (69) 

which is in agreement with the frequency existing in Eq. (41). 

To find the value of frequency at which the number of possible solutions changes, i.e. where the 
saddle-node (SD) point occurs, one can differentiate Eq. (68) with respect to A  to derive 

 ( ) .
2

1212 +
=

− ααω α

α cAr  (70) 

Substituting this back into Eq. (68) and then into Eq. (70), one can derive the following 

expressions for the amplitude Â  and frequency rω̂  at which the SD point exists  

 ,
1

ˆ
/1

2
0

α

α α 











−
=

c
FA  (71) 

 ( ) .
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1ˆ
2

1

2
0

2 α
α

α
ααω

α

α

−













−
+

=
c

Fc
r  (72) 

Figure 2 shows the rescaled SD amplitudes ( ) α

α

/1
2
0/ˆ

c

FAA =∗  and the frequency 

( ) 




=

−
∗ α

α

α
αωω 2

1

2
0/ˆ

c

F
rr c  versus the power of nonlinearity α . These graphs can be used to estimate 

where the point SD occurs depending on the power .α   

 

Fig. 2. a) Graph of the rescaled SD amplitudes ∗A versus the power of nonlinearity α ; b) 

Graph of the rescaled SD frequency ∗
rω  versus the power of nonlinearity α  
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4.2 Special cases 

4.2.1 Case 1=α   

In the linear case, Eq. (67) reduces to the harmonically excited linear oscillator  

 ( ).cos0
2
1 tFxcx rω=+  (73) 

where 

 .02
1 A

Fcr −=ω  (74) 

with the forced response being 

 ( ).cos tAx rω=  (75) 

Indeed, it is easy to check that Eq. (75) satisfies Eq. (73). 
 

4.2.2. Case 2=α   

For purely nonlinear oscillators with odd quadratic nonlinearity, Eq. (67) transforms now into 

 ( ) ( )( ) ( ) .,1,2ca ,1,2casgnsgn 2

0

22
2 ttFxxcx rr ωω=+  (76) 

Its solution is 

 ( ),,1,2ca tAx rω=  (77) 

where 

 
( )

,
sgn2

3
2

02
2 













−=

AA
FcArω  (78) 

Equation (68) is used to plot the frequency-response branches in Fig. 3a for 12 =c  and  
2/10 =F .  

 
Fig. 3. Frequency-response curves (solid line), the SD point (asterix) and the backbone curve 

(dashed-dotted line) corresponding to 1=αc , 2/10 =F and: a) 2=α ; b) 3=α  
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The backbone curve (70) is also presented and the SD point is labelled by the asterix. The 
frequency-response branches are bent to the right-hand side and there is a frequency region in 
which a multi-valued response exists. 

4.2.3 Case 3=α   

For the pure cubic case, Eq. (67) becomes 

 ( ).,1,3ca3
0

32
3 tFxcx rω=+  (79) 

The exact closed-form solution for the forced response is 

 ( ),,1,3ca tAx rω=  (80) 

with 

 .2 3
02

3 





 −=

A
FcArω  (81) 

The corresponding frequency-response curve is plotted in Fig. 3b for 13 =c  and 2/10 =F . 
To illustrate the time history, the case rω =2 is considered (Fig. 3b). Three values of the 
amplitude are calculated from Eq. (68). Two stable ones are labelled by Is and IIs: IsA = −
0.258652 and IIsA =1.52569. The third one is unstable: −=IIIuA 1.26704. The details about the 
stability check are omitted here, as this was done in a classical way by introducing the 
perturbation into the equation of motion (61), and deriving the linear variational equation (Rand 
2016). The solution for the forced response was used as the Fourier series (see Section 3.2): 

 ( )tx 2,1,3ca 25865.0Is −=  (82) 

 
( ) ( )

( ) ( ),38698.8cos00002.09907.5cos00048.0
59442.3cos01113.019814.1cos24701.0Is

tt
ttx

−
−−−≈

 (83) 

and 

 ( ),2,1,3ca 52569.1IIs tx =  (84) 

 
( ) ( )
( ) ( ).38698.8cos00012.09907.5cos00284.0

59442.3cos06568.019814.1cos45704.1IIs

tt
ttx

+
++≈

 (85) 

Hill's equation was obtained subsequently for all the solutions. The corresponding positions 
in the stability chart with respect to the instability tongues were analysed (Rand 2016) to detect 
whether the solutions found are stable or unstable. 

Two pairs of stable solutions are shown in Fig. 4 together with the numerical solutions of 
Eqs. (79) and (81) to demonstrate their mutual agreement. 
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Fig. 4. Time response corresponding to 13 =c  and 2/10 =F , 3=α , rω =2 and: a) Case Is from 
Figure 3b); a) Case IIs from Figure 3b). The numerical solution of Eqs. (79) - red dots, Fourier 

series approximations, Eqs. (83), (85) - black solid line 

5. Conclusions 

The exact solutions for purely nonlinear oscillators with one-degree-of-freedom have been 
overviewed. It has been shown how their period of free vibration can be expressed in terms of 
special functions, such as the beta and gamma function, and also as a function of the initial 
amplitude, coefficient of nonlinearity and the power of nonlinearity. This has also been done for 
the case when the constant excitation acts. Further, it has been demonstrated how the free 
response of these oscillators with the power of nonlinearity higher than unity can be expressed 
in terms of Ateb functions and how it transforms into the Jacobi cn function when the oscillator 
is cubic.  Forced vibrations have been considered as well, and the external excitation designed 
to yield the closed-form solution in terms of the Ateb function. Frequency-response curves have 
been presented to illustrate the response in the frequency domain and the forced vibrations in 
the time domain. 
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Овај рад даје преглед тачних аналитичких решења у затвореној форми за чисто 
нелинеарне осцилаторе. Ова решења обухватају период осциловања, као и решења за 
слободне и принудне осцилације система са једним степеном слободе кретања. У ову 
сврху, коришћене су специјалне функције: бета функција, гама функција, 
хипергеометријска функција, Атеб функција, Јакобијева амплитуда и Јакобијева 
елиптичка функција. 

Кључне речи: чисто нелинеарни осцилатори, слободни одговор, принудни одговор, Атеб 
функција, Јакобијева елиптичка функција 
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