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Abstract

This article provides an overview of the exact closed-form solutions for purely nonlinear
oscillators. These solutions comprise the period of vibration and free and forced responses for
one-degree-of-freedom systems. The use of special function for this purpose is demonstrated
which includes: beta function, gamma function, hypergeometric function, Ateb function, Jacobi
amplitude and Jacobi elliptic function.
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1. Introduction

The real world contains a diversity of nonlinear systems exhibiting oscillatory motion. These
systems are usually modelled as oscillators with strong nonlinearity. This nonlinearity is very
often much stronger than the linearity or even the oscillator is with the so-called 'pure/true
nonlinearity'. This pure nonlinearity corresponds to the case when the elastic/restoring force is
the function of nonlinear deflection described by a binomial of any real power higher than
unity, which can be represented as follows:

F()=-xX", a=>L1. (1)

Such nonlinearity is caused by the geometry of the system, mainly by material properties. It has
been proven experimentally that the stress-strain relationship is purely nonlinear for many
materials: some aircraft materials, such as aluminium, titanium, etc., (Prathap and Varadan
1976), copper and copper alloys (Lo and Gupta 1978), aluminium alloys and annealed copper
(Lewis and Monasa 1982), wood (Haslach 1985), hydrophilic polymers (Haslach 1992),
composites (Chen and Gibson 1998), polyurethane foam (Patten et al. 1998), ceramic materials
(Colm and Clark 1988), etc. The mathematical model for these oscillators is a second order
strongly nonlinear ordinary differential equation. Its exact closed form analytical solution is not
always attainable. In this paper, those purely nonlinear differential equations for which the
exact solution or its properties are known are considered and overviewed.
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2. Period of vibration

One of the main properties of each oscillator is its frequency and period of vibration. In this
section, it is shown that the exact analytical expression of the frequency of vibration exists for
purely nonlinear oscillators. This expression is of special interest as it gives the possibility to
analyse how the frequency property of the oscillator is influenced by the parameters of the
system and also initial conditions (for free vibrations) and the excitation force (if it acts). Two
types of oscillators are considered: a) free purely nonlinear oscillator and b) purely nonlinear
oscillator with a constant excitation force. The mathematical model for purely nonlinear
oscillators is

K+c2xx"" =0, )
with the initial conditions
x(0)=A, x(0)=0. (3)
For the oscillators with a constant excitation force F, the equation of motion has the form
X+c2xX " =F, (4)
with the initial conditions
x(0)=0, x(0)=0, ®)

where o >1 is the power/order of nonlinearity (a real number of integer or non-integer type);

2

¢’ is the coefficient of the nonlinear term and A is the initial amplitude of vibration. The exact
analytical expression for the period of vibration is obtained using the corresponding first

integrals of Egs. (2) and (4).
1.1 Free truly nonlinear oscillator

Integrating Eq. (2) and using the initial conditions (3), the first integral of the energy type is
obtained

.2 2 2
X_+ Ca a+l — Ca |A(Z+l_ (6)
2 a+l a+l

Being both addends on the left nonnegative, the associated phase paths represent a
generalized Lamé superellipse in the x—x phase plane. There is a single equilibrium point
x=x=0 such that it is a centre. Therefore the solutions of Eq. (2) are periodic in time
(Gottlieb 2003) with the period

T 43%: a+1 dx . %

X| \/|A|u+1 a+l

1U(a+1)

Substituting the new variable [x|=|Alju
period is

into Eq. (7), the transformed version of this

(1-a)/2
|'2|( +1 J(l |u|)71/2u7a/(a+1)du. (8)
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Introducing the Euler beta function B(m, n) (see, Rosenberg, 1966)

)" um™du, 9)

B(m,n) = J(L—|u

the relation (8) can be rewritten as follows

(1-a)/2

:4|A 1 1

B(——, 7). (10)

C N2+l a+l'2

Due to the relationship
r'(m)"(n)
B(m,n) = ——=, 11
(m. ) '(m+n) (1)
the exact period is

il (1-a)/2 e N

T _ |A| r‘((l+1)r(2) ’ (12)

T 2a+]) TGEy
where T" is the Euler gamma function (Gradshtein and Rjizhik 1971).

Using F(%):\/; (Gradshtein and Rjizhik 1971), the period expression is finally
(Cveticanin 2009)

1 242z T()
AT e +1) TGiis)

The period of vibration for various powers of nonlinearity is shown in Table 1.

T= (13)

C

a

; - -

) . M

413 o | 096915 ¢ |A"
312 o | 0.95469 ¢ [A"
5/3 | 094081 ¢ A
2 o 1 0.91468 ¢ |A"
3 oW | osaatelq
- = 0.74625 c,|A

Table 1. Period of vibration and the related frequency as a function of the power of nonlinearity



Journal of the Serbian Society for Computational Mechanics / Special Edition / Vol. 10/ No. 1, 2016 119

The result (13) was also reported by Rosenberg (1963). In general, the period of vibration
for x(t) = x(t+T) is asynchronous.

Analysing the obtained values and Eq. (13), it can be concluded:

a) The period of vibration is the linear function of the stiffness parameter (1/c,) .

b) The period of vibration depends on the initial amplitude: for the same power of nonlinearity,
the period is longer for a smaller initial amplitude A.

c¢) The power of nonlinearity affects the period of vibration via the initial amplitude: the higher
the power of nonlinearity, the smaller the order of initial amplitude that affects the period of

vibration (|A ™).

d) Purely nonlinear oscillators have the same period of vibration as the linear one if the initial
amplitude has a special value

@iz \/E ()

Al = .
| Jr(a+1) TGEs)

e) For A=1, the period of vibration increases as the power of nonlinearity increases.

1.2 Truly nonlinear oscillator with constant excitation

The first integral of Eq. (4) for the initial conditions (5) has the following form:

.2 a

X , |x
Zix@E—F)=0. 14
5 (a(Hl 0) (14)

Assuming that the direction of excitation is constant and does not depend on motion
direction, the expression (14) is rewritten in the form:

a

X

X2 2
—+|x/(c. ——-F))=0, 15
5 (c: e ) (15)
where the upper sign holds for x >0 and the other one for x < 0. Due to equality of the curves,
the analysis is done only for one of them. The x—x curves which correspond to Eg. (15), when

x>0 and x <0, are closed ones. Thus, the solution of Eq. (4) is periodic.

To calculate the period of vibration, Eq. (15) is rewritten as follows:

%_ B 2|on+1

o 2F, | 26 (16)
i.e.

dx ¢t [N

E_1/2F0|x| - 17)

0

For mathematical convenience, a new variable is introduced:

2
u= C—a—7 (18)
FO
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with the time derivative:

du ¢ « Xa_ldx

dt F oo+l dt

(19)

Substituting Eqgs. (18) and (19) into Eq. (16) and separating the variables, the following
expression is obtained:
_ 1 ( F,(¢+1u
auy/2F,(1-u) c

)2 du. (20)

After suitable transformation and integration, the half-period of vibration is found to be:

T 0 Folor+1) 10, 120 12
= 2 (1- du. 21
e @y

According to the definition of the beta function:

11

Jut @) du = B 5) (22)
the period of vibration is:
a+) 00, 1 1
T (e ) (23)
2F, c’ 200 2

It is recommended to rewrite the expression (23) by using the gamma function, which is
more convenient. Introducing the transformation (11), the period of vibration is (Cveticanin
2011):

1/2a
__ 2 ((@+) 7 TEIIG)
T= (a-1)/2a 2 lta ' (24)
oF, c, =)
Based on the exact period of vibration (24), the exact angular frequency is:
:2_7[: J2roF (rza c. Juze I'(39) . (25)
T 0 o +1 F(H)F(j)

Analysing the relation (24), it can be concluded:

a) For higher values of the parameter F,, the period of vibrations is shorter. If F, tends to
infinity, the period tends to zero. If F, is zero, the period of vibration is infinitely large and no
oscillatory motion exists.

b) For the linear oscillator (« =1), the period of vibration does not depend on the excitation
magnitude F, and has the well-known value

TziB( ,l)z—, (26)
c 2

1

N |-

as I'(/2)= Jr and I'(}) =1. The frequency of vibration is:



Journal of the Serbian Society for Computational Mechanics / Special Edition / Vol. 10/ No. 1, 2016 121

2
=?=C1- (27)
c) The coefficient of nonlinearity c, also has a significant influence on the period of vibration.
Its influence varies. Given T = f (F,,a)(c,)™“, the following holds: for the linear oscillator (
a =1), the angular frequency is proportional to c,; for higher powers of nonlinearity, the
influence of c, on the period of vibration is smaller and for « approaching infinity, the

influence of the parameter ¢, disappears.

3. Free response

3.1 Exact solution for motion

Let us rewrite Eq. (6) as follows:

2 2
42 | xpi 2 per A, (28)

a+l a+l

which yields
a+l
2 c A(a+1)/2
X =K 1_[MJ , K:M_ (29)
A a+1

Now, Eg. (2) can be solved analytically (Cveticanin and Pogany 2012). Let us choose the
positive right-hand side expression in Eq. (2). It will be:

Lof—%  _kisc, (30)

| X | a+l
I
A
where C denotes the integration constant. Expanding the integrand in L into a binomial series
and then integrating it twice, we conclude:

1 (a+D)n w (=1 (a+1)n+1
Lois o () e ()
n=0 n A o\ n ) (@+D)n+1\ A

Employing the Pochhammer symbol (a), =a(a+1)---(a+n-1),ne N mutatis mutandis
(el
n n!

and

1 d ()
(@+)n+1 n+2  (=2)°

Then,
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A (a+Dn 1 st
L |X|Z((?M%(%) =|x|2|:1{2'a;:+1|(|_2|j } (31

Now, by using the formula that connects the Gaussian hypergeometric ,F, and the
incomplete Beta function B, (see Webl and Web2):

a, 1-b a
F z|=—B (a,h), k1,
2{‘%1@ ~B.@b), 1z

and letting

we get:
B 2(a+1) c, A2t C. 32
(‘:‘] ( 1 2] Y ( )lc, | (32)

Finally, the initial condition x(0) = A gives:

(¢+1)|x] F{;ﬂ, zl(L)M}B (L 1)
o ’ ()" ’

A 1+ a+l 2
—B[— —]+1/2(a+1 |c, |[A“D?t
This relation is the main tool in determining the explicit solution of Cauchy problem (2)

with (3).

In his classical paper from 1963, Rosenberg introduced the so-called periodic Ateb-
functions concerning the problem of inversion of the half of the incomplete beta function

(33)

z> % B.(a,b) = %j(’“ﬂt“ (1-t)"*dt.

0

Obviously, we are interested in the case a=-1;,b=1, when the Ateb functions are in the

focus of our interest as the solutions of the system of ordinary differential equations (see Senik,
1969)

v—u* =0,
u+ﬁv 0 (34)
We write:
v(z)=sa(l, @, z), u(z)=ca(al, 2). (35)

It can easily be verified that the inverse of +B,(+,-%) and v(z) coincide on
[-41T,,411,], where
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m, - [LEJ . (36)

Having in mind the following set of properties:

-sa(l, a,~2)
Fea(e, 1,410, £x)
tsa(l, o, I1, £2)
Fsall, e, 211, F2)

sa(l,a,z) = (37)

we see that sa(a,1,z) is an odd function of ze R ; it is the so-called 21, -periodic sine
Ateb, i.e. sa-function. In addition, the following holds (Senik 1969):

sa’(la,z)+ca“" (a1, 2) =1, (38)

and cosine Ateb, that is the ca(l,«,z) function, is even and 2IT, -periodic, with the
following properties (Senik 1969):

ca(e,1,-2)

sa(l,a, 111, +2)
—ca(a, 11, +2)
ca(a,1,2I1, £2)

ca(a,1,2) = (39)

By these two sets of expressions, we see that the functions sa,ca are defined on the whole
range of R.

Now, inverting the half of the incomplete beta function in Eq. (33):

l L l —H“ + Ia-i_lICOIIA(ozfl)/zt
(%)u+1 a +1 1 2 2 ﬁ_ y
we deduce that:
I1
X(t) = Asa[l, a, 2“ + aTH lc, | A2 IJ . (40)

Having in mind the quarter-period expansion formula (39), we arrive at:

X(t) = Aca(a,l,W{aTﬂlcu | Al tj , teR. (41)

By using ca(«,1,0) =1, we see that the initial condition x(0) = A is satisfied.

3.2 Fourier series representation

To provide an insight into the type of the response described by the Ateb function derived, a
Fourier series representation is used. Since the ca-function is odd, its Fourier series comprises
odd harmonics only, and it can be expressed as:
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Ms

caa,1,t)= CZNi(a)cos[(ZN 1)2T—”t} (42)

=4

=1

where the Fourier coefficients C,, , depend on the parameter « , and are defined by

Cz,H(a)=$ J’zca(a,l,t)cos{(ZN 1)2T_ﬁt} dt, (43)

where T is the period.

To write this expression in a suitable form for further calculation, the procedure recently
proposed in (Belendez et al. 2015) is utilised. As the first step, the displacement is rescaled by
the initial amplitude X =x/A, yielding

Czw(a):% OT/Ax(a:,t)cos{(ZN 1)2_|_—7[t} dt. (44)

Now, to find the expression for dt, the first integral is composed, and the following is
derived:

dt = (45)

a+1 (1-a)/2 dX
2c; 4 1-|X

a+l

This expression gives the possibility to determine how t depends on X (noting that this
holds for X >0):

a+l

(46)

|AI1a)/z 1

Performing some transformations, one can derive (see Belendez et al. 2015 for further
details):

_ 11+1 (t-a)r2 al 1 i
tx)= 2c? (a+1 (“*3 )|AI ( - '2’a+1} 4

2(a+1)

where | stands for the regularized incomplete beta function.

Finally, substituting Eq. (45) into Eq. (44) as well as Eq. (47) into the argument of the
cosine function in Eq. (44), one derives:

Cszl(a)— Z(a +1) (ﬁfﬂ)r X cos{(zngl)” I(l—X sl E%H dX. (48)

\/_r(nu-l) ’ Vl_xOHl ,2 at

By using the substitution z=1- X “**, the following expression for the Fourier coefficients
is obtained:

2r(=s)  @-2)¢ e [(eN-Dz (1 1
Con 1( ) \/—F(Ml)f \/; COS|: > |(Z,E,mj:|d2. (49)
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These values can be calculated by carrying out numerical integration. First four Fourier
coefficients are calculated in this way by using Eq. (49) and are plotted in Fig. 1 as a function of
the power « . It is seen that: C, decreases from unity as o increases; C, and C, are positive;

C, is negative for 1<« < 2.34, and positive otherwise.

3.3 Special cases

3.3.1Case o =1
Equation (2) reduces to
X+cix=0.

By virtue of the initial condition x(0) = A, Eq. (33) becomes

11 2
| x| ZF{Z e |(%) :l: Aarcsin(%j= A(%Hcl |tj )
2

so that the solution for the response takes the well-known form:

(7
X(t) = iAsm(E+ |c, |tj = Acos( c, |t). (50)
a) b)
C]
0.06-
005"
0.045
0037
0.020
0017
3 3 i Tt
C
&) C, d)0.0012
0.008} 0.0010F
0.006] 0.0008
0.0006"
0.004
0.0004)
0.002}
0.0002"
5 1 5 a

Fig. 1. Fourier coefficients given by Eq. (49) as a function of the power of nonlinearity o for
c,=1,A=1:a) C;;b) C,;c) C,;d) C,
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3.3.2.Case =2

Equation (2) now transforms into
X+c2xx|=0. (51)

According to Eq. (41), the exact solution is

X(t) = Aca 2,1,‘/§|°2|A“2t , (52)
V2
where the period of the ca-function (36) is
_— B[ 11)_rere)
’ 32 r'E)
Using the frequency of the ca function (52)
o V3le.] pu
\/E )
the period of vibration is
T-= 21_[2 _ F(g) 'V27Z' (53)

Q T Blc, |A?

Comparing Eg. (53) with the period given by Eq. (13) for a =2, it is seen that the results
are equal (Cveticanin 2014).

By using Eg. (2), the solution given by Eq. (52) corresponding to ¢, =1 and A=1 can be

expressed as
3
x(t)= ca(Z,l, \/;tJ (54)

x(t) ~ 0.97480c0s(0.91468t )+ 0.02572c0s(2. 74404t ) -

(55)
0.00064c0s(4.57341t )+ 0.00014c0s(6.40277t ).

This implies that the content is such that the first harmonic dominates with 97% in the
response, the third one takes around 2.5% of it, and the rest of them are much smaller. The fifth
harmonic has a negative coefficient.

3.3.3Case o =3
Let us recall (Web3, Web4) that

o7 1 -, 1
ZF{ s |z}=WF(arcsmﬁ|—l)=Wsn (z|-D, |z|<1, (56)

where

dt

Jl-msin?t ,

F(z|m)=["m sn(z|m) =sinam(z | m),



Journal of the Serbian Society for Computational Mechanics / Special Edition / Vol. 10/ No. 1, 2016 127

and F,am,sn denote the incomplete elliptic integral of the first kind, the Jacobi amplitude,

the Jacobi elliptic sn function and sn™ stands for the inverse Jacobi elliptic sn functions
respectively.

Thus, for « =3 we have

54 L(1x1 lc, | A’
|X|2F1|: | (o )} A-sn (T|_1J:C+ N t. (57)

Since the initial condition x(0) = A, we conclude

C=Asn"(1]-1) = A-K(-1),

where K(m) = F(% m) denotes the complete elliptic integral of the first kind. The Jacobi
elliptic sn(z|m) has the period 4K (m), so

1 1\Ir(%)
4K(-)=B=|—,— 4/ ~5.244116,
=D (4 2) 27

is the period of the function sn (z|-1) . Employing the quarter-period transformation formula
for the Jacobi amplitude (Webl):

am(K(m)—z|m) :l—am(vl—m z |Lj, m<1
2 m-1
for m=-1, one deduces by that

x(t)_Asn[K( 1+ GlA | 1] Asin am(K( 1+ Cl A —1]

2 2
o |c, |A 3 1
= Asm{2 am[K( D+—— 7 1]}_ Acos am(| c, | At| 2} .
Thus
x(t) = Acn{l c, | Atléj . (58)

Here cn(z|m)=cosam(z|m) denotes the Jacobi elliptic cn function. It is worth saying

that Lyapunov in his classical paper (Lyapunov 1893) introduced the Jacobi elliptic functions
(cn and sn) which are the special case of Ateb Cosine and Ateb Sinus functions for « =3. The
same functions are used for solving the third order nonlinear differential equation of Duffing
type by Yuste and Bejarano (1990), but also Chen and Cheung (1996), and Kovacic et al.
(2016).

By using Eq. (2), the solution given by Eq. (58) and (41) corresponding to ¢, =1 and
A =1 can be expressed as

x(t)= ca(3, 1, \/Et) (59)
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x(t) =~ 0.95501c0s(0.84721t)+0.04305c0s(2.54164t ) +

(60)
0.00186c0s(4.23607t )+ 0.00008c0s(5.93049t ).

The content is such that the first harmonic dominates with 95% in the response, the third
one takes around 4% of it and the rest of them are again very smaller. All the Fourier
coefficients calculated are positive.

4. Forced response

4.1 Design of excitation and derivation of amplitude-frequency equation

This section is concerned with purely nonlinear oscillators externally excited by the force F:

X+c2x

X =F. (61)
The question of interest here is the way how F should change with time explicitly so that

Eqg. (61) has the exact closed-form solution for the corresponding forced response. To answer
this, the excitation is assumed as

a—l, (62)

as a result of which the equation of motion (61) turns into

X+ [cj— AIZ’J X

Comparing it with Eqg. (2), which solution is given by Eq. (41), one concludes that Eq. (63)
has the solution

=0. (63)

X=A ca(a,l, a)rt), (64)

(a-1)12 a+l 2 FO
c: - , 65
\/ 2 (a sgn(A)|A”] (%)

under the condition that the radicand is positive.

where

1) =|A

This implies that the required form of the force (62) is given by:
F=F, cale1 o) calalaot) (66)

Based on the results presented in Section 3.2, one can interpret this excitation as a multi-
term harmonic excitation with odd harmonics which amplitudes and frequencies are mutually
related.

The sought autonomous equation of motion is, then:
%+ c2 x| =F,calaLaot) cale Lot (67)

The expression (65) can further be transformed into the following amplitude-frequency
equation:
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2 -t
—mwrzA+C§A|A| =F0. (68)

For some given values of F, and c?, Eq. (68) enables one to find the amplitude(s)
corresponding to different values of the frequency @, and to plot frequency-response

(amplitude-frequency) curves. The branches of this curve will be located around the backbone
curves. The relationship for it can be obtained from Eq. (68) with F, =0:

= e 2, (69)
which is in agreement with the frequency existing in Eq. (41).

To find the value of frequency at which the number of possible solutions changes, i.e. where the
saddle-node (SD) point occurs, one can differentiate Eq. (68) with respectto A to derive

at 2 a(a +1)
a 2 )

Substituting this back into Eq. (68) and then into Eq. (70), one can derive the following

a)2=|A

r

(70)

expressions for the amplitude ‘A‘ and frequency @, at which the SD point exists

R FO 1l a
=1k "
5 = cia(gwl)[cz ZO—]JM' (72)

Figure 2 shows the rescaled SD amplitudes |A|:W/(:—°)” and the frequency

Fo

o] =0, /(ca (C—Z)Tj versus the power of nonlinearity « . These graphs can be used to estimate

where the point SD occurs depending on the power «.

R e e s R oo AR Anee A

Fig. 2. a) Graph of the rescaled SD amplitudes |A*|versus the power of nonlinearity « ; b)

Graph of the rescaled SD frequency @ versus the power of nonlinearity o



130 L. Cveticaninand I. Kovacic: Exact Solutions for the Response of Purely Nonlinear Oscillators: Overview

4.2 Special cases

4.2.1Case o =1
In the linear case, Eq. (67) reduces to the harmonically excited linear oscillator
X+ ¢ x=Fcos(mt). (73)
where
F

@, =,C/ _KD' (74)
with the forced response being

x = Acos(w;t). (75)

Indeed, it is easy to check that Eq. (75) satisfies Eq. (73).

42.2.Case =2

For purely nonlinear oscillators with odd quadratic nonlinearity, Eq. (67) transforms now into
%+ c2 sgn(x)|{’ = Fsgn(ca(2.L ot))| ca(2,L o t) . (76)
Its solution is
x=Aca(2,1mt), (77)

where

o= 3 "

Equation (68) is used to plot the frequency-response branches in Fig. 3a for ¢, =1 and
F,=1/2.

a4 ) 4
3.0 ) i

043 05 10 5 7.0 73 0@ M5 os o TS e s a0 @)

Fig. 3. Frequency-response curves (solid line), the SD point (asterix) and the backbone curve
(dashed-dotted line) correspondingto ¢, =1, F,=1/2and:a) a =2;b) a=3
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The backbone curve (70) is also presented and the SD point is labelled by the asterix. The
frequency-response branches are bent to the right-hand side and there is a frequency region in
which a multi-valued response exists.

4.2.3 Case o =3
For the pure cubic case, Eq. (67) becomes
K+ ¢z x* =F,ca’(3Lmt) (79)
The exact closed-form solution for the forced response is
x=Aca(31wt) (80)
with
o, =|A 2(c§ —%} (81)

The corresponding frequency-response curve is plotted in Fig. 3b for ¢,=1 and F, =1/2.
To illustrate the time history, the case @, =2 is considered (Fig. 3b). Three values of the
amplitude are calculated from Eq. (68). Two stable ones are labelled by Is and IIs: A .= —
0.258652 and A =1.52569. The third one is unstable: A, =—1.26704. The details about the

stability check are omitted here, as this was done in a classical way by introducing the
perturbation into the equation of motion (61), and deriving the linear variational equation (Rand
2016). The solution for the forced response was used as the Fourier series (see Section 3.2):

x,, = —0.25865ca(3,1, 2t) (82)
X, ~ —0.24701cos(1.19814t)—0.01113 cos(3.59442t )
0.00048 cos(5.9907t)—0.00002 cos(8.38698t ), (83)
and
x,, =1.52569 ca(3,1, 2t), (84)
X,, ~1.45704 cos(1.19814t)+0.06568 cos(3.59442t )+ (85)

0.00284 cos(5.9907t) + 0.00012 cos(8.38698t ).

Hill's equation was obtained subsequently for all the solutions. The corresponding positions
in the stability chart with respect to the instability tongues were analysed (Rand 2016) to detect
whether the solutions found are stable or unstable.

Two pairs of stable solutions are shown in Fig. 4 together with the numerical solutions of
Egs. (79) and (81) to demonstrate their mutual agreement.
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Fig. 4. Time response corresponding to ¢, =1 and F, =1/2, o =3, w, =2 and: a) Case Is from

Figure 3b); a) Case Ils from Figure 3b). The numerical solution of Egs. (79) - red dots, Fourier
series approximations, Egs. (83), (85) - black solid line

b)

5. Conclusions

The exact solutions for purely nonlinear oscillators with one-degree-of-freedom have been
overviewed. It has been shown how their period of free vibration can be expressed in terms of
special functions, such as the beta and gamma function, and also as a function of the initial
amplitude, coefficient of nonlinearity and the power of nonlinearity. This has also been done for
the case when the constant excitation acts. Further, it has been demonstrated how the free
response of these oscillators with the power of nonlinearity higher than unity can be expressed
in terms of Ateb functions and how it transforms into the Jacobi cn function when the oscillator
is cubic. Forced vibrations have been considered as well, and the external excitation designed
to yield the closed-form solution in terms of the Ateb function. Frequency-response curves have
been presented to illustrate the response in the frequency domain and the forced vibrations in
the time domain.
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OBaj pan naje mperjieql TAaYHUX aHAJIWTHYKAX peElIelkha y 3aTBOpeHO] (GopMmu 3a dHCTO
HenmmHeapHe ocimiarope. OBa pemema 00yxBaTajy HEpHOJ OCIMIIOBama, Ka0 W peliema 3a
cnoboHe W MPUHYTHE OCHMJIANMje CHCTeMa ca jeJHHM CTEIeHOM clio0oe KpeTama. Y OBY
CBpXy, KopumheHe cy cmnenujamHe ¢yHKnmje: Oeta ¢yHKOWja, TramMa (QyHKIOHja,
xurepreoMerprjcka ¢Gyekmmja, Ated ¢yHkumja, JakobwjeBa ammuTyaa u JakoOujeBa
eNUNTHIKA PYHKIH]a.

Kibyune peun: uicTo HeJIMHEapHHU OCLMIIATOPH, CIO00IHU OATOBOD, IPUHYIHH OJIr0BOp, ATeO
¢ynkmja, JakoOujeBa enunTuuka GyHKIH)a
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